An Autonomous Unmanned Aerial Security Surveillance System to Enhance Security in Remote Territories

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 179 -
Number 6

Year of Publication: 2017

Authors:
Fred Ondieki Marube, Okelo Odongo, Lawrence G. Muchemi

10.5120/ijca2017915964

Abstract

The current state of security in Kenya is marred by security breaches, expensive and inefficient. Criminal activities go undetected and unnoticed despite the use of sophisticated equipment and trained workforce like surveillance helicopters and manned soldiers hence leading to loss of lives and destruction of equipment and property. This research presents the background information, problem statement, research questions and objectives, justification of the problem, scope and limitations of the developed prototype. It presents an IT software development and research approach that will be applied to study the various types and ways of automating UAV using relevant or any related literature. Further, the project presents how the design, development, and evaluation of autonomous aerial security surveillance UAV are accomplished. With the use of Unmanned Automated Aerial surveillance vehicles, we can be able to curb the criminals by surveying the security prone territories where it is not safe for a human to go and report in advance. A construction research method and a simple prototype developed and presented that will be used to obtain, analyze, interpret and present the findings. The implication
An Autonomous Unmanned Aerial Security Surveillance System to Enhance Security in Remote Territories

of the study is that it will provide a basis for further development, automation and adoption of UAV in aerial security surveillance and reporting to authorities the information that will be used to raise alarms and enhance security.

References

Enabling Low-Altitude Airspace And Uas Operations


22. Nascimento, R. M. G. (2014). Quadaalper–The Ambient Assisted Living Quad Copter


28. Sefidgari, B. L., & Shamchi, S. P. Auto Landing Process For Autonomous Flying Robot By Using Image Processing Based On Edge Detection

29. Suraj G. Gupta, Mangesh M. Ghonge, Dr. P. M. Jawandhiya Volume 2, Issue 4, April 2013 Review Of Unmanned Aircraft System (Uas) International Journal Of Advanced Research In Computer Engineering & Technology (Ijarcet)


Index Terms
Keywords

UAV, API, APM, DRONE, REST.