
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.50, June 2018

40

Comparative Analysis of Search Algorithms

Maharshi J. Pathak

Student, B.Tech (IT)
CSPIT, CHARUSAT
Anand, Gujarat, India

Ronit L. Patel

Student, B.Tech (IT)
CSPIT, CHARUSAT
Anand, Gujarat, India

Sonal P. Rami

Assistant Professor (IT)
CSPIT, CHARUSAT
Anand, Gujarat, India

ABSTRACT
Nowadays many artificial intelligence search algorithms are

available to figure out the problem of shortest path finding.

The paper presents the detailed study of informed search and

uninformed search techniques. The paper focuses more

towards uninformed search strategies such as BFS, DFS, and

UCS and informed search strategies like A*, and Best First

Search. The paper includes working of search techniques,

their merits, and demerits, where these algorithms are

applicable, also open and closed list for each algorithm are

shown. At last comparison of search techniques based on

complexity, optimality and completeness are presented in

tabular form.

Keywords
Artificial intelligence, informed search, search algorithms,

shortest path algorithms, uninformed search.

1. INTRODUCTION
Artificial Intelligence is a study of "How to make computer to

think like a human". Artificial Intelligence is a broad area of

research. As shown in Figure 1 Artificial Intelligence has sub

areas like Machine learning and Deep learning. The fields

such as Artificial intelligence, Machine Learning, Deep

Learning, and Data Science are inter-related with each other.

Fig 1: Co-relation of artificial intelligence with other fields

Artificial intelligence includes Problem Solving (Search

techniques), Knowledge and Reasoning (Resolution,

Knowledge Representation, Fuzzy Logic), Adversarial

Search: Game Playing (Minimax Algorithm, Alpha-Beta

Pruning), Uncertain Knowledge and Reasoning (Uncertainty,

Probabilities, Bayesian Networks), and Expert system. The

following paper presents more about problem-solving

techniques in artificial intelligence. There are two problem-

solving techniques in artificial intelligence, uninformed

search, and informed search. The paper focuses more on BFS,

DFS, UCS, A*, and Best First Search.

2. SEARCH ALGORITHM

APPROACHES

2.1 Uninformed search
Uninformed Search is a blind search or brute force search

which includes search techniques such as Breadth First

Search, Depth First Search, Uniform Cost Search, Iterative

Deepening, and Bidirectional Search. Uninformed search does

not contain any information about the number of steps to

reach from current state to goal state. The uniformed search

will consider the path which is most promising at that

moment, it will not consider the optimum path to reach the

goal.

2.2 Informed search
Informed search is Heuristic search which uses heuristic

function (To estimate how close a given state is from goal

state) to solve a problem. Informed search uses generate and

test approach. It includes hill climbing, steepest hill climbing,

A*, AO*, and Best First Search algorithms. Informed search

is more efficient than uninformed search. In informed search

heuristic function is used as a model that will lead us to the

goal state. The informed search will not traverse search tree

blindly. It will consider the next node to traverse based on

some evaluation function (Heuristic Function) to reach the

goal state from current state.

3. WORKING OF SEARCH

TECHNIQUES

3.1 BFS (Breadth first search)
In Breadth First Search all nodes are expanded level by level.

It first expands all the nodes at first level in the search tree,

then expands all the nodes of the second level and this way it

reaches the goal. In Breadth First Search the frontier is

actualized as a queue which works as First In First Out

(FIFO). It is a poor strategy when all solution has a long way

length or then again there is some heuristic information

accessible [1]. It is not utilized when memory requirement is

high. Time complexity is O(bd) and space complexity is

O(bd), where b is branching factor and d is solution depth. For

example, consider a graph (Figure 2). Table 1 shows open list

and closed list for BFS. The open list is set of nodes yet to

explore and closed list is set of nodes already been explored.

At level 0 node 1 is expanded first. Children of node 1-2, 3,

and 4 are added to the queue. Then according to First In First

Out approach node 2 is expanded and child of node 2-6 is

added to the queue. This way search reaches the goal state.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.50, June 2018

41

Fig 2: Graph for BFS and DFS

Table 1. Open and closed list for BFS

OPEN LIST CLOSED LIST

1 1

2, 3, 4 2

3, 4, 6 3

4, 6, 5 4

6, 5, 7 6

5, 7 5

7 7

8–Goal state -

3.1.1 Breadth First Search is applicable when:
 You need to discover the solution of problem

containing the least curves.

 Few solutions may exist, and at least one has a short

path length [1].

 Memory is not an issue.

3.1.2 Applications:
 For unweighted graph minimum spanning tree and

shortest path.

 Shared network.

 Social Networking Websites.

 Global Positioning System Navigation systems.

 For testing whether the graph is bipartite or not.

3.2 DFS (Depth First Search)
In Depth First Search expansion starts from the source node

and goes up to the deepest unexpanded node in a search of

goal node. In Depth First Search the frontier is actualized as a

stack which works as Last In First Out (LIFO). It is also

known as recursive algorithm because it is implemented using

the stack. Time complexity is O(bm) and space complexity is

O(bm), where b is branching factor and m is maximum depth.

For example, consider a graph (Figure 2). Table 2 shows open

list and closed list for DFS. At level 0 node 1 is expanded

first. Children of node 1-4, 3, 2 are added to the stack. Then

according to Last In First Out approach node 2 is expanded

and child of node 2-6 is added to the stack. Then node 6 is

expanded. As it does not have any child it will backtrack to

node 3 and node 3 will be expanded. These way nodes in the

depth are expanded and search reaches the goal state.

Table 2. Open and closed list for DFS

OPEN LIST CLOSED LIST

1 1

4, 3, 2 2

4, 3, 6 6

4, 3 3

4, 5 5

4, 7 7

4, 8-Goal state -

3.2.1 Depth First Search is applicable when:
 Memory is limited.

 The order of the neighbours of a node are added to

the stack can be tuned so that solutions are found on

the first attempt [1].

 It is a poor technique when it is conceivable to get

captured in endless ways, this happens when the

graph is endless or at the point when there are

cycles in the graph.

3.2.2 Applications:
 Identifying loops in a graph.

 Identifying components which are strongly

connected in a graph.

 Finding the solution of the puzzle in which only one

solution exists.

3.3 UCS (Uniform Cost Search)
Uniform Cost Search expand the node with low-cost path. It is

implemented using the priority queue. To calculate cost of

every node, consider this equation, c(m) = c(n) + c(n, m).

where c(m) is the cost of the current node, c(n) is the cost of

the previous node, and C (n, m) is the weight of the edge. The

successor can be removed which are already in a queue with

higher cost. Time complexity is O(b└1+C*/e┘) and space

complexity is O(b└1+C*/e┘), where C is the optimal solution

cost and each activity costs at least ε. For example, consider

graph (Figure 3). Open list and closed list for UCS are shown

in Table 3.

Fig 3: Graph for UCS

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.50, June 2018

42

Table 3. Open and Closed list for UCS

OPEN LIST CLOSED LIST

1(0) 1(0)

2(2), 5(1) 5(1)

2(2), 9(2) 2(2)

9(2), 6(5), 3(3) 9(2)

6(5), 3(3), 10(10) 3(3)

6(5), 10(10), 4(5) 6(5)

10(10), 4(5), 7(6), 10(9) 4(5)

7(6), 10(9), 8(6) 7(6)

10(9), 8(6), 11(16) 8(6)

10(9), 11(16), 12(21) 10(9)

11(16), 12(21), 11(12) 11(12)

12(21), 12(13)-Goal state -

3.3.1 Uniform Cost Search is applicable when:

 Space requirement is less.

 Intelligence is not required or when evaluation

function (Heuristic function) is not required.

3.3.2 Applications:
 Solving Maze problem.

 Path finding.

3.4 A*
A* algorithm joins highlight of Uniform Cost Search and pure

heuristic search to productively calculate optimal solution [1].

For computing cost of every node, consider this equation,

f(m) = c(m) + h(m), where c(m) = c(n) + c(n, m), h(m) is

heuristic function. f(m) compute the most reduced aggregate

cost. Most reduced value of f is chosen at each node for

expansion. Euclidean distance (used when allowed to move in

any direction), Manhattan distance (used when allowed to
move in only four directions-right, left, top, and bottom) or

Diagonal distance (used when allowed to move in eight

directions, same as the movement of king in chess) are used as

Heuristic function. If the value of f of two nodes is same then

the node having lowest h value is chosen for expansion. The

calculation ends when an objective is decided for expansion.

Admissible heuristic function (h(n) ≤ h*(n)) brings visited

node back from the closed list to open list to get an optimal

solution. Time complexity is O(bd) and space complexity is

O(bd), where b is branching factor and d is solution depth [2].

For example, consider graph (Figure 4). Open and closed list

associated with the example is shown in table 4.

Steps to reach goal state from source [3]:

1. Start from the source node, add it open list.

2. Explore all the nodes which are adjacent to the node

which is in open list.

3. Calculate the cost for all the nodes discovered in

step 2, and place them in open list in increasing

order based on cost.

4. Move current working node, from the open list to

closed list.

5. The first node in open list will become the current

working node.

6. Repeat step 2 to 5, if the current working node is not

goal state.

7. The closed list gives the shortest path and the value

of last cost function obtained gives the optimal cost.

Fig 4: Graph for A*

Table 4. Open and Closed list for A*

OPEN LIST CLOSED LIST

1(12) 1(12)

2(12), 5(13) 2(12)

5(13), 3(19), 6(12) 6(12)

5(13), 3(19) 5(13)

3(19), 7(17), 10(13), 9(14) 10(13)

3(19), 7(17), 9(14), 11(13) 11(13)

3(19), 7(17), 9(14), 12(13)-Goal

state

-

3.4.1 Applications:
 Traffic navigation system [4].

 Games.

 Finding shortest path.

 Real-time path re-planning of an unmanned surface

vehicle avoiding underwater obstacles [5].

3.5 Best First Search (Greedy search)
Best First Search is a merger of Breadth First Search and

Depth First Search. Best First Search is implemented using

the priority queue. The advantage of Depth First Search is that

it gives a solution without calculating all node. while Breadth

First Search arrives at a solution without search guaranteed

that the procedure does not get caught. Best First Search,

being a mixer of these two, licenses exchanging between

paths. At each stage the nodes among the created ones, the

best appropriate node is chosen for facilitating expansion,

might be this node have a place to a similar level or different,

hence can flip between Depth First and Breadth First Search

[3]. It is also known as greedy search. Time complexity is

O(bd) and space complexity is O(bd), where b is branching

factor and d is solution depth [2].

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.50, June 2018

43

Fig 5: Example of Best First Search

3.5.1 Applications:
 Games.

 Web crawlers.

4. COMPARISON OF VARIOUS

SEARCH ALGORITHMS
The performance of the algorithm is evaluated based on four

parameters as follows:

1. Time complexity: Time taken by the algorithm to

find a solution.

2. Space complexity: Memory required by the

algorithm to perform the search.

3. Optimality: Solution provided by the algorithm will

always be optimal or not.

4. Completeness: Is that calculation ensured to

discover an answer when there would one say one

is? This section is a Boolean marker regardless of

whether the search algorithm is thorough.

Table 5. Comparison of search algorithm
Algorithm BFS DFS UCS A* BFS

(greed

y

search

)

Time

Complexity

O(bd

)

O(bm

)

O(b└1+C*/e

┘)

O(bd

)

O(bd)

Space

Complexity

O(bd

)

O(bm

)

O(b└1+C*/e

┘)

O(bd

)

O(bd)

Optimality Yes No Yes Yes No

Completene

ss

Yes No Yes Yes Yes

5. CONCLUSION
We conclude that heuristic search is more efficient and

acceptable than blind search. From the example explained

above (open and closed list for UCS and A*), it is clear that in

UCS 11 nodes are required to expand to reach the goal state.

While in A* only 6 nodes are required to expand to reach the

goal state. Also, UCS is more time consuming then A*. So A*

is more efficient and optimal than UCS. Also when all means

costs are similar, instead of UCS, BFS is optimal because it

always expands the shallowest unexpanded node. Hence

heuristic search finds an optimal solution then blind search.

6. REFERENCES
[1] Deepika Garg, COMPARATIVE STUDY OF

VARIOUS SEARCHING ALGORITHMS, National

Conference on Innovative Trends in Computer Science

Engineering (ITCSE-2015) held at BRCMCET, Bahal on

4th April 2015.

[2] Chandel, and Manu Sood, Searching and Optimization

Techniques in Artificial Intelligence: A Comparative

Study & Complexity Analysis, International Journal of

Advanced Research in Computer Engineering &

Technology (IJARCET) Volume 3 Issue 3, March 2014.

[3] Mr. Girish P Potdar, and Dr.R C Thool, COMPARISON

OF VARIOUS HEURISTIC SEARCH TECHNIQUES

FOR FINDING SHORTEST PATH, International

Journal of Artificial Intelligence & Applications (IJAIA),

Vol. 5, No. 4, July 2014.

[4] LIU Jingang, and LIU Yujun, Application of A*

algorithm in Traffic Navigational System, Information

Engineering and Electronic Commerce (IEEC), 2010 2nd

International Symposium on. IEEE, 2010.

[5] Phanthong, Thanapong, et al. Application of A*

algorithm for real-time path re-planning of an unmanned

surface vehicle avoiding underwater obstacles. Journal of

Marine Science and Application 13.1 (2014): 105-116.

[6] R.E. Korf, Scientific Paper on Artificial Intelligence

Search Algorithms, University of California Los

Angeles, June 1999.

[7] Eric A Hansen, and Rong Zhou, Anytime Heuristic

Search, Journal of Artificial Intelligence Research 28, pp

267-287, 2007.

[8] Anne L. Gardner, Search: An Overview, AI magazine,

Vol. 2, Number 1. Sept. 1980.

[9] A.Martelli, On the search complexity of admissible

search algorithms, Al, Vol. 8, pp 1-13, 1977.

[10] R.K.Ahuja, K. Mehlhorn, J.B.Orlin and R.E.Tarjan,

Faster algorithms for shortest path algorithms, Journal of

the Association for Computing Machinery,Vol. 37, No.

2, pp 213-223, April 1990.

IJCATM : www.ijcaonline.org

