
International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

15 

Fingerprint Classification using KMCG Algorithm under 

Varying Window and Codebook Sizes 

Winnie Gift Odongo 

School of Computer Science 
and Information Technology 
Jomo Kenyatta University of 
Agriculture and Technology 

(JKUAT) 
Nairobi, Kenya 

Waweru Mwangi 

School of Computer Science 
and Information Technology 
Jomo Kenyatta University of 
Agriculture and Technology 

(JKUAT) 
Nairobi, Kenya 

Richard Rimiru 

School of Computer Science 
and Information Technology 
Jomo Kenyatta University of 
Agriculture and Technology 

(JKUAT) 
Nairobi, Kenya 

 

 

ABSTRACT 
Fingerprints are the most widely used form of biometric 

identification. Fingerprint identification has become time-

consuming because of growing size of fingerprint databases. 

Fingerprint classification can be one of the significant 

preprocessing steps to improve the accuracy of fingerprint 

identification systems and is done to put a given fingerprint to 

one of the existing classes. Classifying fingerprint images is a 

very difficult pattern recognition problem, due to the possible 

problem with accuracy which is a measure of how well the 

system is able to correctly match the biometric information 

from the same person and avoid falsely matching biometric 

information from different people. In this research an 

experiment was conducted and a comparative analysis based 

on vector quantization for fingerprint classification using 

Kekre’s Median Codebook Generation (KMCG) was done 

using codebook sizes 2, 4, 8 and window sizes 2*2, 4*4, 8*8, 

16*16, 32*32, 64*64. KMCG is one of the better and faster 

vector quantization codebook generation methods. Fingerprint 

images were obtained from the National Institute of Standards 

and Technology (NIST) special database 4 for this study. It 

was observed that the method effectively improves the 

computation speed and provides accuracy of A (Arch) by 

99%, TA (Tented Arch) by 98%, LL (Left Loop) by100%, RL 

(Right Loop) by 100% for codebook size 4 and LL (Left 

Loop) by 99% accuracy for codebook size 8 and window size 

8*8. Codebook size 2, 4 exhibited overall better percentage 

accuracy of classification than codebook size 8.  

Keywords 

Vector Quantization, KMCG, NIST, Fingerprint 

Classification. 

1. INTRODUCTION 
Biometrics refers to the unique identification of an individual 

using biological and behavioral characteristics. The different 

human traits that can be used by a biometric system include 

the face, fingerprint, Iris, voice, speech, hand geometry and 

retina [1]. Today, because of the progress in computer 

processing, automatic biometric systems, based on concepts 

developed from time immemorial, have become available [2]. 

There are numerous benefits of the biometric system and how 

it affects various work sectors globally. Most biometric 

technology users face challenges in defining right and 

accurate biometric technology systems that are cost effective 

in solving a particular problem in a given environment [3].  

A fingerprint biometric system remains a popular choice 

because a fingerprint is an individual’s unique characteristic 

that remains unchanged during his or her lifetime [4]. The 

process of assigning a fingerprint to its predefined class/group 

is known as Fingerprint classification. Fingerprint 

classification involves extraction of features from a 

fingerprint image. These extracted features are then compared 

with other existing features from images in a database. The 

fingerprint image with features that exactly resemble it is 

retrieved [4]. Classification of Fingerprint has also received 

considerable attention as pattern recognition problem for its 

difficulty, due to the small inter-class variability and the large 

intra-class variability[2]. Large Intra- class variability happens 

when there is a broad selection of possible patterns with each 

class whereas small inter- class variability occur when 

fingerprint images from one class emerge very related to 

prints from another class [5]. 

The extremely increasing size of fingerprint samples for 

identification systems has really developed into an issue these 

days. Fingerprint classification for the grouping of 

fingerprints which may additionally play as the pre-processing 

of identification system has gained research drive. The job of 

assigning the fingerprint to one of the considered classes is 

tricky due to the likely problem with precision which is a 

gauge of how well the system is able to appropriately match 

the biometric information from the same person and avoid 

wrongly corresponding biometric information from dissimilar 

people. It is in light of these issues that the following study 

was conducted to investigate more on how to classify 

fingerprints and test for their accuracy with various codebook 

sizes  [4]. 

One of the VQ codebook generation techniques is The KMCG 

which makes use of classification and median technique for 

generating codebook where image is divided into blocks and 

blocks are converted to the vectors of size k as given in this 

paper. The paper is prearranged as follows: Part II briefly 

describes a range of fingerprint classes, Part III gives the 

methodology that was used for fingerprint classification, Part 

IV explains regarding the KMCG algorithm, Part V consists 

of results and discussions and Part VI gives conclusion of the 

paper. 

2. FINGERPRINT CLASSES 
A fingerprint consists of ridges (raised skin) and a core point 

(the northernmost point of the inmost ridge). A fingerprint can 

therefore be defined as the pattern of ridges found on the 

exterior of one’s fingertips. When analyzed a significant trait 

of the fingerprint known as the minutiae can be found. The 

minutiae include features such as ridge bifurcation (a ridge 

that further separates two ridges), curvature (arc) and 

termination. These regions are collectively refered to as 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

16 

singularities and are further divided into three topologies: 

loop, delta, and whorl [6]. The universal form of ridges and 

furrows, further extended by their counts form the basis for 

fingerprint classification. The ridge patterns of the fingerprints 

can be systematically classified as loops, whorls and arches. 

Majority of fingerprint images fall into the loop category 

about 60-65% on the other hand arch and whorl comprise of 

30-35% and 5% respectively [7]. These three classes can 

further be divided into the subsequent five classes as shown 

below: 

 

a) Arch (A)                          b) Tented Arch (TA) 

 

c) Left Loop (LL)               d) Right Loop (RL) 

 

e) Whorl (W) 

Figure 2.0: Fingerprint Classes a)Arch(A), b)Tented 

Arch(TA),  c)Left Loop(LL),  d)Right Loop(RL), e) Whorl 

(W) 

2.1 Loops 
60-65% of fingerprint patterns encountered are Loops. One or 

more of the ridges enters on whichever side of the impression, 

re-curves, touches or crosses the line running from the delta to 

the core and terminates on or in the direction of the side where 

the ridge or ridges entered. Loops may specifically be 

classified as right loop and left loop by observing the left 

hand. If the ridges run in the direction of the thumb, it can be 

classified as right loop and if it runs in the direction of the 

small finger then it can be classified as left loop. 

2.2 Arches 
The arch pattern comes as aresult of ridges lying one over the 

other. The ridges come in on single side run or appear to flow 

out from the other side. The Tented Arch consists of at least 

one protruding ridge which tends to cut in half of other ridges 

at right angles. Plain Arch has a wave resembling structure as 

compared to tented arch with a sharp rise at the center. 

2.3 Whorl 
The Plain Whorl has at least one ridge and two deltas creating 

a complete circuit, which may be coiled, elliptical, spherical, 

or any variation of a circle, which may be spiral, oval, 

circular, or any variant of a circle. The double loop is made up 

of two detached loop formations, with two deltas and two 

separate and distinct sets of shoulders. 

2.4 Applied VQ approaches in Fingerprint 

Classification 
A technique of compressing data based on grouping blocks 

having comparable data is referred to as Vector Quantization. 

These blocks are called Code Vectors and all the code vectors 

grouped together is called a Codebook. The Key to VQ data 

compression is a good codebook. There is a loss of quality 

while using VQ, but this is duly compensated by the 

important savings achieved by this compression method. VQ 

leads to creation of codebooks. These codebooks are a 

division of the blocks resulting from the data. It is an iterative 

method of grouping data, where iteration involves increasing 

the number of groups twofold and re-grouping the data till a 

finite desired number of clusters is reached. It is a three phase 

procedure involving Codebook Generation, Encoding and 

Decoding [8]. 

2.5 Algorithms for codebook generation 
Linde-Buzo-Gray (LBG) Algorithm: In this algorithm 

centroid is computed as the first code vector for the training 

set. Two vectors V1 and V2 are then generated by adding 

constant error to the code vector. Euclidian distances of all the 

training vectors are computed with vectors V1 and V2 and two 

clusters are formed based on nearest of V1 and V2. This 

procedure is repeated for every cluster [7], [8]. 

Kekre’s Proportionate Error (KPE) Algorithm: In this 

algorithm a proportionate error is added to the centroid to 

generate two vectors V1 and V2. The error ration is decided by 

the magnitude of coordinates of the centroid. Thereafter, the 

procedure is same as that of LBG [8]. 

Kekre’s Fast Codebook Generation (KFCG) Algorithm: This 

algorithm reduces the time for codebook generation. It does 

not use Euclidian distance for codebook generation. In this 

algorithm image is divided into blocks and blocks are 

converted to the vectors of size k. Initially only one cluster 

with the entire training vectors and the code vector C1 which 

is centroid. In the first iteration of the algorithm, the clusters 

are formed by comparing the first element of training vector 

with first element of code vector C1. The vector Xi is grouped 

into the cluster 1 if Xi1 <C11 otherwise vector Xi is grouped 

into cluster 2. In second iteration, the cluster 1 is split into two 

by comparing second element Xi2 of vector Xi belonging to 

cluster 1 with that of the second element of the code vector 

which is centroid of cluster 1. Cluster 2 is split into two by 

comparing the element Xi2 of vector Xi belonging to cluster 2 

with that of the second element of the code vector which is 

centroid of cluster. This procedure is repeated till the 

codebook size is reached to the size specified by user [8], [9]. 

Kekre’s Error Vector Rotation (KEVR) Algorithm: This 

algorithm creates a VQ by using an error vector. This error 

vector sequences are created by taking the binary 

representation of numbers from 0 to k-1 where k is the 

number of iterations. The 0s in the binary representations are 

replaced by 1 and the 1s are replaced by -1. This algorithm 

takes time to compute as it uses mean square distances to 

compare vectors [4]. 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

17 

Kekre’s Fast Codebook Generation (KFCG) Algorithm: This 

algorithm reduces the time for codebook generation. It makes 

use of sorting and median technique for generating codebook. 

In this algorithm image is divided into blocks and blocks are 

converted to the vectors of size k. Once the codebook is 

generated, the feature vector for each of the fingerprint classes 

is computed. The feature vector is calculated by taking the 

mean of all images in each cluster e.g. in cluster 1 the feature 

vector is the mean of all images in cluster 1. In this way the 

feature vector is calculated for all fingerprint classes and 

stored separately. This feature vector now becomes the 

identity of each of the fingerprint classes and the images are 

tested by checking the Mean Squared Error (MSE) with the 

feature vectors of each of the classes [8], [10] . 

3. METHODOLOGY 

3.1 Introduction 
In order to investigate the use of code book size 2, 4, 8 and 

window sizes 2*2, 4*4, 8*8, 16*16, 32*32, 64*64 to classify 

fingerprints, the NIST special database 4 was selected as the 

tool for data collection. 

NIST Special Database 4, contains 8-bit gray scale images of 

randomly selected fingerprints. The database is being 

distributed for use in the development and testing of 

automated fingerprint classification systems on a common set 

of images.  

The CD-ROM contains 4000 (2000 pairs) fingerprints stored 

in NIST’s IHead raster data format and compressed using a 

modified JPEG lossless compression algorithm. Each print is 

512 X 512 pixels with 32 rows of white space at the bottom of 

the print [11]. Approximately 636 Megabytes of storage are 

needed when the prints are compressed whereas 1.1Gigabytes 

are needed when uncompressed (1.6: 1 average compression 

ratio).The fingerprints are classified into one of five 

categories (L = left loop, W = whorl, R = right loop, T = 

tented arch, and A = arch) with an equal number of prints 

from each class (400). Each filename contains a reference to 

the hand and digit number so the classes can be converted to 

other classification techniques (i.e. radial and ulnar). All 

classes are stored in the NIST IHead id field of each file, 

allowing for comparison with hypothesized classes. An 

advantage of this database is that the fingerprints have already 

been processed so all that is remaining is to test them with this 

model [12] .  

In order to perform the experiment, two test cases were 

analyzed, and their results compared. For the test cases of 

code book size 2, 4 and 8, 105 random grey fingerprint 

images from NIST special database 4 were taken as a training 

set of input images per class e. g Figure 3.1 

 

Figure 3.1: Sample of training images extracted from 

NIST special database 4 

Source: http://www.nist.gov>srd>nist-special... 

3.2 Procedure for collecting fingerprints 
The procedure for collecting these fingerprints focused on the 

following aspects. Collecting 105 fingerprint images from the 

NIST special database 4 per class e.g. 105 Arch images and 

putting them in a folder named Arch. Training at least 5 

images belonging to the same class in the classifier to improve 

the number of images that will correctly be classified. Testing 

the images and calculating the number of images classified 

correctly where,  

% accuracy of classification 

=  
𝑁𝑜.𝑜𝑓  𝑖𝑚𝑎𝑔𝑒𝑠  𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑁𝑜.𝑜𝑓  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 𝑥 100 

3.3 The design of the classifier 
The classifier is a supervised learner. It is first trained with the 

representative vectors for each class, and only after this can it 

be used for classification. 

 Note: There are five fingerprint classes, which are, 

Arch, Tented Arch, Right Loop, Left Loop and Whorl. 

The classifier stores its knowledge in a knowledge-base. This 

knowledge-base is a hash map of names of each class, against 

their representative feature vectors. 

An example knowledge-base, with a widow size of three = 

Map ( 

 “Arch”: [[98,100,145],...], 

 “Tented Arch”: [[100,145,100],...], 

 “Right Loop”: [[140,141,45],...], 

 “Left Loop”: [[100,101,107],...], 

 “Whorl”: [[99,47,50],...] 

) 

The representative feature vectors are determined in the 

training process. Training is done by determining a 'perfect' 

representative fingerprint sample for each class, and then 

computing the codebook for this sample, and setting this 

codebook against the respective class name in the knowledge-

base. 

To classify a test fingerprint sample whose class is initially 

unknown, we first compute its codebook, and then we 

compute its mean square error against all the five 

representative feature vectors in the knowledge-base, and the 

class against with the smallest mean square error is recorded 

is approximated to be the class of that test fingerprint sample. 

This is a diagram of how the classifier works: 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

18 

Fig 3.2: Diagram explaining how the classifier works 

4. KEKRES MEDIAN CODEBOOK 

GENERATION ALGORITHM 

4.1 A description of the codebook 

generation algorithm KMCG 
It starts with a digital representation of the image, in the RGB 

color model. 

 

Figure 4.1: Sample of a grey scale fingerprint image 

extracted from NIST special database 4 

Though the RGB color model is used, our fingerprints are 

grayscale, and only one color channel is used. Therefore, each 

pixel is represented by a single integer instead of a 3-tuple of 

integers. Each pixel value, p, is 0 <= p <= 255. The image is 

represented by a two-dimensional array, with each sub-array 

representing all the pixels in a particular image scan line. 

Note: An image can be viewed as a collection of stacked up 

rows of pixels. Each of these rows is called a scan line. These 

scan lines are stacked up together like the way plates get 

stacked up on top of each other. 

The image representation, IR, is: 

IR = [ 

 [98,100,234...], 

 [100, 106, 54...], 

 [35, 99,100...], 

 ... 

] 

From IR, we derive the initial sequence I of integers, each 

representing a pixel. 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

19 

IR is converted to a one-dimensional array, whose elements 

are all the elements of the sub-arrays. 

That is, I = [98, 100, 234…]. 

I is then windowed/paged into sub-arrays of the size specified 

by the window size. This new set of sub-arrays of size 

<window size> forms the set of training vectors, T. 

That is, assuming we have window size of 3, then 

T = [ 

 [98,100,234], 

 [100, 106, 54], 

 [35, 99,100], 

 … 

] 

T is then sorted with respect to the first element of each 

training vector, using the Quicksort sorting algorithm. 

That is, after sorting with respect to the first element of each 

sub-array (vector), 

T = [ 

 [35, 99,100], 

 [54,100,106], 

 [98,100,234], 

 … 

] 

The median of the sorted T is then picked, and added to the 

codebook, and the codebook size is increased by one. T is 

then partitioned into two partitions of equal size. Each of 

these two partitions is then sorted with respect to their second 

member, using the Quicksort sorting algorithm. 

Their medians are then picked, and added to the codebook, 

such that the codebook now has three vectors, and its size is 

increased by one to two. These two partitions are then 

partitioned into two partitions each, so that now we have four 

partitions. These partitions are then sorted by their third 

element, and this process is repeated until a codebook of the 

required size is achieved. Kekre's Median Codebook 

Generation algorithm is a codebook generation algorithm, and 

hence the final result is this codebook. 

An example of a codebook size 4 generation process, with a 

4x4 grayscale image: 

Begin Program 

  //a sample representation of the initial 

  //array representation of the image 

  let Ir =  

    [[1     2    3    4] 

     [5     6    7     8] 

     [9    10  11  12] 

     [13  14  15  16]] 

  //block or window or page or chunk the array 

  //into block of window size 2 x 2 

  let Ib =  

    [[[1 2] 

      [5 6]] 

     [[3 4] 

      [7 8]] 

     [[9 10] 

      [13 14]] 

     [[11 12] 

      [15 16]]] 

  //convert the blocks into 1-dimensional vectors 

  let Il =  

    [[1 2 5 6] 

     [3 4 7 8] 

     [9 10 13 14] 

     [11 12 15 16]] 

  Begin Proc get_codebook(Il, window_size, codebook_size): 

    Begin Proc partition_clusters(clusters, window_size): 

      Begin Proc partition_cluster(cluster): 

        //sort the cluster based on the first element 

        cluster.sort(axis=1) 

        let median = median(cluster) 

        //initialize the two new cluster 

        let cluster_0 = [] 

        let cluster_1 = [] 

        for i=0l i < length(cluster); i++: 

          let vector cluster[i] 

          if (vector[i] < median[i]): 

            cluster_0 += vector 

          else: 

            cluster_1 += vector 

        return { 

          median: median, 

          clusters: [cluster_0, cluster_1] 

        } 

      End Proc 

      //initialize storage for the new clusters 

      let new_clusters = [] 

      //initialize storage for the codebook 

      let cb = [] 

      for i = 0; i < length(clusters); i++: 

        let result = partition_cluster(clusters[i]) 

        new_clusters += result['clusters'] 

        cb += result['median'] 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

20 

      return { 

        codebook: cb, 

        clusters: new_clusters 

      } 

    End Proc 

    let next_cluster = partition_clusters(Il, window_size) 

    Begin Proc iterate(): 

      let iterated_codebook = [] 

      for i=0; i < codebook_size; i++: 

 //it_result => the result of the iteration 

        it_result = partition_clusters(next_cluster, window_size) 

        iterated_codebook += it_result['clusters'] 

        next_cluster = it_result['clusters'] 

      return iterated_codebook 

    End Proc 

    let codebook = iterate() 

    return codebook 

  End Proc 

End Program 

4.2 The mean Square Error is Computed 

as follows 
The mean square error is the mean of the sum of the squares 

of the errors/deviations of one value against another. That is, 

given values V1 and V2, then their MSE = E (|V1 - V2|2), 

where E is the Expectation (mean). 

This case involves finding the difference between two 2-

dimensional arrays (matrices), and squaring those differences, 

and then finding the mean of those squared errors/deviations 

element-wise. Assuming these matrices are A = aij and B = bij, 

then their difference,  

d (a, b)=    𝑎𝑖𝑗 − 𝑏𝑖𝑗  
2𝑛

𝑗=1
𝑛
𝑖=1  

The result is another 2-dimensional array (matrix). The mean 

value of this matrix is then calculated, by summing up all the 

elements of the matrix, and dividing this sum by the number 

of all the elements in the matrix. The result is a single non-

negative integer value, which is the MSE of the matrix A 

against matrix B. How this MSE is applied this research is 

illustrated in fig3.2: The classifier design. 

5. RESULTS AND DISCUSSIONS 

5.1 Results 
The results in this section were guided by the percentage 

accuracy of classification which is the number of fingerprints 

images successfully classified over the number of 

classification attempt times 100.  

=  
𝑁𝑜. 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑁𝑜. 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 𝑥 100 

The results were noted down as follows: codebook size 2, 4 

and 8 with window sizes 2*2, 4*4, 8*8, 16*16, 32*32, 64*64 

as shown in the tables and graphs below. The tables show the 

% accuracy of fingerprints images successfully classified over 

the number of classification attempts. 

Table 5.1: Percentage Accuracy of Fingerprint 

Classification for Codebook size 2 with varying window 

sizes using KMCG 

ws 

codebook size = 2 

A% TA% LL% RL% W% Avg. 

2 70 90 96 84 71 82.2 

4 43 88 95 86 88 80 

8 53 91 94 88 89 83 

16 86 98 100 100 98 96.4 

32 73 92 96 88 83 86.4 

64 73 90 95 84 67 81.8 

 

 

Figure 5.1: % Classification Accuracy for Codebook size 2 

and respective pixel window sizes 

Codebook size 2 and window size 16*16 for the LL and RL 

class classified all the fingerprints correctly i.e. LL=100% and 

RL=100%. Codebook size 2 and window size 16*16 recorded 

98% for the TA and W class respectively which means that 

only 1 fingerprint was not correctly classified in these 

attempts and these were the best results for codebook size 2. 

Arch class recorded poor classification for codebook size 2 

with Window size 4*4 computing 43%. 

Table 5.2: Percentage Accuracy of Fingerprint 

Classification for Codebook size 4 with varying window 

sizes using KMCG 

ws 

codebook size = 4 

A% TA% LL% RL% W% Avg. 

2 76 89 95 83 71 83.4 

4 48 87 94 85 87 81 

8 54 91 94 88 89 83.2 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

21 

ws codebook size = 4 

16 99 98 100 100 98 99 

32 76 92 96 88 83 87 

64 70 89 95 84 67 81.2 

 

 

Figure 5.2: % Classification Accuracy for Codebook size 4 

and respective pixel window sizes 

Codebook size 4 and window size 16*16 recorded high 

percentage accuracy levels where A=99%, TA=98%, 

LL=100%, RL=100% and W=98% respectively. Codebook 

size 4 and Window size 4*4 for the A class recorded the 

lowest percentage accuracy of classification which was 48%. 

It was deduced that window size 16*16 for codebook size 4 

yielded the best results for this experiment. 

Table 5. 3: Percentage Accuracy of Fingerprint 

Classification for Codebook size 8 with varying window 

sizes using KMCG 

ws 

codebook size = 8 

A% TA% LL% RL% W% Avg. 

2 62 90 90 82 63 77.4 

4 41 86 89 79 73 73.6 

8 46 82 95 78 71 74.4 

16 64 84 99 72 69 77.6 

32 68 86 98 74 67 78.6 

64 53 85 97 70 63 73.6 

 

Figure 5.3: % Classification Accuracy for Codebook size 8 

and respective pixel window sizes 

Codebook size 8 and window size 16*16 for the LL class 

recorded 99%, percentage accuracy of classification which 

was the highest result in this category. Codebook size 8 and 

Window size 4*4 for the A class recorded the lowest 

percentage accuracy of classification which was 41%.  

5.2 Discussions 
Discussion of results for Fingerprint classification using 

KMCG with codebook size 2, 4, 8 and window sizes 2*2, 

4*4, 8*8, 16*16, 32*32, and 64*64. 

When interpreting and discussing proportion accuracy of 

classification, it should be noted that 100 percent proportion 

accuracy of classification means perfect while zero percent 

classification means entire classification failure. Fewer 

number of fingerprint images correctly classified over a high 

number of classification attempts will produce poor 

percentage accuracy of classification. Part 5.1 discussed the 

outcome illustrated in Figure 5.1, 5.2, 5.3. This study 

observed that the bars in place of percentage accuracy of 

classification extended longer for both codebook size 2 and 4. 

This meant that the smaller codebook sizes i.e. 2, 4 exhibited 

overall better percentage accuracy of classification than 

codebook size 8. From the graphs we also inferred that, the 

larger the codebook size the lower the percentage accuracy of 

classification is achieved. The lowest percentage accuracy of 

classification recorded for codebook 2, 4, 8 and window size 

4*4 could be due to the lower number of pixels in a 4*4 

window size fingerprint image. 

KMCG gave better performance for Codebook size 4 and 

window size 16*16 recording higher percentage accuracy 

levels where A=99%, TA=98%, LL=100%, RL=100% and 

W=98% respectively this is contrasting with conducted 

experiments when classifying fingerprints with KFCG which 

showed that codebook size 8 gave better performance with 

higher pixel window size .Still on the findings of KFCG,  

lower window sizes such as codebook size 4 generated using 

pixel window of size 7x7 gave the best performance [9]. From 

the graphs generated above, it is clearly observed that poor 

results are generated for window size 4*4 for codebook size 8, 

4 and 2 which are 41%, 48% and 43 respectively for the A 

class. This indicated that smaller window sizes return poor 

results with the A class for all the codebook sizes. This 

research also showed that KMCG worked well with the LL 

class which recorded excellent performance for all codebook 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.51, June 2018 

22 

size 2, 4 and 8.This concurs with previous findings on KMCG 

proven to work best for LL and gave poor results for the A 

class [10].  

6. CONCLUSION 
Classification is a significant task for the achievement of any 

computerized fingerprint Identification System.  Fingerprint 

Classification Using KMCG Algorithm under Varying 

Window and Codebook Sizes provides for recording higher 

proportion accuracy levels for the LL and RL class for 

Codebook size 2 and 4 and window size 16*16. It is 

computationally fast since it does not need any distance 

calculation. Future work entails testing the proposed approach 

on a huge database and making it more competent by 

improving its level of accuracy further. 

7. REFERENCES 
[1] H. B. Kekre, U. Thapar, and N. Parmar, “Human Ear 

Identification using Vector Quantization Algorithms,” 

Int. J. Adv. Res. Comput. Commun. Eng., vol. 2, no. 12, 

pp. 4542–4547, 2013. 

[2] D. Michelsanti, Y. Guichi, A. Ene, R. Stef, K. 

Nasrollahi, and B. Moeslund, “Fast Fingerprint 

Classification with Deep Neural Network,” in 

International Conference on Computer Vision Theory 

and Applications, 2017. 

[3] A. S. Falohun, O. D. Fenwa, and F. A. Ajala, “A 

Fingerprint-based Age and Gender Detector System 

using Fingerprint Pattern Analysis,” vol. 136, no. 4, pp. 

43–48, 2016. 

[4] S. Thepade, V. Murthi, and B. Shah, “Fingerprint 

Classification using KEVR Algorithm,” Int. J. Comput. 

Appl., vol. 45, no. 18, pp. 5–7, 2012. 

[5] N. Yager and A. Amin, “Fingerprint classification : a 

review,” Springer-Verlag London Ltd. 2004, pp. 77–93, 

2004. 

[6] K. S. Sim, Y. K. Tan, M. E. Nia, and G. D. Lee, 

“Rotation-invariant Reference Point Location Detection 

Using Complex Filtering for Fingerprint Matching,” Int. 

J. Futur. Comput. Commun., vol. 1, no. 3, pp. 321–322, 

2012. 

[7] S. Thepade, D. Parekh, U. Thapar, and V. Tiwari, “LBG 

ALGORITHM FOR FINGERPRINT 

CLASSIFICATION,” Int. J. Adv. Eng. Technol., vol. 5, 

no. 1, pp. 430–435, 2012. 

[8] H. B. Kekre, “Performance Comparison of LBG , KPE , 

KFCG and KMCG for Global Codebook Technique,” 

Int. J. Comput. Appl., vol. 30, no. 10, pp. 42–50, 2011. 

[9] H. B. Kekre, S. D. Thepade, and D. Parekh, 

“Comparison of Fingerprint Classification using KFCG 

Algorithm with Various Window Sizes and Codebook 

Sizes,” IJCSNS Int. J. Comput. Sci. Netw. Secur. VOL.13 

No.3, March 2013, vol. 13, no. 3, pp. 60–63, 2013. 

[10] S. Thepade, D. Parekh, J. Shah, B. Shah, and P. Vora, 

“Classification of Fingerprint using KMCG Algorithm,” 

Int. J. Sci. Technol. Res., vol. 1, no. 6, pp. 105–107, 

2012. 

[11] R. Wang, C. Han;, and T. Guo, “In 2016 23rd 

International Conference on Pattern Recognition 

(ICPR).,” in A Novel Fingerprint Classification Method 

Based on Deep Learning., 2016, pp. 931–936. 

[12] C. I. Watson and C. L. Wilson, “NIST Special Database 

4,” NIST Spec. Database 4, pp. 1–14, 1992. 

 

 

IJCATM : www.ijcaonline.org 


