
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

1

A Timing-driven Binding Algorithm for High-Level

Synthesis of Three-dimensional Integrated Circuits

Vyas Krishnan

Department of Computer Science & Information Systems
Saint Leo University
Saint Leo, FL, USA

ABSTRACT

As semiconductor technology scaling approaches its limits,

3-D integrated circuits (3-D ICs) have been proposed as one

solution to continue the push towards increasing transistor

counts in VLSI circuits. Recent progress in the fabrication of

three-dimensional (3-D) integrated circuits has opened the

possibility of exploiting this technology to alleviate

performance and power related issues raised by interconnects

in advanced nanometer CMOS VLSI circuits. Physical

synthesis for 3-D integrated circuits is substantially different

from traditional planar integrated circuits due to the presence

of additional constraints of placing circuit modules in multiple

silicon layers. To realize the full potential offered by 3-D

integrated circuits, high-level synthesis of these circuits must

take layout-related issues unique to 3-D technology into

account during the synthesis process. This paper presents a

3-D layout-aware timing-driven binding algorithm for design-

space exploration during high-level synthesis. The algorithm

tightly integrates the synthesis tasks of resource binding,

assignment of modules to multiple silicon die, 3-D

floorplanning, and through-silicon via (TSV) minimization.

Elmore delay models incorporating distributed wire-delays,

together with delays introduced by pins and TSVs in a 3-D

integrated circuit are used to compute data-transfer delays in a

data path. Accurate estimates of individual net delays,

obtained from net topologies in 3-D floorplans, are used to

compute wire delays. Our experimental results show that a

timing-driven binding algorithm for high-level synthesis can

improve delays by an average of 12.2% and a maximum of up

to 20.65%.

General Terms

Computer Science – High-Level Synthesis, 3-D integrated

circuits (IC), design space exploration, floorplanning, physical

design;

Keywords

High-Level Synthesis;; Three-dimensional Integrated Circuits;

Simulated Annealing; Timing-driven Synthesis;

1. INTRODUCTION
Aggressive scaling of CMOS technology under Moore’s Law

over the last three decades has enabled the realization of

complex VLSI circuits with billions of transistors on a single

silicon chip. However, as minimum feature sizes reach 10 nm

and lower, this rapid pace of CMOS scaling has begun to slow

due to technological challenges associated with

semiconductor fabrication, interconnect delays, power

dissipation, and circuit reliability. Three-dimensional (3-D)

vertical integration of VLSI circuits is one of the technologies

that can potentially alleviate some of these challenges in

nanoscale CMOS VLSI [1].

A number of 3-D integrated circuit technologies have been

proposed recently. In this work, we consider wafer-stacking

technology [1, 2], due to its maturity and wider adoption when

compared to other competing technologies. In wafer stacking

technology, two or more layers of devices are fabricated

separately, and then aligned and bonded together to form a 3-

D stack. Circuit blocks are placed in each of these device

layers, and interconnected through intra-layer and inter-layer

wires. Conventional 3-D integration provides high-density

vertical interconnects with through-silicon vias (TSVs) and

can achieve higher transistor densities than conventional 2-D

planar integrated circuits, thus enabling reducing wirelengths,

interconnect delay and power, and chip area.

Physical synthesis of 3-D integrated circuits involves

assigning circuit modules to different silicon layers in the 3-D

stack. TSVs are introduced by nets connecting modules in

different silicon layers. Floorplanning of 3-D integrated

circuits involves assigning circuit modules to different active

layers and minimizing the number of TSVs, which makes it

significantly different from the floorplanning used in

traditional planar integrated circuits.

High-level synthesis [3] of designs for 3-D integrated circuits

must be made layout aware due to the nature of interconnects

present in 3-D integrated circuits. In 3-D integrated circuits,

the capacitance of TSVs is significantly higher than typical

gate loads, and this has a significant impact on the signal

delays, as well as the number of timing violations present in a

design. In nanoscale CMOS technologies interconnect delays

become a dominant part of signal delays. High-level synthesis

engines must consider accurate estimates of path delays to

ensure that the resulting designs satisfy timing constraints [3].

This work presents a timing-driven high-level synthesis

algorithm for 3-D integrated circuits that uses accurate Elmore

delay based models applied to nets extracted from floorplans

explored during synthesis. We model the timing-driven

synthesis as an optimization problem with the aim of

minimizing signal delays. Each of the high-level synthesis

steps of scheduling, resource allocation, and binding

significantly impacts the physical synthesis steps of placement

and routing that follow [3]. The work described in this paper

tightly integrates the high-level synthesis step of resource

binding with the physical synthesis steps of 3-D

floorplanning, with the goal of minimizing cycle-time and

latency of a scheduled dataflow graph. The main contributions

of this work are:

 A layout-aware binding algorithm for design-space

exploration during high-level synthesis of 3-D integrated

circuits that tightly integrates the synthesis tasks of

resource binding, assignment of circuit modules to

silicon layers in the 3-D stack, 3-D floorplanning, and

minimization of the number of TSVs.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

2

 A timing-driven data path resource binding algorithm

that uses Elmore delay models incorporating distributed

wire delays, together with delays introduced by pins and

TSVs in a 3-D integrated circuit, during design-space

exploration. Accurate estimates of individual net delays,

obtained from net topologies in 3-D floorplans, are used

to compute interconnect delays.

Previous work on layout-aware high-level synthesis mainly

target 2-D planar integrated circuits [4−14]. Most of these use

crude estimates (such as half-perimeter wire lengths) and

simple closed-form equations [15] for net delays. However,

work on high-level synthesis systems aimed at 3-D layouts is

still in its infancy. Previous work on high-level synthesis for

3-D integrated circuits include [16], [17], [18], and [19]. The

authors of [16] and [17] formulate the high-level synthesis

task and the assignment of RTL modules to various 3-D

layers, as a Linear Programming problem that generates

constraints to run a 3-D constraint-driven floorplanner.

However, their approach, separates the the high-level

synthesis tasks from the floorplanning step. In addition, LP-

based approaches do not scale well with problem size and

complexity. The methods presented in [18] and [19] tightly

couples the high-level and floorplanning steps of the synthesis

process, where the high-level synthesis decisions are guided

by an integrated incremental floorplanner.

Our approach differs from all of these by the use of accurate

interconnect delays of critical nets to drive high-level design

space exploration of 3-D integrated circuits, while most of

previous work aimed to integrate high-level synthesis and

physical synthesis of traditional 2-D planar layouts. Most of

these approaches typically use simple point-to-point wire

length modules. In our work, we use an Elmore-delay based

on a star-net model to accurately estimate net delays [20]. The

main advantage of this method is that it enables the estimation

of individual delays between a source pin and each sink pin of

a multi-terminal net. These net delays are then used to drive

binding and floorplanning decisions of the high-level

synthesis engine.

This paper is organized as follows. In Section 2, describes the

nature of the module binding problem in high-level synthesis

of 3-D integrated circuits. Section 3 introduces the timing

model used to estimate net delays. Section 4 describes our

floorplan-driven binding algorithm. Section 5 presents

experimental results, and Section 6 concludes the paper.

2. PROBLEM DESCRIPTION
The input to the algorithm is a scheduled dataflow graph

(DFG), and an allocated set of resources [3]. It is assumed that

a library of components to be used for implementing the

datapath is available. The output of the algorithm is an RTL

binding [3] and its corresponding 3-D floorplan. The objective

of the algorithm is to concurrently optimize the following

design metrics:

 the cycle time,

 the footprint area,

 the difference in dimensions among 3-D floorplan

layers,

 the total wire length,

 the through-silicon via (TSV) count.

The cycle time is determined by the longest register-to-

register path in a scheduled step [3], which includes functional

unit delays, multiplexor delays, register delays, and delays

due to wires, pins, and TSVs in a 3-D floorplan.

Since a 3-D integrated circuit is created by vertically stacking

several device layers, the floorplan areas of all the layers must

closely match by minimizing the difference in floorplan

dimensions among individual layers. This is necessary to

ensure that the overall footprint area of the 3-D stack is

minimized. For example, assuming two layers, L1 and L2, if

the height of L1 is larger than L2, and similarly if the width of

L2 is larger than that of L1, the need for matching layer

dimensions to aid manufacturing would result in a significant

portion of the silicon area to be wasted. Our synthesis

algorithm aims to minimize the differences in the sizes of the

floorplan layers in the 3-D stack. The footprint area of a 3-D

floorplan is computed by determining the maximum

dimension (width and height) among all active layers.

Through-silicon vias (TSV) connect nets between circuit

modules or gates that are located in different silicon layers,

thus establishing an inter-layer connection. Minimizing the

number of TSVs is important for two reasons. In current

fabrication technology, TSVs are of much larger sizes than the

regular vias between metal layers in each silicon layer [1].

This imposes an upper bound on the maximum number of

TSVs that can be accommodated between any two silicon

layers. Additionally, TSVs act as via blockages, impacting the

routing congestion in the resulting layout.

3. TIMING MODEL
To estimate the net delays we use the Elmore delay, based on

the star model for a multi-terminal net, similar to that

proposed in [20]. The main advantage of this model is that it

allows us to accurately estimate an individual delay between

the source pin and each sink pin of a net. This is important

since sink pin delays among pins on a net can differ

significantly, especially for long nets, nets with a large

fanouts, and nets that connect modules lying in different

floorplan layers. Since, the capacitance of TSVs are

substantially larger than regular vias, they significantly impact

net delays. The computation of individual delays enables

much greater accuracy of estimated net delays, when

compared to techniques that treat a multi-bit net as a single

wire.

Figure 1. Star Tree Model for Multi-terminal Nets

A net is modeled by a star topology, where all the pins

comprising a net are connected to a node termed the star node.

Figure 1 shows an example of this net model for a 5-pin net.

Given module coordinates on a floorplan, the star node is

computed as the center gravity of all pins of the net, and the

Manhattan distances of all pins from the star node is then

Sink
Pin 3

Sink
Pin 2

Sink
Pin 1

Sink
Pin 4

Source
 Pin

Star
Node

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

3

obtained. These distances are used to compute the equivalent

π-model RC circuit of the wire segments connecting each of

the sink pins to the source pin. The module delay is modeled

as the sum of the intrinsic module delay, and a load dependent

delay that is linearly proportional to the external load

capacitance. The star model directly leads us to an RC-tree,

for which the Elmore delay for each sink pin can be calculated

in linear time.

We use the following notation in our Elmore delay model of

the RC-tree of a star topology [20].

• 𝑝0: the source pin of the RC-tree,

• 𝑒𝑖 : the edge from a node 𝑛𝑖 to its parent,

• 𝑟𝑖 : the resistance of edge 𝑒𝑖 ,

• 𝑐𝑖 : capacitance of edge 𝑒𝑖 ,

• 𝐶𝑖 : the total capacitance of a tree rooted at 𝑛𝑖 ,

• 𝑟0: driver resistance at source.

The Elmore delay from the source pin 𝑝0 to a sink pin pi is

given by:

𝑡𝑝0 ,𝑝𝑖
= 𝑟0 ∙ 𝐶0 + 𝑟𝑗 ∙ 𝑐𝑗 2 + 𝐶𝑗

𝑒 ∈ path 𝑝0 ,𝑝𝑖

Assuming uniform wire width, the resistance and capacitance

of an edge, i.e., 𝑟𝑖 and 𝑐𝑖 of the edge 𝑒𝑖 are proportional to its

length. Approximating each of the wire segments in an RC-

tree with its equivalent π-model, the Elmore delay equation

implies that the delay from 𝑝0 to a sink pin 𝑝𝑖 is proportional

to the square of the length of the wire segments between 𝑝0

and 𝑝𝑖 . This quadratic dependency suggests that in order to

minimize the Elmore delay for a sink pin, the length of the

path between the source and sink pins should be minimized.

In the Elmore delay formulation, the load capacitances of pins

are multiplied by the resistance of the wire segments on the

path between source and sink pins. Therefore, pins with larger

capacitance should be closer to the source. Further, to

minimize delay to any sink pin, the total tree capacitance 𝐶0

seen at the source pin should be minimized.

In a high-level synthesis flow, decisions made during binding

determine the number of sink pins driven by a source pin. For

example, a register shared by a larger number of variables

may require the register to drive a large number of datapath

modules. Similarly, the nature of datapath module binding

could significantly impact the effective loads driven by the

datapath modules. Binding also impacts the number and types

of multiplexors needed in the datapath, which also influence

the load capacitance seen by module pins. The lengths of wire

segments to different sink pins in multi-terminal nets are

determined by the relative placement of modules in a

floorplan. Hence, to be effective, a timing-driven binding

algorithm for high-level synthesis must be consider the impact

of both binding and floorplanning on the estimated net delays.

In this work we present a timing-driven high-level synthesis

algorithm for three-dimensional integrated circuits that uses

accurate net delay models derived from layout-level estimates

of datapaths explored during synthesis. The pin to pin delays

used in our delay computation takes into account sink pin

capacitances, wire delays estimated from the placement of the

modules, and the delays introduced by TSVs. In the star

model used to estimate pin to pin delays for all source-sink

pairs in a 3-D floorplan, the location of the star node is

determined by computing the center of gravity of the x and y

coordinates of all pins connected by a net. In our star model,

the star node is always placed on the same floorplan layer as

the source pin. This ensures that delays introduced by TSVs

only affect sink pins located in floorplan layers other than that

of the source pin.

4. TIMING-DRIVEN BINDING

ALGORITHM
The timing-driven binding algorithm is based on a Simulated

Annealing framework described in [21]. The algorithm

accepts a scheduled data flow graph and a resource allocation

for the schedule. A compatibility graph [3] for each resource

type is then extracted from these two, and provided as an

input to a Simulated Annealing based floorplan-driven

binding algorithm then determines the best RTL datapath and

its 3-D floorplan.

Our technique is a Simulated Annealing (SA) based iterative

improvement algorithm that simultaneously performs a search

for optimal module bindings and 3-D floorplans. We chose an

SA-based approach primarily due to its proven performance

when applied to floorplanning [22]. Since our algorithm aims

to tightly integrate binding and floorplanning, the search for

optimal bindings was also implemented as moves in the SA-

framework. A unique feature of our algorithm is the use of

two interleaved sequence of moves that alternately perturb

resource bindings and datapath floorplans, where a fixed

number of binding moves are attempted first, followed by a

fixed number of floorplanning moves. This allows the

algorithm to perform a neighborhood search of the binding

space, followed by a search for an optimal floorplan for the

resulting resource bindings. The need for performing a local

search arises from the fact that often a combination of binding

changes may be needed to improve a solution [21]. Likewise,

a combination of floorplan moves may be needed on a given

binding, to improve the solution. The number of floorplanning

and binding moves attempted at every temperature can be set

independently. In all our experiments, we set the number of

binding moves per temperature to be 5 × (Number of DFG

operations + Number of DFG edges), while the number of

floorplanning moves was set to 10 ∙ 𝑀, where 𝑀 is the

number of floorplan modules. By interleaving a chain of

binding moves followed by a chain of floorplanning moves,

the SA performs a neighborhood search of the floorplan and

binding spaces independently, at every temperature.

Changes in binding can significantly affect the netlist

topology in a datapath, and thus the resulting floorplan and

wire length statistics [21]. By following a neighborhood

search of the binding space with a neighborhood search

floorplanning space, any changes in the netlist topology are

immediately reflected in the actual floorplan. Due to the

incremental floorplan update feature, the SA need only modify

the current floorplan with every binding move sequence,

without the need to perform a time-consuming floorplan

generation step from scratch. This incremental update of the

floorplan makes our SA is very efficient, since the new

floorplan usually has only a small difference from the

previous one.

4.1 Representation of 3-D Floorplans
The floorplanner used in this work is based on the sequence

pair representation proposed by Murata et al. [23] The

sequence pair (SP) representation can efficiently represent any

topological placement of rectangular modules, mainly because

of its non-slicing structure. While the original sequence pair

representation was developed for the 2-D floorplanning

problem, we extend the representation to handle the 3-D

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

4

floorplans used in this work. To perform the 3-D placement,

we maintain a multi-level sequence pair data structure, with

one sequence pair for each device layer of the 3-D stack.

Thus, a separate sequence pair is used to represent the

placement of RTL modules in each of these device layers. At

any time during the search process, an allocated module or

register can be placed in any one of the device layers. For a

full design space exploration, we allow inter-layer moves,

under which an RTL module can be removed from the SP of

one device layer and inserted in the SP of another device

layer. Five floorplan perturbation operators are used in our

algorithm, as described below:

• Module Rotate, which rotates a module over 90 degrees

in the clockwise direction.

• Intra-layer move, which moves a selected module from

its current location in a sequence pair, to a different

location in the same sequence pair. This move

essentially relocates a module within the same silicon

layer.

• Intra-layer swap, which swaps the positions of two

modules in a sequence pair.

• Inter-layer move, which moves a module to a different

device layer in the 3-D stack.

• Inter-layer swap, which swaps two modules located in

different device layers.

The first three moves are borrowed from a traditional 2-D

floorplanning problem, and hence only affect the floorplan in

a single layer. The last two moves allow the algorithm to

explore the space of 3-D floorplans.

4.2 Representation of Module Bindings
For this work, we assume point-to-point multiplexer based

interconnection among the data path modules [3]. The module

bindings are determined by the compatibility graphs for each

RTL module type derived from the scheduled DFG, and the

allocated number of RTL resources. While the number of

allocated resources are determined prior to module binding,

the number and types of multiplexers can only be determined

after the binding step. The number and types of multiplexers

change with different bindings. Since the area and wiring

overheads of the multiplexers can be significant, the binding

and floorplanning steps are strongly inter-dependent. In 3-D

layouts, the active layer assignments of modules and their

bindings also strongly influence the number of TSVs needed

to interconnect the modules. To determine feasible bindings

for a given schedule, the SA maintains a compatibility graph

for each resource type. All binding related SA moves are

guided by this compatibility graph, to ensure that all bindings

determined by the SA are legal, for the given schedule.

Three types of binding moves are defined, as described below:

• Move Binding, which reassigns the binding of a DFG

operation from its current module, to another

compatible module. Likewise, the same move is also

applied to DFG variables and their register bindings.

• Swap Binding, which swaps the bindings of compatible

DFG operations assigned to two different modules. The

same operation is also applied to DFG variables and

register bindings.

• Swap inputs, which interchanges the inputs of a

module that performs a commutative operation.

In all of these SA moves, if the number of sources at the input

of a resource (module or register) changes as a result of a

change in the binding, multiplexers can vanish, appear, or

change their input sizes. Any change to the number and types

of multiplexers resulting from a binding move is immediately

reflected in the floorplan. If a new multiplexer is added to the

RTL data path as a result of a binding move, it is also added to

the sequence pair of a randomly chosen layer lying in the

three-dimensional bounding box enclosing the source and

destination modules of the multiplexer. If a multiplexer

vanishes as a result of a binding move, it is removed from the

corresponding sequence pair containing it. Similarly, if the

multiplexer size changes, its type is updated accordingly.

4.3 Cost Function
Our timing-driven binding algorithm concurrently optimizes

four different metrics, namely, the cycle time for the schedule,

the chip area, the total wirelength, and the number of TSVs. In

addition, for 3-D floorplans, the final packed area of each

floorplan layer must match, dictated by the need for the layer

dimensions to match for fabrication. To ensure this, we use

the concept of dimension deviation 𝑑𝑒𝑣(𝐹) from [24]. Here,

𝑑𝑒𝑣(𝐹) represents the deviation of the upper-right hand

corner of a floorplan layer from the average of 𝐴𝑣𝑒𝑥 and

𝐴𝑣𝑒𝑦 values. The 𝐴𝑣𝑒𝑥 value is computed as 𝑢𝑥(𝑓𝑖)/𝑘,

where 𝑢𝑥(𝑓𝑖) is the x-coordinate of the upper right-hand of

floorplan 𝑖, and 𝑘 represents the number of device layers.

𝐴𝑣𝑒𝑦 is calculated in a similar manner. Thus, 𝑑𝑒𝑣(𝐹) is

formulated as

𝑑𝑒𝑣(𝐹) = (𝐴𝑣𝑒𝑥 − 𝑢𝑥(𝑓𝑖) + 𝐴𝑣𝑒𝑦 − 𝑢𝑦(𝑓𝑖))
2

𝑁

𝑖=1

The cost function used by the SA is,

𝑐𝑜𝑠𝑡 = 𝑤1 ∙ 𝑇𝑛𝑜𝑟𝑚 + 𝑤2 ∙ 𝐴𝑛𝑜𝑟𝑚 + 𝑤3 ∙ 𝑊𝑛𝑜𝑟𝑚 + 𝑤4 ∙ 𝑉𝑛𝑜𝑟𝑚

where,

 𝑇𝑛𝑜𝑟𝑚 =
𝑇𝑛𝑒𝑤

𝑇𝑜𝑙𝑑

 𝑑𝑒𝑣(𝐹)𝑛𝑜𝑟𝑚 =
𝑑𝑒𝑣 (𝐹)𝑛𝑒𝑤

𝑑𝑒𝑣 (𝐹)𝑜𝑙𝑑

 𝐴𝑛𝑜𝑟𝑚 =
Area 𝑛𝑒𝑤

Area 𝑜𝑙𝑑
 + 𝑑𝑒𝑣(𝐹)𝑛𝑜𝑟𝑚

 𝑉𝑛𝑜𝑟𝑚 =
(TSV count)𝑛𝑒𝑤

(TSV count)𝑜𝑙𝑑

 𝑊𝑛𝑜𝑟𝑚 =
Wirelength 𝑛𝑒𝑤

Wirelength 𝑜𝑙𝑑

In the cost function, 𝑇𝑛𝑜𝑟𝑚 represents the normalized cycle

time, 𝐴𝑛𝑜𝑟𝑚 represents the normalized chip area, 𝑊𝑛𝑜𝑟𝑚 is the

normalized total wirelength, and 𝑉𝑛𝑜𝑟𝑚 is the normalized TSV

count. The terms of the cost function for a new solution is

normalized with respect to the current solution. The subscripts

“old” and “new” respectively refer to the solution before and

after applying any of the SA moves. Based on a number of

experiments, the following settings for the coefficients of the

cost function were found to work well: 𝑤1 = 0.50, 𝑤3 = 0.25,

and 𝑤2 = 𝑤4 = 0.125.

Minimizing the chip area encourages the SA to identify

bindings with minimal multiplexer complexity in terms of

number of multiplexers and their sizes. This also reflects on

the resulting wiring complexity due to resource sharing.

Minimizing the differences in the widths and heights of each

of the device layers encourages the SA to search for floorplans

that tend to match the dimensions of all the floorplan layers.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

5

In our algorithm, two-terminal and multi-terminal nets are

treated differently, when estimating wirelengths and net

delays. The wirelengths of all 2-pin nets are estimated using

traditional

Table 1: Comparison of proposed approach with traditional wirelength-driven synthesis

 Device

Layers

Algorithm

Type
Area

Total

Wirelength

TSV

Count

Cycle

Time (ps)

Improvement

over wirelength-

driven synthesis

IIR

2 Timing-driven 128809 19381 128 1776 +14.65%

Wirelength-driven 129756 17117 128 2063

3 Timing-driven 151133 16541 224 1766 +13.80%

Wirelength -driven 129833 15151 248 2056

4 Timing-driven 129678 17268 320 1763 +14.34%

Wirelength -driven 128861 14988 280 2058

5 Timing-driven 143051 19718 248 1771 +14.21%

Wirelength -driven 129833 15152 248 2056

EWF

2 Timing-driven 99578 36114 264 2410 +12.35%

Wirelength -driven 99442 30166 216 2749

3 Timing-driven 109318 32815 472 2735 +0.78%

Wirelength -driven 108156 29919 312 2756

4 Timing-driven 115694 24309 488 2393 +20.65%

Wirelength -driven 113892 34475 440 3016

5 Timing-driven 114558 30909 504 2402 +11.78%

Wirelength -driven 115473 29481 560 2722

DCT

2 Timing-driven 228261 96436 624 2708 +10.72%

Wirelength -driven 210236 107972 592 3033

3 Timing-driven 238043 87719 968 2690 +10.18%

Wirelength -driven 214751 77481 856 2995

4 Timing-driven 257777 77886 1240 2670 +10.37%

Wirelength -driven 258197 84139 1210 2979

5 Timing-driven 268043 81728 1816 2661 +12.35%

Wirelength -driven 257669 80402 1752 3036

half-perimeter bounding box approach. However, for multi-

terminal nets, we use the star model proposed in [20] to

represent their topology, where all the pins comprising a net

are connected to a node termed the star node. Given module

coordinates on a floorplan, the star node is computed as the

center gravity of all pins of the net, and the Manhattan

distances of all pins from the star node is then obtained. These

distances are used to compute the length of the wire segments

of a net, and hence the net length. The sum of all the nets in a

floorplan represents the total wirelength. Minimizing the total

wire length is complementary to finding minimal area

implementations. This also guides the SA to exploit the

additional placement freedom afforded by the availability of

multiple layers in a 3-D architecture. Since wirelengths along

the z-plane are significantly smaller than average wire lengths

on the xy-plane, the wire length minimization metric is a very

useful search parameter in minimizing average delays

between RTL modules, and in guiding the search towards

implementations with minimal register-to-register delay

values.

Though the presence of multiple device layers provides

opportunities for minimizing total wirelengths, there is trade-

off involved here, because the relatively large pitch of TSVs

lead to increased routing congestion, the relatively large

circuit parasitics introduced by TSVs impact net delays, and

the presence of TSVs can impact the manufacturing yield

[25].

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

6

5. EXPERIMENTAL RESULTS
The proposed algorithm was implemented in C++ and

executed on a Linux workstation running on a 1.8 GHz Intel

Core i5 processor with 6 GB of RAM. The RTL modules,

used in our module library were created from behavioral

Verilog descriptions and converted to structural Verilog using

BuildGates, an RTL synthesis tool from Cadence Design

Systems. They were then mapped to a 90 nm, 6-metal standard

cell library, and placed and routed by Cadence Encounter and

WarpRoute. The netlists extracted from these layouts were

then analyzed for timing delays using Synopsis PrimeTime.

The areas and delays from the actual layouts of these

characterized RTL macro cells served as the inputs to our

algorithm. The placed and routed macro cells are then

exported in DEF format to the module library. These DEF

files were used to create the floorplans for all the benchmark

circuits synthesized by our algorithm. To assess the utility of

our algorithm, we tested it on three benchmarks drawn from

DSP applications. The characteristics of the DSP benchmarks

are as follows:

• 8-tap IIR filter, with 9 DFG nodes, 19 DFG edges,

• Elliptic filter (EWF), with 34 DFG nodes, 43 DFG

edges,

• 1-point 8X8 DCT filter, with 48 DFG nodes, 72 DFG

edges.

Each of these benchmarks was specified as a control dataflow

graph (DFG), capturing the behavioral description of the

architecture to be synthesized. A behavioral synthesis tool

developed by our group was then used to schedule and

determine the resource allocations for these benchmarks.

A set of experiments was done to compare the performance of

our timing-driven binding and floorplanning algorithm with

that of a non-timing-driven floorplan-aware binding

algorithm.

Table 1 compares the performance of the proposed timing-

driven binding approach to that of a wirelength-driven

approach. In the table, column 2 specifies the number of

floorplan layers in a 3-D integrated circuit. Column 3

designates the algorithm used to synthesize the designs. The

algorithm type (Timing-driven and wirelength-driven)

indicates the two types of floorplan-aware binding algorithms

compared in this work. Column 4 represents the total

floorplan area of the 3-D stack representing the sum of the

areas of all floorplan layers in the 3-D stack. The total

wirelength in Column 5 is the sum of the all net lengths in the

floorplan. The number of TSVs present in a floorplan is

shown in Column 6. Column 7 shows the minimum estimated

cycle-time for designs synthesized using these two

approaches, and column 8 indicates the percentage

improvement in the cycle-time obtained with our timing-

driven binding algorithm.

From the table it can be seen that a timing-driven binding can

achieve significant reductions in the clock cycle-time, when

compared to a traditional area and wirelength driven flow. The

overall average improvement was 12.2% for the benchmarks

tested. These improvements in wirelengths are due to better

wirelength distributions for critical nets as a result of our

timing-driven binding approach.

Our experiments show that a smaller chip area or wirelength

do not necessarily result in smaller delays. Minimizing delays

requires that the binding step during high-level synthesis

carefully consider the impact of its decisions on the wire

delays, and interlayer via loads driven by the source pins. This

is especially true for nets on the critical path.

6. CONCLUSIONS
In this work we address the problem of layout-aware timing-

driven binding for three dimensional vertically integrated

systems as part of a physical aware behavioral synthesis flow.

We outline a simulated annealing based formulation for the

combined binding and floorplanning problem. Our algorithm

proposes a module binding algorithm that uses Elmore delay

models to accurately estimate individual net delays using net

topologies extracted from 3-D floorplans. A distributed wire-

delay model is used to account for wire delays, together with

delays introduced by pins and interlayer vias in a 3-D

floorplan. These net delays are used to compute the register-

to-register delays for all the data transfers in a dataflow graph,

and the maximum achievable clock cycle time for data paths

examined during design-space exploration. Experimental

results show that our algorithm can obtain reductions in the

critical path delays on average of 12.2%, with a maximum of

up to 20.65% in the achievable minimum clock cycle times,

when compared to traditional synthesis driven by area and

wirelength minimization.

7. REFERENCES
[1] V.F. Pavlidis, I. Davidis, and E.G. Friedman, “Three-

Dimensional Integrated Circuit Design, Second Edition”

Morgan Kaufman Publishers, 2017.

[2] R. Reif, et al., “Fabrication Technologies for Three-

Dimensional Integrated Circuits,” Proceedings of the

Internal Symposium on Quality Electronic Devices

(ISQED 2002).

[3] D. Gajski et.al. “High-Level Synthesis: Introduction to

Chip and System Design,” Kluwer Academic Publishers,

1992.

[4] J.-P. Weng and A.C. Parker, “3D scheduling: High-level

synthesis with floorplanning,” Proc. of the 28th

ACM/IEEE Conference on Design Automation, 1991.

[5] Y.M. Fang and D.F. Wong, “Simultaneous functional-

unit binding and floorplanning,” Proceedings of the

International Conference on Computer Aided Design

(ICCAD 1994).

[6] P. Prabhakaran and P. Bannerjee, “Simultaneous

Scheduling, Binding, and Floorplanning in high-level

synthesis,” Proc. Intl. Conf. VLSI Design 1998.

[7] S. Tarafdar, M. Leeser, and Z. Yin, “Integrating

Floorplanning in Data Transfer Based High-Level

Synthesis,” Proceedings of the International Conference

on Computer Aided Design (ICCAD 1998).

[8] D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-

to-Placed RTL Synthesis with Performance- Driven

Placement,” Proc. of ICCAD 2001, pp. 320-325.

[9] M.Xu and F.J.Kurdahi, “Layout-driven RTL binding

techniques for high-level synthesis using accurate

estimators,” ACM Trans. Design Automation of

Electronic Systems, vol.2, no.4, pp.312-343, 1997.

[10] W. E. Dougherty and D. E. Thomas, “Unifying

behavioral synthesis and physical design,” in

Proceedings of the Design Automation Conference (DAC

2000).

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.49, June 2018

7

[11] A. Davoodi and A.Srivastava, “Power-Driven

Simultaneous Resource Binding and Floorplanning: A

Probabilistic Approach, IEEE Trans. Computer Aided

Design of Integrated Circuits & Systems, 2005, pp. 934-

942.

[12] A. Stammermann, et.al., “Binding, Allocation and

Floorplanning in Low Power High-Level Synthesis”,

Proceedings of the International Conference on

Computer Aided Design (ICCAD 2003).

[13] L. Zhong and N. K. Jha, “Interconnect-aware high-level

synthesis for low power,” in Proceedings of the

International Conference on Computer Aided Design

(ICCAD 2002).

[14] Z. Gu, et. al., “Incremental Exploration of the Combined

Physical and Behavioral Design Space,” in Proc. DAC

2005.

[15] H.B.Bakoglu, Circuits, Interconnects, and Packaging for

VLSI. Reading, MA: Addison-Wesley, 1990.

[16] M. Mukherjee and R. Vemuri, “Simultaneous

Scheduling, Binding and Layer Assignment for Synthesis

of Vertically Integrated 3D Systems,” in Proceedings of

the International Conference on Computer Design

(ICCD 2004).

[17] M. Mukherjee and R. Vemuri, “On Physical-Aware

Synthesis of Vertically Integrated 3D Systems,” in Proc.

International. Conference on. VLSI Design 2005.

[18] V. Krishnan and S. Katkoori, “A 3-D Layout Aware

Binding Algorithm for High-Level Synthesis of Three-

Dimensional Integrated Circuits,” in Proceedings of the

International Symposium on Quality Electronic Devices

(ISQED 2007).

[19] Y. Chen, et. al., “3DHLS: Incorporating High-Level

Synthesis in Physical Planning of Three-Dimensional

(3D) ICs,” Proceedings of the Design Automation and

Test in Europe Conference (DATE 2012).

[20] F.Mo, A.Tabbara, and R.K.Brayton,“A Timing-driven

Macrocell Placement Algorithm”, in Proceedings of the

International Conference on Computer Design (ICCD

2001).

[21] V. Krishnan and S. Katkoori, “Minimizing Wire Delays

by Net-Topology Aware Binding during Floorplan-

Driven High Level Synthesis,” in Proceedings

International Conference on Very Large Scale

Integration (VLSI-SoC 2007).

[22] J. Cong et al., “A Thermal-Driven Floorplanning

Algorithm for 3D ICs,” in Proceedings of the

International Conference on Computer Aided Design

(ICCAD 2004).

[23] H. Murata, et al., “VLSI Module Placement Based on

Rectangle Packing by the Sequence Pair” in , IEEE

Trans. Computer Aided Design of Integrated Circuits &

Systems, 1996, vol 15(12), pp. 1518-1524.

[24] P. H. Shiu, and S. K. Lim, “Multi-layer Floorplanning

for Reliable System-on-Package.”, in Proceedings of

International Symposium on Circuits and Systems

(ISCAS 2004).

[25] X. Dong, J. Zhao, and Y. Xie, “Fabrication cost analysis

and cost-aware design space exploration for 3-D ICs,”

IEEE Trans. Computer Aided Design of Integrated

Circuits & Systems, 2010, pp. 1959-1972

IJCATM : www.ijcaonline.org

