
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.51, June 2018

29

Novel Technique for Storing Knowledge using

Hypergraphs and NoSQL

Rahul Mishra
Master of Computer Applications,

Veermata Jijabai Technological Institute

Anala A. Pandit
Department of Computer Applications

Veermata Jijabai Technological Institute,

ABSTRACT
Traditionally, major focus in knowledge management has

been on various techniques of representation of knowledge. In

the current scenario the information is available is more often,

in unstructured formats. Representation and storage of this

information is posing new challenges. This paper introduces

the initial approach to knowledge management and the

problems faced during knowledge collection. It also describes

the use of hypergraphs and NoSQL for knowledge

representation and the way data can be stored as information.

This paper describes a novel technique for representation of

knowledge and also proposes storage solution for the

unstructured information in an effective and flexible manner

as compared to traditional way of knowledge representation.

Keywords
Knowledge management, Hypergraphs, NoSQL

1. INTRODUCTION
Knowledge management is a term, used to refer to stored

information that is useful for decision making and to define

long term plans. [2] It aids learning from past experiences and

refrain from making the same mistakes. The important part in

knowledge management is to convert data into information

which can be used to obtain conclusions for a particular

scenario. This is an extremely important component in

development of Knowledge management systems or Expert

Systems.

The traditional techniques of knowledge management focused

mainly on processing whereas there was a need to focus on

storage with increase in quantum of data. Hypergraph is a way

of knowledge representation that consists of hyperedges

which can connect to multiple vertices representing

relationship between them. [1] Also using NoSQL for storage

of knowledge gives the requisite flexibility to handle the

unstructured information formats.

The rest of the paper is structured in the following manner.

Section 2 presents the current methods and approach which

are used for knowledge management and the collection of

information along with problems faced during the process.

Section 3 provides the proposed technique for knowledge

representation and storage of unstructured data using

hypergraphs and NoSQL. Section 4 explains the advantages

of the proposed technique over current methods which are

followed. Section 5 descsribes the conclusion and future

directioins for the work.

2. CURRENT METHODS
Knowledge management consists of different steps from

collection of information to applying different techniques

such as rule-based approach or case-based reasoning

approach in order to derive appropriate conclusions.

However, each method of knowledge representation does

have some limitations. Humans feel comfortable taking

decisions based on rule-based approach, where ‘if’ part

represents the ‘condition’ and the ‘then’ part specifies the

action to be performed. In case of computational operation

case-based reasoning is much preferred where, for any

specific situations the actions are taken based on similar cases

from the past. [2] [3]

To avoid problems of using a single technique, a combination

of both the techniques were used for knowledge management

which would support rule based and case based reasoning to

arrive at conclusions. [2] But the issue with this solution is

that it requires a lot of processing power, and in such a case

then,

efficiency is a major concern. These are traditional ways of

knowledge representation. [2] .The information required for

knowledge representation is not directly available. It requires

collection of data from different sources that can be people,

system reports, past records etc.

The information can be obtained as ‘Tacit Knowledge’ or

‘Formalized Knowledge’. [2] [3]. When the information is

provided by people based on their experience, it is known as

‘Tacit Knowledge’. The problems faced during the collection

of information is that people’s data/opinions differ since the

information is subjective. A person providing information

should have proper domain knowledge which is required to

design a knowledge representation. Also not everybody

remembers all the information to guarantee that the

information is complete and correct. ‘Formalized knowledge’

is one which is available to all the employees of the

organization. The records obtained from past reports might

have different format because of which it would be difficult to

integrate them and generate a proper document containing

required information. This happens when information is

collected from different sources that may be in different

formats.

In traditional systems of the past, there was no means to

import a data file already containing information because of

technology constraints. One such example is of MYCIN in

which user has to enter all the information manually through

the use of keyboard and mouse which was time consuming.

Modern information from internet, apps etc. are unstructured

which requires a lot of time, effort and understanding to

classify information. [2] [3]

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.51, June 2018

30

3. PROPOSED TECHNIQUE

Fig 3.1 Flow of proposed technique

According to the techniques mentioned in Section 2 which are

used for knowledge management there is a need to focus on

storage of information so that it supports user specific queries.

Fig 3.1 shows the steps of the proposed technique. The first

step is similar and common which indicates the data should be

collected from sources required. This data can be of any

format.

The second step is to convert the data into hypergraph

representation according to requirements of an organization.

This is followed by storing this information into NoSQL as it

supports flexibility and is widely used for storing unstructured

data. The fourth step is to query the stored information using

appropriate query language for required tasks.

3.1 Hypergraphs for representation:
Hypergraphs consist of non-empty subsets of vertices and

hyperedges. As compared to directed graphs the hyperedges

can connect to multiple vertices. Also hyperedges can be a

part of another hyperedge too. Hypergraphs are significant

because they can be used to represent relationships among

different entities considering the vertices as entities. The

entities contain their information and hyperedges represent

relationship among the vertices. [1]

Hypergraphs inspite of storing a lot of information represents

a graph structure which is simple to understand and can be

used to explain an structure of an organization or other

aspects. Also hypergraphs are capable of storing any

relational information. [1]

Fig 3.1.1: Hypergraph

Figure 3.1.1 shows a hypergraph that contains vertices or

nodes represented by v and hyperedges represented by e. In

above diagram e2 is connected to e1 which represents a

relationship among them. In order to represent knowledge

using hypergraph consider an example where ‘employee’ and

‘department’ can be considered as vertices. These two

vertices are connected by a relation called ‘belongs to’ that

represents an hyperedge. This hyperedge indicates that there

is a relation between employee and department represented by

an hyperedge belongs to. However, there is one more point to

be considered which is the roles defined to employee and

department. The role of employee is one who belongs and that

of department is where he belongs. [1]

Fig 3.1.2 :Employee hypergraph

Consider figure 3.1.2 which is other relation switch which is a

hyperedge. This one obviously connects employee and

department, it provides the roles one who belongs and where

one belongs to but it also contains the relation belongs to

because employee should be in department to be switch. This

is beauty of representation of knowledge using hypergraph.

Table 1. Department Table

Id Department name

Dep1 Sales

Table 2. Employee Table

Id Name Department

1 Abc Dep1

Table 3. Department switch table

SwitchId BelongsId DepId EmpId

Sw1 B1 Dep1 1

If one compares this to a database format as shown in table 1,

table 2 and table 3 then it can be seen that relations belongs to

and switch preserve values of relationship and employee and

department represent entities. There are no primary or foreign

key attributes here. The strict nature of database tables does

not allow us to make changes easily in the database for

example keeping an attribute blank or adding more values.

But in hypergraphs we can add additional attribute values

representing an entity.

3.2 NoSQL for storage
As hypergraphs are flexible it implies that it does not have a

strict schema. The nodes and hyperedges can be added or

removed based upon the needs of the problem or the user. In

Collect data Hypergraph

representation of

data

Store representation

in NoSQL
Use query

language to

fetch

information

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.51, June 2018

31

addition, there is also a need to store these hypergraphs which

contain relationship between nodes in the form of hyperedges.

It stores knowledge to perform different operations on it.

Relational databases cannot be used for this because of their

strict schema and inflexibility. The structure of the data is not

the same. To store such wide variety of data, one would

require a lot of time and effort for cleaning and converging to

a standard format out of it. Also if there are any changes

required then the same process will need to be repeated. Since

NoSQL allows data in different formats and the data collected

from different sources have different formats, NoSQL is

suitable in order to store hypergraphs. [13]

In NoSQL the schema is flexible. Data can be stored in the

following forms in different types of NoSQL databases

available:

- key value pairs,

- document,

- graph,

- columnar [13].

Cloud companies use NoSQL for handling large amounts of

distributed data because it’s structure is not rigid. [13] Any

form of data can be stored in NoSQL. There is no need to

change schema in order to make changes, just add it in a

suitable format into NoSQL. All these properties makes

NoSQL a perfect option in order to store hypergraphs. These

databases can easily store hyperedges and information about

nodes.

Consider an organization which is using hypergraphs to

represent the data. In this case if the data is first collected

from multiple sources, the data can be represented as

hypergraphs to represent knowledge. These hypergraphs can

then be stored into NoSQL. If any changes occur in future

then a new node with new hyperedge representing a relation

between them can be added, as hypergraphs and NoSQL both

support flexibility.

3.3 Using GRAKN.AI with an example
GRAKN.AI is a hyper relational database which is used as

backend for knowledge storage. It uses graql which is a query

language. GRAKN uses concepts to define the schema of

storing knowledge. Concepts are anything which represents

the domain. In simple words it consists of all components of

the specific domain which should be a part of the knowledge

base.

Consider a scenario of creating a schema for storing the

employee information belonging to a particular department in

an organization. In this scheme of things, everything is

represented as a concept which are part of the domain which

in this case can be employee, department. The next step is to

identify entities, relationships, attributes from these concepts.

GRAKN follows a hierarchical structure therefore each

concept should have exactly one parent. One type can be a

child of another type. For example we can define an entity as

animal and cat can be a child of that entity. The roles are

defined for each entity so that there is no confusion. One

cannot change meaning of a relationship by providing invalid

values like an oil platform owns company.

The schema can be defined as follows:

define

"employee" sub entity

has name plays oneWhoBelongs;

"department" sub entity

has name

plays whereItBelongs

plays depItWants;

"belongsto" sub relationship relates oneWhoBelongs relates

whereItBelongs;

"switch" sub relationship relates oneWhoBelongs relates

depItWants;

"oneWhoBelongs" sub role;

"whereItBelongs" sub role;

"depItWants" sub role;

name sub attribute datatype string; [10] [11]

command to load graql schema file [12]:

/graql console -k yourkeyspace -f Path to/schema.gql

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.51, June 2018

32

Fig 3.3.1: Schema for employee

Fig 3.3.2: Employee belongsto Relation

Fig 3.3.1 is to check whether file is loaded properly or not.

The diagram shows hierarchical relationship among all types.

Loading data can be done using insert command

insert $x isa employee has name="abc";

insert $x isa department has name="dep1";

GRAQL query language is used to fire queries to find and add

relationship as follows:

match $x isa employee has name="abc"; $y isa department

has name="dep1"; insert

(oneWhoBelongs:$x,whereItBelongs:$y) isa belongsto; [7]

After adding the above relation the schema in GRAKN.AI

changes to figure 3.3.2 which can be viewed using query:

match $x isa employee has name="abc";($x,$y) isa belongsto;

offset 0; limit 30; get; [6]

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.51, June 2018

33

Fig 3.3.2 displays that a relation is created between an

employee and department. There are many more operations

which can be performed in GRAKN but the special feature of

GRAKN is that it provides a hyper relational approach which

is efficient and flexible.

4. ADVANTAGES
The proposed technique combines the benefits of both

hypergraphs and NoSQL. The representation and storage of

information is flexible which means that in future if there is a

need to make changes it can be done easily as compared to

strict structure of relational schemas. It saves time by reducing

task of changing the schema to suit current need which affects

all previous entities. This increases efficiency. It expresses

higher-order information such as nesting of information,

relations between relations etc. It does not impose any

restriction on attributes belonging to an entity. Graph oriented

computation techniques can be applied. The structure of the

representation of information is similar to graph which is easy

to understand. [1]

5. CONCLUSION
The scope of information required for decision making has

increased in recent times and will continue as time progresses.

There will always be a need for integration of information

from different sources to form a knowledge base.

Hypergraphs and NoSQL provides a reasonable approach to

store information and form relationship to enable to make

decisions. It treats everything as a concept, not as a record to

be stored. This makes it more efficient and flexible. It

supports computational processing. To take this work further,

more work is required in the implementation of storage and

identifying the best type of NoSQL suitable for knowledge

storage. There has been a lot of focus in the past for

processing of information but due to increase in unstructured

data there is a need to work in future on representation of

information for analytical purposes.

6. REFERENCES
[1] Modelling Data with Hypergraphs, Szymon Klarman,

2017

[2] Artificial Intelligence Support of Knowledge

Transformation in Knowledge Management Systems,

Tatiana V. Avdeenko, Ekaterina S. Makarova, Irina L.

Klavsuts, 2016

[3] The Artificial Intelligence in Personal Knowledge

Management, Lixin Diao1, Mingzhang Zuo1, Qiang

Liu1, 2009

[4] https://grakn.ai/, available on 06/06/2018

[5] https://dev.grakn.ai/academy/graql-intro.html, available on

06/06/2018

[6] https://dev.grakn.ai/academy/get-queries.html, available

on 06/06/2018

[7] https://dev.grakn.ai/academy/insert-delete-queries.html,

available on 06/06/2018

[8] https://dev.grakn.ai/academy/schema-elements.html,

available on 06/06/2018

[9] https://dev.grakn.ai/academy/conceptual-modeling-

intro.html, available on 06/06/2018

[10] https://dev.grakn.ai/academy/schema-building.html,

available on 06/06/2018

[11]https://dev.grakn.ai/academy/schema-building-

continued.html, available on 06/06/2018

[12] https://dev.grakn.ai/academy/loading-files.html, available

on 06/06/2018

[13]https://searchdatamanagement.techtarget.com/definition/

NoSQL-Not-Only-SQL, available on 06/06/2018

IJCATM : www.ijcaonline.org

https://grakn.ai/
https://dev.grakn.ai/academy/graql-intro.html
https://dev.grakn.ai/academy/get-queries.html
https://dev.grakn.ai/academy/schema-elements.html
https://dev.grakn.ai/academy/schema-building.html
https://dev.grakn.ai/academy/schema-building-
https://dev.grakn.ai/academy/schema-building-
https://dev.grakn.ai/academy/loading-files.html
https://searchdatamanagement.techtarget.com/definition/
https://searchdatamanagement.techtarget.com/definition/
https://searchdatamanagement.techtarget.com/definition/

