Abstract

Mobile ad-hoc networking has become an exciting and important technology in recent year because of the rapid proliferation of wireless devices. The security of data becomes more important with the increased use of commercial application over wireless network environments; there were several problems of security in wireless networks due to different types of attack and
intruders. There were better methods an intruding handling procedure available for fixed networks. But it was difficult to analyze attacks in the mobile ad-hoc environments. The reason is that there is no central point to control all the activities in the network and dynamically changing network topology and behavior and limited power level of mobile devices. Attacks by intruders cause unauthorized use of wireless network so that the whole network will be suffered from packet loses. We are introducing three types of internal attack named as Node isolation, route disruption, Resource consumption; we presented an approach to handle such type of internal attacks for wireless network. We report our progress in developing intrusion detection capabilities for MANET. The proposed work can be performed by modifying ad-hoc on demand distance vector routing protocol. The simulation experiments are conducted on NS-2 environment in Linux platform.

Reference

- An Approach for detecting attacks in mobile adhoc networks“by V.Madhu Viswanatham and A.A.Chari,AP,India
- J. Wright, “Layer 2 Analysis of WLAN Discovery Applications for Intrusion Detection 2002 Nov 8 (Online Document)
- ‘A Co-operative Intrusion detection system for Ad-hoc Network’
- “Intrusion Detection in Tactical Multi- Hop Networks' by Nils Aschenbrack, Marko Jahnke University of Bonn, Institute of Computer Sciences IV Roemerstr, 164, Germany (aschenbrack@cs.ani-bo, nnde)) 802,11ninja “802,11ninja.net,” available http://802.11ninja.net

A Co-Operative Intrusion Detection System in Mobile Ad-Hoc Network


Index Terms

Computer Science Wireless

Key words

MANET attacks Node isolation Route
disruption

Resource consumption