
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

20

Generation of Optimal Testing Paths using Anti –Ant

Colony Algorithm

Abdullah H. Ahmed
Software Engineering Department

College of Computer Science and Mathematics
University of Mosul, Iraq

Dujan B. Taha
Software Engineering Department

College of Computer Science and Mathematics

University of Mosul, Iraq

ABSTRACT

The most important issue for software industry is to ensure

software quality. The software that delivered to the end user

must have high quality that meets user requirements. Software

must be tested to ensure its quality. In the context of the path-

based testing it is important to find the optimal paths from all

possible code execution paths to reduce testing process cost

and time. The optimal paths are the less number of the paths

that cover all source code statements.

The proposed algorithm accepts java source code as an input

and generates the control flow graph(CFG) corresponding to

that code. Using anti-ant colony optimization, the optimal

paths corresponding to the source code will be generated. The

proposed algorithm determines the minimum set of paths that

cover all source code statements efficiently and accurately.

General Terms

Software testing.

Keywords

Software Testing; Path Testing; Anti-Ant Colony

Optimization; Cyclomatic Complexity; Control Flow

Graph(CFG)

1. INTRODUCTION
Software testing is an important step in software development

process. The primary goal of software testing is to ensure that

the developed software have high quality that meets end user

requirements.

Software testing is the most costly step of software

development life cycle that costs about 40-60% of the effort,

time and cost of all software development process [1][2].

Software testing strategies can be divided into black-box

(functional) testing and white-box (structural) testing.

White box testing (glass box testing), is a method for test case

design that depends on the control structure of the procedural

design to derive test cases [3]. Black box testing (functional

testing) is a testing type in which a software tested without

having the knowledge of the internal structure of the code [4].

Functional testing is based on functional requirements

whereas structural testing is done on code itself. Gray box

testing is another testing type that merge the white box testing

and black box testing. The software testing process must

cover high percentage of the software source code.

Basis path testing is one of the most important white-box

testing techniques. The most important aspect in white box

testing is selecting the test paths that can increase the

probability of finding defects in the software [5]. Software

testing can be done either manually or automatically using

testing tools. The automatic software testing is better than

manual testing because the former reduces the cost and time

of testing. However, there is still lack of automatic and highly

efficient tool for generating basic paths in white-box testing

[1].

In this work we generated the CFG for java code by parsing

and analyzing the source code. The CFG was represented as a

graph matrix that represents the control flow states

connections. Then the optimal bases paths from the graph

matrix have been generated using anti-ant colony algorithm.

The optimal bases paths generated by the proposed algorithm

represent the less number of paths that cover all source code

statements.

The rest of the paper is organized as follows. Section 2

reviews background and some terminologies that will be used

in this paper. Section 3 presents ant colony optimization.

Section 4 discusses the related works. Section 5 demonstrates

the proposed algorithm. Section 6 presents a case study.

Finally, Section 7 concludes the paper.

2. BACKGROUND
One of the most important issue of software testing is that the

testing process must cover the code under testing as much as

possible. In software testing it is very important to use

techniques and methods that find maximum faults in

minimum time [6]. Modern software became complex and

contain large amount of source code so it is impossible to test

all code statements manually, therefore there are many works

and tools now for automatic software testing to reduce testing

time and cost.

White box testing focus on procedural details of the code. The

source code logical paths are tested by providing test cases

that exercise specific paths to cover specific conditions and/or

loops that contained in the code [4].

There are many types of testing coverage metrics like

statements coverage, conditional coverage, branch coverage,

decision coverage, and function coverage [6].

Path testing or basis path testing is one of the most important

techniques in white box testing [5]. It is infeasible to test all

the paths in the CFG because it is a time and cost consuming

process. So, it is important to find a set of optimal paths that

cover all code statements.

CFG that represents the control flow of code are widely used

in software analysis and testing. CFG depicts the logical

structure of the source code under test [5][7]. The CFG

contains a set of nodes and edges. Every node in the CFG

represents one or more code statements while each edge

represents the relationship between nodes or flow of control

between nodes [1][4]. In the CFG, the area that curved by

nodes and edges is called region of CFG [6].

Cyclomatic complexity is one of the most used metrics that

provides a measure of the logical complexity of the program

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

21

[1]. It is always used to find a number of linearly independent

paths in the CFG. The independent path is the path that has at

least one new node that not contained in previous paths [5].

The value of cyclomatic complexity V(G) can be computed in

the following ways [1]:

1. V(G) = e – n + 2 ………. (1)

Where e represents the edges number in the CFG and n is the

nodes number.

2. V(G) = P + 1 ………. (2)

Where P is the number of predicate nodes in the CFG.

3. V(G) = number of CFG regions ………. (3)

The outside of the CFG is also represents a region.

The computed value of the cyclomatic complexity represents

the upper bound of linearly independent paths in the CFG [3].

Thus in some times the number of independent paths may be

less than the cyclomatic complexity value.

3. ANT COLONY OPTIMIZATION
Ant colony optimization is one of the artificial intelligence

metaheuristic techniques that inspired by real ant colonies

[6][8]. The ants that seek for food coordinate with each other

by dropping and sensing the paths pheromone level. The ants

depend on stochastic or probability theory to select their path

[2][9][10]. The ACO was originally applied to solve the

classical travelling salesman problem and it finds a good

solutions[11]. During last few years Ant Colony Optimization

approach has been used to solve the complex computational

problems and software testing is one of these problems [6].

 In our work we use anti-ant Colony Optimization to find

the optimal testing paths. The ant moves from start node to

other nodes until it reaches the exit node. During its

movement from node to another it updates the pheromone

value between the two nodes so that the other ants use the

updated value to determine their paths. The difference

between ant colony algorithm and anti-ant colony algorithm is

that in ant colony algorithm the ant selects the path that has

maximum value of pheromone while in anti-ant colony

algorithm the ant selects the path that has the minimum

pheromone value.

4. RELATED WORKS
There are many works on different types of software testing.

Some of them focus on path-based test. Most of path-based

test works use the artificial intelligence and optimization

algorithms.

Lin et al. [12] use genetic algorithms for test case generation.

Chen et al. [13] suggest an algorithm for the whole control

flow paths of the source code with the help of the LCC

compiler in software coverage testing. Sharma et al. [2]

propose an approach that tries to find out the test sequence

and effective paths by applying ant colony optimization

principle and some set of rules and try to reach maximum

software coverage with minimal redundancy. Saurabh et al.

[5] define a method to optimize time and complexity of

software testing by using ant colony optimization algorithm to

prioritize the feasible paths. Papadakis et al. [14] define an

approach that convert the CFG to an enhanced one in order to

use it for paths selection for mutation testing. Bhuvnesh [5]

define a method to optimize time and complexity of software

testing using ant colony optimization algorithm to prioritize

the feasible paths. Mukesh Mann et al. [2] suggest a method

for generating and prioritizing optimal paths using ant colony

optimization. Xinyang Wang et al. [1] introduce a method for

transforming the source code to corresponding CFG and

suggest an algorithm to find out all basic paths automatically.

5. THE PROPOSED METHOD
The proposed method accepts the source code written in java

as an input and then processes this code through multiple

steps to generate the CFG corresponding the source code. The

CFG was represented as a state transition matrix, and the anti-

ant colony algorithm was applied on this matrix to generate

the optimal paths for the source code. Figure 1 shows the

architecture of the proposed method.

First, the algorithm reads the java source code as a text file.

Code pre-preprocessing includes removing the comment

sentences from the source code and make every line contains

only one code statement.

In the second step, the algorithm parses the source code to

identify the type of each code statements by tokenization.

Generally, there are three types of code statements, they are

[4]:

1. simple statements: this type of statements contains

initialization, variable declaration, assignment, input and

output statements.

Figure 1. The proposed method architecture

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

22

Figure 2. The proposed anti-ant colony algorithm

2. Conditional Statements: contains if, if – else and switch

statements.

3. Loop Statements: this type contains for, while, do – while

statements.

Conditional and loop statements affect the flow of program

execution, so those statements are searched. If the code

statement doesn't contain a loop or conditional keywords, then

the statement is a simple statement. The output of this step is

a list of keywords that represent the structure of each code

statement. The generated keywords list is used to generate the

CFG corresponding to the source code. The state number for

every keyword and the states connections with each other

according to the flow of code execution was produced. The

CFG was represented by a graph matrix of size (n x n) where

n represents the number of nodes in the CFG. If there is a

connection between (n node) and (m node) then the value of

graph matrix at index (n, m) is set to one, otherwise the value

is set to 0. After the generation of the graph matrix, the

cyclomatic complexity is calculated using one of the three

methods mentioned in section 2.

The last step of the algorithm finds the optimal paths for the

source code by applying the anti-ant colony optimization

algorithm on the values of the CFG matrix. Figure 2 describes

the proposed anti-ant colony optimization algorithm for

finding the optimal paths set.

The ant starts from start node and it moves node by node until

it reaches the exit node. In every node the ant decides the next

step movement according to the connection value in the graph

matrix. If the ant finds that the current node has only one

edge, it moves directly to the next node and the connection

value in matrix is increased by 1. If there are multiple edges

that connect the current node with the next nodes, then the ant

must decide to which node it moves. In this case the ant

decision depends on the connection value in the graph matrix.

The ant chooses the edge that has the least connection value.

If the edge connections have the same value, then the ant

moves to the first (least number) node. In every step the node

is added to the current path and the connection value between

current node and next node is increased by one. When the ant

reaches the exit node, the current path is added to the paths

list. In every step new ant starts its search and finds a new

independent path. The number of ants we needed in the

proposed method are equal to the cyclomatic complexity

value. Sometimes paths may be repeated. So, in the final step

all repeated paths are removed from the independent paths

list.

6. CASE STUDY
In the case study we introduce an example for a triangle

classification. The same example was used by the work of

Mukesh Mann et al [2]. The difference is that our code was

written in java while their code was written in C. Figure 3

represents the case study source code.

The CFG produced by the algorithm corresponding to the

source code is as shown in figure 4. The CFG contain 18

nodes, the number 1 node represents the start node while the

node number 18 represents exit (end) node. The CFG

represented as a graph matrix, the matrix values represent the

connections between CFG nodes. For example, in our case

study the node number 2 has a connection to node 3 and node

7 so in the graph matrix the connection is represented by the

value 1 in the (2,3) and (2,7) positions of the matrix. Figure 5

represents the graph matrix for the CFG.

After the generation of CFG we calculate the value of

cyclomatic complexity for the source code by using one of the

three ways mentioned previously in section 2.

Since the number of CFG edge = 23 and the number of CFG

nodes= 18, then, using the first formula for computing

cyclomatic complexity, the cyclomatic complexity =7

Since there are 6 predicate nodes in the CFG, the second

formula produces the value 7 for the cyclomatic complexity.

using the third formula, the cyclomatic complexity is

computed by calculating the number of CFG regions. Since

the CFG has 7 regions, then the cyclomatic complexity is 7.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

23

 { double a1, a2, a3; int valid = 0;

 Scanner in = new Scanner(System.in);

 if (a > 0 && a < 100 && b > 0 && b <= 100 && c > 0 && c < 100) {

 if ((a + b) > c && (b + c) > a && (c + a) > b) {

 valid = 1;

 } else {

 valid = -1;

 } }

 if (valid == 1) {

 a1 = (a * a + b * b) / (c * c); a2 = (b * b + c * c) / (a * a); a3 = (c * c + a * a) / (b * b);

 if (a1 <= 1 || a2 <= 1 || a3 <= 1) {

 System.out.println("obtuse angled triangle");

 } else if (a1 == 1 || a2 == 1 || a3 == 1) {

 System.out.println("right angled triangle");

 } else {

 System.out.println("acute angled triangle");

 }

 } else if (valid == -1) {

 System.out.println("invalid triangle");

 } else {

 System.out.println("input values are out of range");

 } }

Figure 3. The case study source code

Figure 4. CFG for the case study source code

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

24

Figure 5. Graph matrix for the CFG Figure 6. The updated graph matrix after finding the first path

After computing the cyclomatic complexity value, the anti-ant

colony algorithm was used to find the optimal set of

independent paths that cover all the CFG nodes.

The first ant finds the first path which is: 1, 2, 3, 4, 6, 7, 8, 9,

10, 14, 18. Figure 6 shows the updated graph matrix after the

first ant finds the first path and updates the connection values.

The updated matrix shows that the connection values that the

ant pass from them were updated by increasing the value by

one. For example, the ant moved from node number 2 to node

number 3, so the value of the matrix at the position (2,3) was

increased by one and the connection value became 2. The anti-

ant colony algorithm continues to find the optimal set of

independent paths. In our example, at the end, the algorithm

finds five independent paths that cover all the nodes of the

CFG. These paths are:

Path 1: 1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 18

Path 2: 1, 2, 7, 15, 16, 18

Path 3: 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 18

Path 4: 1, 2, 7, 15, 17, 18

Path 5: 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 18

As result shows, the set of optimal basis paths contains only

five independent paths from fifteen available paths, while the

cyclomatic complexity value is seven. In this example we

found the least number of paths that covers all CFG nodes and

that means that these five paths cover all source code

statements. Table 1 shows the comparison between Mukesh

Mann et al. [2] algorithm results and the proposed algorithm

results.

7. CONCLUTION
In the proposed algorithm, we use the anti-ant colony

optimization to find the set of optimal paths for software

testing. The results show that the proposed algorithm is very

appropriate to find the less number of independent paths from

CFG.

The optimal paths are the least number of source code paths

that cover all the source code statements. In some times the

number of optimal paths is equal to the cyclomatic complexity

value, but in other times the number of optimal paths is less

than the cyclomatic complexity value.

In comparison with the result of the work presented by Mukesh

Mann et al [2]. They found seven independent paths, whereas

we found 5 paths in our proposed algorithm. So, we found the

optimal number of paths. That is the paths that cover all source

code statements.

Table 1. the comparison between Mukesh Mann et al. [2] algorithm and the proposed algorithm

 Mukesh Mann et al.[2] algorithm Proposed algorithm

No. of paths 7 5

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

25

paths

Path 1: 1, 2, 7, 15, 17, 18

Path2: 1, 2, 7, 15, 16, 18

Path3: 1, 2, 7, 8, 9, 11, 13, 14, 18

Path4: 1, 2, 7, 8, 9, 11, 12, 14, 18

Path5: 1, 2, 7, 8, 9, 10, 14, 18

Path6: 1, 2, 3, 5, 6, 7, 8, 9, 10, 14, 18

Path7: 1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 18

Path 1: 1, 2, 3, 4, 6, 7, 8, 9, 10, 14, 18

Path 2: 1, 2, 7, 15, 16, 18

Path 3: 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 18

Path 4: 1, 2, 7, 15, 17, 18

Path 5: 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 18

Algorithm

complexity

High Low

8. REFERENCES
[1] Xinyang Wang , Yaqiu Jiang, and Wenhong Tian, "An

Efficient Method for Automatic Generation of Linearly

Independent Paths in White-box Testing," International

Journal of Engineering and Technology Innovation, vol.

5, no. 2, pp. 108-120, 2015.

[2] Mukesh Mann and Om Prakash Sangwan , "Generating

and prioritizing optimal paths using ant colony

optimization, " Computational Ecology and Software,

5(1): 1-15, 2015.

[3] Roger S. Pressman, Software Engineering A

practitioner’s approach 7th Edition. 2010.

[4] Hina Sattar , Imran Sarwar Bajwa , and Umar Farooq

Shafi , "Automated DD-path Testing and its Significance

in SDLC Phases," Journal of Digital Information

Management, Volume 13, Number 5, 2015.

[5] Saurabh Srivastava, Sarvesh Kumar, and Ajeet Kumar

Verma, "Optimal Path Sequencing in Basis Path

Testing," International Journal of Advanced

Computational Engineering and Networking, ISSN (p):

2320-2106, Volume – 1, Issue – 1, 2013.

[6] Robert Gold, "Control Flow Graphs And Code

Coverage," Int. J. Appl. Math. Comput. Sci., Vol. 20,

No.4, 739–749, 2010.

[7] Bhuvnesh Sharma, Isha Girdhar, Monika Taneja, Pooja

Basia, Sangeetha Vadla, and Praveen Ranjan Srivastava,

"Software Coverage : A Testing Approach through Ant

Colony Optimization," B.K. Panigrahi et al. (Eds.):

SEMCCO 2011, Part I, LNCS 7076, pp. 618–625, 2011.

© Springer-Verlag Berlin Heidelberg 2011.

[8] Wang, Y.; Xie, J. Y. Ant colony optimization for

multicast routing in Circuits and Systems. IEEE: The

2000 IEEE Asia-Pacific Conference; 2000; pp 54-57.

[9] M. Dorigo, C. Blum, Ant colony optimization theory: a

survey, Theor. Comput. Sci. 344 (2005) 243–278.

[10] Silva, A. R. M.; Ramalho, G. L. Ant system for the set

covering problem Systems.2001 IEEE International

Conference on Man and Cybernetics;2001; Vol. 5, pp

3129-3133.

[11] M. Dorigo, V. Maniezzo, and A. Colorni. Ant Systems:

Optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man, and Cybernetics-Part B,

26: 1996, 29-41

[12] J. Lin, P. Yeh., “Using Genetic Algorithms for Test Case

Generation in Path Testing,” Proceedings of the Ninth

Asian on Test Symposium, Asian, pp. 241-246, 2000.

[13] Y. Chen, Z. Li, H. Jin, J. He, “Control Flow Paths Subset

of Tested Program Generation Algorithm Based on

LCC,” Computer Engineering, vol. 35, no. 7, pp. 39-41,

2009.

[14] M. Papadakis, N. Malevris, “Mutation based test case

generation via a path selection strategy,” Information &

Software Technology, vol. 54, no. 9, pp. 915-932, 2012.

AUTHORS
Dr. Dujan B. Taha (Assistant Prof.) is currently a lecturer at

Mosul University, College of Computer Science and

Mathematics / Software Engineering Department. She

received B.Sc. degree in Computer Science / University of

Mosul in 1991, M.Sc. degree / University of Mosul in 1996

and Ph.D. degree / University of Mosul in 2005. Her research

interests are in information and network security, software

engineering, image processing and pattern recognition.

Abdullah H. Ahmed is currently an M.Sc. student in Software

Engineering Department / Collage of Computer Science and

Mathematics / University of Mosul.

IJCATM : www.ijcaonline.org

