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ABSTRACT 

In the present work, the effects of variable viscosity and 

thermal conductivity on the boundary layer flow and heat and 

mass transfer of a MHD micropolar fluid past a continuously 

moving plate embedded in porous media with Soret and 

Dufour effects have been studied. Both viscosity and thermal 

conductivity are assumed to be the inverse linear functions of 

temperature. The governing partial differential equations are 

transformed into dimensionless forms using similarity 

transformations. The effects of variable viscosity, variable 

thermal conductivity and the other parameters involved in the 

study on the velocity, micro-rotation, temperature and 

concentration distribution profiles as well as skin fraction 

coefficients, couple stress, Nusselt number and Sherwood 

number are investigated by solving the governing transformed 

ordinary differential equations with the help of Runge-Kutta 

fourth order method with shooting technique and shown 

graphically and in tabulated form and discussed in detail.  
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1. INTRODUCTION 
The problems of micropolar flow and heat and mass transfer 

in the boundary layers of a continuously moving plate have 

been attracted considerable attention of researchers due to 

their numerous technological applications. Micropolar fluids 

are referred to those fluids that contain micro-constituents that 

can undergo rotation which affect the hydrodynamics of the 

flow. These fluids are distinctly non-Newtonian in nature. The 

concept of micropolar fluid was introduced by Eringen [1] 

where he derived the constitutive laws of fluid with micro 

structure and taking into account the effect of micro-elements 

of fluids on both the kinematics and conduction of heat, the 

theory of thermo-micropolar fluids has been developed by 

Eringen [2]. Micropolar fluid theory has been employed to 

study a number of flow situations such as the flow of low 

concentration suspensions, liquid crystals, real fluid with 

suspensions and animal blood etc. Over the years, the 

dynamics of micropolar fluids has been a popular area of 

research. A thorough review of the subject and the 

applications of micropolar fluid mechanics has been given by 

Ariman et al. [3,4].  Flow in the boundary layer on moving 

solid surface was historically first investigated by  Sakiadis 

[5,6] who observed that the boundary layer growth is in the 

direction of motion of the continuous solid surface and 

deviates from that of the classical Blasius flow past a flat 

plate. Also, heat and mass transfers simultaneously affecting 

each other will also cause a cross- diffusion effect. The mass 

transfer caused by the temperature gradient is called the Soret 

effect, while the heat transfer caused by concentration 

gradient is called Dufour effect. Ishak et.al [7] discussed the 

problem of steady boundary layer flow and heat transfer of a 

micropolar fluid on an isothermal continuously moving 

surface. Gorla [8] studied mixed convection in a micropolar 

fluid from a vertical surface with uniform heat flux. Adrian 

[9] studied numerically the heat and mass transfer by natural 

convection from vertical surface in porous media in presence 

of magnetic field considering Soret and Dufour effects. The 

effects of Dufour and Soret on unsteady MHD free convection 

and mass transfer flow past a vertical porous plate was 

discussed by Alam et.al [10].  Hazarika [11] discussed the 

heat transfer between two parallel disks.  Kafoussias et.al [12] 

studied the boundary layer flows in presence of Soret and 

Dufour effects associated with thermal diffusion and diffusion 

thermo for the mixed forced-natural convection. EL-Kabir 

et.al [13] studied the Soret and Dufour effects on heat and 

mass transfer from a continuously moving plate embedded in 

porous media with temperature dependent viscosity and 

thermal conductivity. 

In the present study, an attempt has been made to incorporate 

the combined effects of variable viscosity and thermal 

conductivity on the boundary layer flow and heat and mass 

transfer of a MHD micropolar fluid over a continuously 

moving  plate  embedded in a  porous medium with Soret and 

Dufour effects. Following Lai and Kulacki [14], the fluid 

viscosity and thermal conductivity are assumed to vary as an 

inverse linear function of temperature. Using similarity 

transformations the governing partial differential equations of 

motion are reduced to ordinary differential equations, which 

are solved numerically for prescribed boundary conditions by 

shooting technique. 
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2. MATHEMATICAL FORMULATION 
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Fig 1: Physical model and coordinate system 

 The problem under consideration is a steady two dimensional 

laminar flow of an incompressible, electrically conducting 

fluid over a continuously moving plate embedded in a porous 

media. The x-axis is taken along the plate in the direction of 

the fluid motion and y-axis taken normal to it. A uniform 

magnetic field B0 is imposed along y-axis. Then under the 

usual boundary layer approximations, the flow and heat and 

mass transfer of a MHD micropolar fluid in porous medium 

with Soret and Dufour effects included are governed by the 

following equations: 
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Concentration Equation: 
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where u and v are the components of velocity along x and y-

directions respectively,  ρ is the fluid density,  μ
 
is the 

coefficient of dynamic viscosity, k is the vortex viscosity, N is 

the microrotation component, K is the permeability of the 

porous medium,  𝐾∗ is the  inertia coefficient, γ is the spin 

gradient viscosity, j is the micro-inertia density, T is the 

temperature of the fluid , 𝜆 is the thermal conductivity, cp is 

the specific heat at the constant pressure, 𝜎 is the electrical 

conductivity, B0 is the external magnetic field, C is the  

concentration  of the fluid within the boundary layer,  Dm is 

the molecular diffusivity of the species concentration. 𝜆𝑇 ,  𝑐𝑝 , 

𝑐𝑠  and 𝑇𝑚  are the thermal diffusion ratio, specific heat at 

constant pressure, concentration susceptibility and mean fluid 

temperature respectively. 

The boundary conditions are given as: 
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Where U0 is the uniform velocity of the plate, Tw and  Cw are 

the temperature and concentration on the surface, T∞ and C∞  

are the temperature and concentration of the fluid at infinity. 

Following Lai and Kulacki [14] let us assume that, 
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Where  is the viscosity at infinity,  and T are 

constants, rT is transformed reference temperature,   and 


 

are constants based on thermal property of the fluid. 

Similarly,  is the thermal conductivity at the infinity, 

and cT are constants and their values depend on the reference 

state and thermal properties of the fluid. 

To solve equations (1)-(5) subject to the boundary conditions 

given in equation (6)  the following similarity transformations 

have been used, 
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Where η is the similarity parameter and  is the kinematic 

viscosity atT T . 

Also from equations (7) and (8),  
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Where r and c are the dimensionless parameters 

characterising the influence of viscosity and thermal 

conductivity respectively and are given by, 
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Equation of continuity in equation (1) is identically satisfied 

using equation (8) and therefore the velocity field is 

compatible with continuity equation and represents the 

possible fluid motion.  

Using equations (8) - (10) in equations (2)-(5) the following 

differential equations are obtained: 
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The transformed boundary conditions are, 
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          The four  important physical quantities of our interest in 

the  problem are the skin friction co-efficient (cf), the wall 

couple stress (mw), Nusselt number (Nu) and Sherwood 

number (Sh) are defined as,                   
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3. RESULTS AND DISCUSSION 
The system of coupled non-linear ordinary differential 

equations (11)-(14) together with the boundary conditions 

(15) is solved numerically by using the fourth order Runge-

Kutta method along with the shooting technique. The 

numerical values of different parameters are taken as 𝜃c = -5, 

𝜃r =-5, M=.1, Sr =.4, G=2, Pr =.7, Ec=.1, K1=1, Δ =1, Sc=1, 

Df=.15, α=.3, unless otherwise stated. The purpose of this 

study is to bring out the effects of variable viscosity and 

thermal conductivity on the governing flow with the 

combination of the other flow parameters. The numerical 

computations have been carried out by developing codes for 

MATLAB  and results are presented graphically in order to 

get a physical insight of the problem for the dimensionless 

velocity profile f´(η),
 

dimensionless microrotation  profile 

g(η), temperature profile 𝜃(η) and concentration profile 𝜙(η)  

with the variation of different parameters in figures 2-23. In 

several practical problems, the surface characteristics such as 

skin-friction, wall couple stress, Nusselt number and 

Sherwood number play important roles and hence, the missing 

values of  f´´(0), g´(0), 𝜃´(0) and 𝜙´(0) for various values of 

viscosity parameter 𝜃r, thermal conductivity parameter 𝜃c, 

microratation  parameter  G, Magnetic parameter M, Dufour 

number  Df, and  Soret number Sr  have been derived in tables 

1-4.   

Figures 2-5 display the influence of viscosity parameter 𝜃r, 

Darcy number Da, magnetic parameter M and microrotation 

parameter G on velocity distribution. From fig.2 it is observed 

that velocity decreases with the increasing values of viscosity 

parameter. Since, by definition viscosity is inversely 

proportional to the velocity and hence the result is obvious. 

Fig.3 depicts the effect of Darcy number on velocity profiles. 

Physically, Darcy number is directly proportional to the 

permeability which causes higher restriction to the fluid flow 

which in turn slows its motion. From fig.4, it is observed that 

velocity reduces due to the increasing values of magnetic 

parameter M and it is due to the fact that the presence of 

magnetic field produces a Lorentz force which usually resists 

the momentum field; whereas from fig.5, it is observed that 

velocity enhances with the increasing values of microrotation 

parameter G because for small values of G, the viscous force 

is predominant as a result viscosity increases and 

consequently velocity decreases. Figures 6-10 depict the 

influence of viscosity parameter 𝜃r, Darcy number Da, 

magnetic parameter M, microrotation parameter G and Dufour 

number Df on microrotation distribution profiles. From figures 

6-8, it is observed that microrotation distribution increases 

with the increasing values of 𝜃r, Da and M while reverse trend 

is observed from the figures 9 and 10 for the increasing values 

of G and Df  respectively. Due to the increase of viscous force 

and Lorentz force temperature of the fluid increases, so 

molecules get released from their bonds holding them as a 

result rotation of the fluid elements increased as shown in 

figures 6, 7 and 8.  Figures 11-18 represents temperature 

profiles for various parameters. Effect of thermal conductivity 

parameter 𝜃c is observed in fig.11 and it has been found that 

temperature decreases with the increasing values of thermal 

conductivity parameter 𝜃c because due to the increase of 

thermal conduction the transposition of heat from a region of 

higher temperature to the region of lower temperature 

increases, so the temperature of the fluid within the boundary 

layer decreases. From the figures12-14 it has been observed 

that temperature decreases with the increasing values of 

microrotation parameter G, Soret number Sr and Prandtl 

number Pr respectively. Since Soret number defines the effect 

of the temperature gradients including significant mass 

diffusion effects and hence temperature reduces significantly 

as shown in the fig.13. The effect of Prandtl number is 

exhibited in fig.14 and the graph depicts that the thermal 

boundary layer thickness decreases as Pr increases due to the 

fact that higher Prandtl number fluid has relatively low 

thermal conductivity which reduces conduction and there by 

temperature decreases. Again from the figures 15-18, it is 

observed that for the increasing values of Darcy number Da, 

Dufour number Df , viscosity parameter 𝜃r, and magnetic 

parameter M respectively the temperature profile increases 

significantly. Since Dufour number signifies the contribution 

of the concentration gradients to the thermal energy flux in the 

flow and hence from fig.16 it is clearly seen that as Df 

increases there is a monotonic increase in the temperature 

profile. Also, increase of viscosity parameter 𝜃r and magnetic 

parameter M lead to the increase of viscous force and Lorentz 

force respectively. These forces give resistance to the flow of 

the fluid and the fluid has to work done to overcome these 

resistances. These energies transformed into thermal energy 

resulting the temperature of the fluid increases as exhibited in 

figures 17 and 18. Figures 19-23 represents concentration 

profile for the various parameters. From the figures 19, 20 and 

21 it is noticed that concentration boundary layer thickness 

decreases as viscosity parameter 𝜃r, Dafour number Df and 

Schmidt number Sc enhance. Since Schmidt number 

characterizes the ratio of viscosity and mass diffusion, that is, 

it is inversely proportional to mass diffusion and hence as a 

result species concentration reduces which is clearly observed 

in fig. 21. Concentration boundary layer thickness is found to 

be enhanced significantly due to the increasing values of 

Darcy number Da and Soret number Sr respectively as shown 

as in the figures 22 and 23. 

From tables 1 and 2, it is observed that, with the increasing 

values of viscosity parameter 𝜃r , the values of  f´´(0), g´(0) 

and 𝜙´(0) are decreasing while 𝜃´(0) increases and for 

increasing values of thermal conductivity parameter 𝜃c, the 

values of f´´(0) and 𝜃´(0) decreases; but g´(0) and 𝜙´(0) 

increases. Also for increasing values of microrotation 

parameter G, all the values of f´´(0), g´(0), 𝜃´(0) and 𝜙´(0) 

decreases and for that of magnetic parameter M, the values of 

f´´(0) and g´(0) decreases whereas the values of 𝜃´(0) and 

𝜙´(0) increases significantly. Tables 3 and 4 depicts a 

comparison of the present work with the earlier published 

work of EL-Kabir et al.[13] for various values of Dufour 

number Df and Soret number Sr and a significant result has 

been obtained in the present work and it is found that the 

behavior of  Dufour number and Soret number on temperature 

and concentration distribution is opposite which remains same 

with the previous work.  
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Figures 2-23 for dimensionless velocity distribution f′(η), dimensionless microrotation distribution g(η), temperature distribution 𝜃(η)  

and concentration distribution 𝛷(η) with the variation of different parameters and missing value tables and comparison tables 1-4 are 

displayed below : 

 

Fig 2: Velocity for various 𝜃r 

 

Fig 3: Velocity for various Da 

 

 
Fig 4: Velocity for various M 

 
Fig 5: Velocity for various G 

 
Fig 6: Microrotation for various 𝜃r 

 
Fig 7: Microrotation for various Da 
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Fig 8: Microrotation for various M 

 
Fig 9: Microrotation for various G 

 
Fig 10: Microrotation for various Df 

 
Fig 11: Temperature for various 𝜃c 

 
Fig 12: Temperature for various G 

 
Fig 13: Temperature for various Sr 

 

 
Fig 14: Temperature for various Pr 

 
Fig 15: Temperature for various Da 
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Fig 16: Temperature for various Df 

 
Fig 17: Temperature for various 𝜃r 

 
Fig 18: Temperature for various M 

 
Fig 19: Concentration for various 𝜃r

 

 
Fig 20: Concentration for various Df 

 
Fig 21: Concentration for various Sc 

 
Fig 22: Concentration for various Da 

 

 
Fig 23: Concentration for various Sr 

  

Table 1: Estimated missing values of  f´´(0), g´(0), 𝜃´(0) and 𝜙´(0)for various 𝜃r and G and 𝜃c = -5, Df=.15, M=.1, Pr =.7, Ec=.10, 

K1=1, Δ =.1, Sc=1, Sr=.4,α=.3,Da=.1 
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G 𝜃r f´´(0) g´(0) 𝜃´(0) 𝜙´(0) 

1.50 

-10 -0.71943 0.080101 -0.47045 -0.55088 

-7 -0.7289 0.075336 -0.4671 -0.56484 

-4 -0.75067 0.064414 -0.4591 -0.59868 

1.80 

-10 -0.72488 0.035787 -0.47251 -0.552 

-7 -0.73481 0.029353 -0.46923 -0.566 

-4 -0.75765 0.014739 -0.46137 -0.59994 

2.10 

-10 -0.72874 0.008865 -0.47355 -0.55256 

-7 -0.73917 0.000529 -0.4703 -0.56658 

-4 -0.76321 -0.0183 -0.46252 -0.60056 

   

Table 2: Estimated missing values of f´´(0) , g´(0), 𝜃´(0) and 𝜙´(0)for various 𝜃c and M and  𝜃r = -5, Df=.15,G=2, Pr =.7, 

Ec=.10,K1=1, Δ =.1, Sc=1, Sr=.4,α=.3,Da=.1 

M 𝜃c f´´(0) g´(0) 𝜃´(0) 𝜙´(0) 

.1 

-10 -0.75031 -0.00046 -0.43686 -0.59575 

-7 -0.75047 -0.00032 -0.44935 -0.59099 

-4 -0.75084 0.000016 -0.47996 -0.57929 

.2 

-10 -0.7998 -0.0348 -0.42634 -0.5891 

-7 -0.79996 -0.03467 -0.43853 -0.58442 

-4 -0.80034 -0.03436 -0.46841 -0.57293 

.3 

-10 -0.84632 -0.06391 -0.41612 -0.58277 

-7 -0.84648 -0.06378 -0.42802 -0.57817 

-4 -0.84687 -0.06349 -0.45718 -0.56688 

 

Table 3: Comparison of missing values of f´´(0) , 𝜃´(0) and 𝜙´(0)  at 𝜃r =-5,G =2,  𝜃c = -5, M=.1,  Pr =.7, Ec =.10, K1=1, Δ =.1, 

Sc=1, Sr=.4, α=.3, Da=.1, Sr =.4 for different values of Df with previously published result of EL-Kabir et. al [13]. 

 

 

 

 

 

Table 4: Comparison of missing values of f´´(0) , 𝜃´(0) and 𝜙´(0)  at 𝜃r =-5,G =2,  𝜃c = -5, M=.1, Pr =.7, Ec=.10, K1=1, Δ =.1, 

Sc=1, Sr=.4, α=.3, Da=.1, Df =.15 for different values of  Sr with previously published result of EL-Kabir et. al [13]. 

Previous work, EL-Kabir et. al [13] Present work 

Sr f′′(0) 𝜃′(0) 𝛷′(0) f′′(0) 𝜃´(0) 𝛷′(0) 

.4 -1.34183 -1.01378 -0.37060 -0.76135 -0.4622 -0.60039 

.3 -1.35694 -0.85340 -0.52699 -0.7613 -0.45876 -0.63141 

.2 -1.37165 -0.69015 -0.60611 -0.76125 -0.45539 -0.66175 

  

Previous work, EL-Kabir et. al [13] Present work 

Df f′′(0) 𝜃′(0) 𝛷′(0) f′′(0) 𝜃´(0) 𝛷′(0) 

.2 -1.34183 -1.01378 -0.37060 -0.76108 -0.44511 -0.60718 

.3 -1.35694 -0.85340 -0.52699 -0.76053 -0.40932 -0.62139 

.4 -1.37165 -0.69015 -0.60611 -0.75997 -0.37119 -0.63655 
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4. CONCLUSION: 
In this study the effects of variable viscosity and thermal 

conductivity on the boundary layer flow and heat and mass  

transfer of a MHD micropolar fluid over a continuously 

moving plate embedded in a porous medium with Soret and 

Dufour effects is studied and the following significant 

observations are made: 

1. Velocity distribution reduces due to the increasing    

values of viscosity parameter 𝜃r, magnetic 

parameter M and Darcy number Da and it increases 

with the increasing values of microrotation 

parameter G. 

2. Microrotation distribution enhances due to the 

increase of viscosity parameter 𝜃r, magnetic 

parameter M and Darcy number Da, while it 

reduces with the increasing values of microrotation 

parameter G and Dufour number Df. 

3. Temperature distribution decreases due to the 

increase of thermal conductivity parameter 𝜃c, 

microrotation parameter G, Soret number Sr and 

Prandtle number Pr; while opposite trend is 

observed with the values of Darcy number Da, 

Dufour number Df, viscosity parameter 𝜃r and 

magnetic parameter M.  

4. Concentration distribution reduces due to the 

increase of viscosity parameter 𝜃r, Dufour number 

Df and Schmidt number Sc while it increases with 

Darcy number Da and Soret number Sr . 

5. With the increasing values of viscosity parameter 𝜃r,      

the values of  f´´(0) , g´(0) and 𝜙´(0) are decreasing  

while 𝜃´(0) increases and for increasing values of 

thermal conductivity parameter 𝜃c, the values of 

f´´(0) and 𝜃´(0) decreases; but g´(0) and 𝜙´(0) 

increases. 

6. It is hoped that the findings of this paper will be 

helpful for further research work in heat and mass 

transfer problems. 
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