
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.10, January 2018

38

Performance Upgradation through Task Allocation of

Distributed Networks

Kapil Govil
School of Engineering & Technology, ITM University Gwalior

ABSTRACT

Normally the distributed network has to execute the tasks that

shall be the more than the number of processors. The

assignment problem is a case of linear programming helps to

solve the problems related to tasks and processors. The

problem of execution of “m” tasks to “n” processors (m > n)

in a distributed networks is addressed here through a new

modified tasks allocation policy for distributed networks. The

model, presented in this paper allocates the tasks or modules

to the processor to increase the performance and to reduce the

execution time. This paper reduces the problem of allocation

of tasks where number of processors is less than the number

of tasks. The example mentioned in the paper has three tasks

and solved it in such a way that the task t1 processed with

minimum time, the task t2 with minimum cost while the task t3

with maximum reliability. In this problem, the tasks are fused

(or clubbed) with another task(s) on the basis of minimum

communication cost to form a balanced allocation.

Keywords

Allocation, Cost, Distributed Network, Performance,

Processor, Reliability, Task, Time.

1. INTRODUCTION
Such type of research problems in which the performance of

the distributed systems is to be upgraded, requires either

processing time or cost to be minimized or reliability to be

maximized by deciding the strategy of allocation of tasks to

the processors of the distributed systems. These problems may

be categorized as static (15, 16, 17, 19, 29) and dynamic (2,

14, 18, 19, 26, 27) in nature. Some of the other related

methods have been reported in the literature, such as, Integer

programming (7, 23), Branch and Bound technique (28),

Matrix Reduction technique (11, 30, 31), Reliability

Optimization (1, 12, 20, 21, 24), Load Balancing (2, 9, 10)

and Modeling (3, 6, 8). The series parallel redundancy-

allocation problem has been studied with different

approaches, such as, Dynamic programming (4, 10, 13),

Integer programming (7, 23), and Heuristic techniques (5, 22,

25).

2. OBJECTIVE
The objective of the present research paper is to enhance the

performance of the distributed systems by using the proper

utilization of its processors. A set of tasks have to be

processed by the processors of the network, while each of the

task have the modules and the number of modules are more

than the number of processors of the network. The processing

of a task is means that all of its modules get processed.

Performance is the measure in term of either time or cost or

reliability of the modules of a task that have to process on the

processors of the system and these have to be optimally

processed i.e., either time or cost to be minimized or

reliability to be maximized.

3. TECHNIQUE
To evaluate the optimal time or cost or reliability for each task

through optimal allocation, initially it has to concentrate on

those (m-n) modules that have the highest probability of data

transfer with the remaining n modules. Each of these (m-n)

modules (say mik) of every task is treated as a candidate to be

fused with any one (say mil) out of the remaining n modules

with which it has the highest communication. Further, all the

elements of kth row and lth row are to be added in case of time

and cost while in case of reliability these rows have to

multiply. This will reduces the effectiveness matrix for each

task in to a square matrix. Now the problem remains to

determine the optimal time or cost or reliability through the

allocation strategy by considering either task processing based

on time or cost or reliability for all modules to individual

processor(s) for each task. For allocation purpose a modified

version of row and column assignment method proposed by

Kumar et al (17) is employed which allocates all the modules

of a task to a processor optimally. The functions for obtaining

the overall assignment execution time [Etime], execution cost

[Ecost], and execution reliability [Ereliability] are as follows:





















 


ijij

n

j

n

i

xPTPtime
11

 (1)





















 


ijij

n

j

n

i

xECPcost
11

 (2)





















 


ijij

n

j

n

i

xERelibility
11

Pr

 (3)

Where, xij=






 otherwise ,0

processor to if ,1 thth jassignedistaski

4. ALGORITHM
Step 1: Start algo

Step 2: Read the number of tasks in m

Step 3: Read the number of processors in n

Step 4: For I = 1 to n

Step 5: For J = 1 to m

Step 6: Read the value in

PTM [I][J]

Step 7: Increase the value of J by 1

Step 8: End of J loop

Step 9: Increase the value of I by 1

Step 10: End of I loop

Step 11: For I = 1 to n

Step 12: For J = 1 to n

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.10, January 2018

39

Step 13: Read the value in CM [I][J]

Step 14: Increase the value of J by 1

Step 15: End of J loop

Step 16: Increase the value of I by 1

Step 17: End of I loop

Step 18: For I = 1 to n

Step 19: For J = I to n

Step 20: If CM[I][J] == 1 then

Step 21: Store the value of

P1[I] to 1

Step 22: Store the value of

P2[J] to 1

Step 23: Calculate MAT [I][J]

= PT/C/RM[P1[I]] + PT/C/RM [P2[J]]

Step 24: End of if statement

Step 25: Increment the value of J by 1

Step 26: End of J loop

Step 27: Increase the value of I by 1

Step 28: End of I loop

Step 29: For I = 1 to n

Step 30: If P1[I] ==0 then

Step 31: Store the value of T1[I] by P1[I]

Step 32: End of if statement

Step 33: Increase the value of I by 1

Step 34: End of I loop

Step 35: For I = 1 to n

Step 36: If T1[I] !=0 then

Step 37: Calculate MAT [T1[I]] =

PT/C/RM [T1[I]] +

PT/C/RM[T1[I+1]]

Step 38: End of if statement

Step 39: Increment the value I by 1

Step 40: End of I loop

Step 41: Count the zero(s) in each row

Step 42: Mark the row(s), which have single zero

Step 43: Mark the column, which have single zero

Step 44: Go to the row(s), which have more than

one zero. Now select any one zero and

cross the leading zero(s), which are in

same row and column

Step 45: Mark the assignments

Step 46: Count the total assignment

Step 47: If total number of assignment < order of matrix

Step 48: Go to Step 52

Step 49: Else

Step 50: Go to Step 59

Step 51: End of if statement

Step 52: Mark the rows for which assignment have not been

made

Step 53: Mark column that have zeros in marked rows

Step 54: Mark rows that have assignment in marked column

Step 55: Repeat Step 53 & Step 54 until chain of marking

ends

Step 56: Draw the minimum number of lines

through unmarked rows and marked

columns to cover all zeros

Step 57: Select the smallest element of the

uncovered elements and replace it by

zero. Also add this element to positions at

which lines intersect to each other only

Step 58: Go to Step 42

Step 59: State processing time

Step 60: End algo

5. IMPLEMENTATION
Consider an example consisting of a set T = {t1, t2, t3} of 3

tasks each of them having sets M1= {m11, m12, m13 m14, m15}

of 5 modules, M2= {m21, m22, m23 m24} of 4 modules and M3=

{m31, m32, m33 m34, m35, m36} of 6 modules respectively. The

three processors are available in the distributed network to

process the tasks that are represented by the set P = {p1, p2,

p3}. The processing time (t), cost (c) and reliability (r) of each

module of every task on various processors are known and

mentioned in the following matrix, namely, PCTR (,):

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.10, January 2018

40































































































999562.02200100999632.02000080999785.02700130

999887.02100110999365.02000070999452.01800120

999563.02300120999123.03600120999215.01200070

999631.02200150999245.02800150999256.02400080

999785.02200080999653.03000140999466.02900110

999856.01800090999625.01600130999452.02100110

999874.02800190999632.02600100999532.02400110

999652.02300120999632.02700200999523.02700180

999412.02900140999652.02500150999856.02100160

999785.02300150999632.02200140999652.02500170

999631.02200110999235.02300070999863.02400120

999687.02700120999520.03000120999632.02000070

999631.02100150999541.02800150999235.02800080

999120.02800080999632.02700140999632.02100110

999635.02500090999420.02400130999856.02300110

36

35

34

33

32

313

24

23

22

212

15

14

13

12

111

321

m

m

m

m

m

mt

m

m

m

mt

m

m

m

m

mt

rctrctrctModulesTasks

pppProcessors

The communication period amongst the modules of each task has also been considered and it is mentioned in the following matrices,

namely, CM (,):

For task t1, the matrix CM (1,) is as:



























0

20

540

8720

39610

15

14

13

12

11

1514131211

m

m

m

m

m

mmmmm

;

For task t2, the matrix CM (2,) is as:























0

60

870

5420

24

23

22

21

24232221

m

m

m

m

mmmm

;

For task t3, the matrix CM (3,) is as:





























0

10

320

4510

56840

697320

36

35

34

33

32

31

363534333231

m

m

m

m

m

m

mmmmmm

Here, it is considered the processing of the tasks t1 based on

the time constraints (however one may choose the cost or

reliability constraints also); t2 is based on the cost constraints

(however one may choose the time or reliability constraints

also); and for the t3 it is based on reliability constraints

(however one may choose the time or cost constraints also).

Further it is also noted that each task has modules that are

more than the number of processors in the distributed system.

So following data from the matrix PCTR (,) is used i.e,

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.10, January 2018

41





























































































999562.0999632.0999785.0

999887.0999365.0999452.0

999563.0999123.0999215.0

999631.0999245.0999256.0

999785.0999653.0999466.0

999856.0999625.0999452.0

280026002400

230027002700

290028002100

230022002500

160130170

150140160

140135120

130090080

120110070

36

35

34

33

32

313

24

23

22

212

15

14

13

12

111

321































m

m

m

m

m

mt

m

m

m

mt

m

m

m

m

mt

rctrctrctModulesTasks

pppProcessors

The task t1 has five modules, so that on the basis of highest

communication, the modules m11 & m14 and m12 & m15 are

fused together to reduce the effectiveness matrix square. The

task t2 has four modules, so that on the basis of highest

communication, the modules m21 & m24 are fused together to

reduce the effectiveness matrix square. The task t3 has six

modules, so that on the basis of highest communication, the

modules m31 & m35, m32 & m32 and m34 & m36 are fused

together to reduce the effectiveness matrix square. The

resulting matrix is as:



































































999193.0998877.0999041.0

999348.0998776.0998681.0

999743.0998990.0998904.0

230027002700

570054004500

230022002500

140135120

290220250

270250230

36*33

34*32

35*313

23

24*22

212

13

15*12

14*111

321



















mm

mm

mmt

m

mm

mt

m

mm

mmt

rctrctrctModulesTasks

pppProcessors

The results of the allocations based on time for the task t1 are

obtained after implementing the row & column assignment

process as suggested by Kumar et al (17), are mentioned

below in the Table 1;

Table 1. Time based Allocation for task t1

140

590220*

230*

313

21512

11411

pm

pmm

pmm

EtimeTimeProcessorsModules









The results of the allocations based on cost for the task t2 are

obtained after implementing the row & column assignment

process as suggested by Kumar et al (17), are mentioned

below in the Table 2;

Table 2. Cost based Allocation for task t2

2300

90004500

2200*

323

221

12422

pm

pm

pmm

EcostCostProcessorsModules









International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.10, January 2018

42

The results of the allocations based on reliability for the task

t3 are obtained after implementing the row & column

assignment process as suggested by Kumar et al (17), are

mentioned below in the Table 3;

Table 3. Reliability based Allocation for task t3

999193.0*

9966876.0998776.0*

998904.0*

33633

23432

13531

pmm

pmm

pmm

ilityEreliabyReliabilitsProcessorModules









Thus the complete results for the above mentioned example

obtained and are mentioned in the Table 4.

Table 4. Optimal Allocation Table

9966876.0***

9000*

590**

3633343235313

232124222

13151214111

321







mmmmmmt

mmmmt

mmmmmt

tyEreliabiliEcostEtimepppTasks

OptimalOptimalOptimalProcessors







6. CONCLUSION
This paper chooses the problem, in which the numbers of

module of the tasks are more than the number of processors of

the distributed system. The model addressed in this paper is

based on the consideration of processing time, cost and

reliability of the module of the tasks to the various processors.

The communication period amongst the module of the tasks is

also used. The method is presented in algorithmic form and

implemented on the several sets of input data to test the

performance and effectiveness of the algorithm. As it is the

common requirement for any assignment that the tasks have

to be processed either with minimum time or minimum cost or

maximum reliability. The example mentioned in this paper

has three tasks and solved it in such a way that the task t1

processed with minimum time, the task t2 with minimum cost

while the task t3 with maximum reliability. The optimal

results are mentioned in Table 4 of the previous section. The

Table 5(a), 5(b) and 5(c) shows the optimal results as obtain

after implementing the present algorithm for all three options

viz. time, cost, and reliability for each and every task.

Table 5(a). Optimal results for task t1

Processor Assignment based on

time Cost reliability

p1 m11 * m14 m13 m13

p2 m12 * m15 m11 * m14 m11 * m15

p3 m13 m12 * m15 m12 * m15

Optimal Result 590 12000 0.996929

Table 5(b). Optimal results for task t2

Processor Assignment based on

time Cost reliability

p1 m21 m22 * m24 m23

p2 m22 * m24 m21 m21

p3 m23 m23 m22 * m24

Optimal Result 540 9000 0.998442

Table 5(c). Optimal results for task t3

Processor Assignment based on

time cost reliability

p1 m31 * m35 m32 * m34 m31 * m35

p2 m33 * m36 m31 * m35 m32 * m34

p3 m32 * m34 m33 * m36 m33 * m36

Optimal Result 610 12100 0.9966876

7. TIME COMPLEXITY
It is known that the analysis of an algorithm is mainly focuses

on time complexity. Time complexity is a function of input

size „n‟. It is referred to as the amount of time required by an

algorithm to run to completion. The time complexity of the

above mentioned algorithm is O (m2n2). By taking several

input examples, the above algorithm returns results as

mentioned in Table 6.

Table 6. Time Complexity

No. of

processors

(n)

No. of tasks

(m)

Optimal

Results

3 4 144

3 5 225

3 6 324

3 7 441

3 8 576

4 5 400

4 6 576

4 7 784

4 8 1024

4 9 1296

5 6 900

5 7 1225

5 8 1600

5 9 2025

5 10 2500

The graphical representations of the results are shown by Fig

1, 2 and 3.

Fig 1: Graphical representation of results where n=3

No. of Processors = 3

0

2

4

6

8

10

1 2 3 4 5

Examples

N
o

.
o

f
T

a
s
k
s

0

200

400

600

800

C
o

m
p

le
x
it

y

No. of tasks (m)

Optimal Results

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.10, January 2018

43

Fig 2: Graphical representation of results where n=4

Fig 3: Graphical representation of results where n=5

8. COMPLEXITY COMPARISION
The performance of the algorithm is compared with the

algorithm suggested by Richard et al (28). Following Table 7

shows the time complexity comparison between algorithm

(28) with present algorithm.

Table 7. Complexity Comparison

Processors

n

Tasks

m

Time

Complexity

of

algorithm

(28) O(n
m

)

Time

Complexity

of present

algorithm

O(m
2
n

2
)

3 4 81 144

3 5 243 225

3 6 729 324

3 7 2187 441

3 8 6561 576

4 5 1024 400

4 6 4096 576

4 7 16384 784

4 8 65536 1024

4 9 262144 1296

5 6 15625 900

5 7 78125 1225

5 8 390625 1600

5 9 1953125 2025

5 10 9765625 2500

From the Table 7 it is clear that present algorithm is much

better for optimal allocation of tasks that upgrade the

performance of distributed system. The graphical

representation of the data as mentioned in Table 7 is shown

through Fig 4, 5 and 6.

Fig 4: Graphical representation of data where n=3

Fig 5: Graphical representation of data where n=4

Fig 6: Graphical representation of data where n=5

9. REFERENCES
[1] Anapathur, Ramesh, V., Twigg, David W., Sandadi,

Upender R. and Sharma, Tilak C. 2002. Reliability

Analysis of System with Operation Time Management,

IEEE Transactions on Reliability, 51, 39-48.

[2] Bahi, Jacques, Couturier, Raphaël and Vernier, Flavien.

2005. Synchronous distributed load balancing on

dynamic networks, Elsevier Inc., 65(11), 1397-1405.

[3] Bierbaum, Rene L., Brown, Thomas D. and Kerschen,

Thomas J. 2002, Model-Based Reliability Analysis,

IEEE Transactions on Reliability, 51, 133-140.

[4] Chiu, Steve C., Liao, Wei-keng, Choudhary, Alok N. and

Kandemir, Mahmut T. 2005. Processor-embedded

distributed smart disks for I/O-intensive workloads:

architectures, performance models and evaluation.

Elsevier Inc., 65(4), 532-55.

[5] Coit, D.W. and Smith, A.E. 1996. Reliability

Optimization of Series Parallel Systems using a Genetic

No. of Processors = 4

0

2

4

6

8

10

1 2 3 4 5

Examples

N
o

.
o

f
T

a
s
k
s

0

200

400

600

800

1000

1200

1400

C
o

m
p

le
x
it

y

No. of tasks (m)

Optimal Results

No. of Processors = 5

0

2

4

6

8

10

12

1 2 3 4 5

Examples

N
o

.
o

f
T

a
s
k
s

0

500

1000

1500

2000

2500

3000

C
o

m
p

le
x
it

y

No. of tasks (m)

Optimal Results

No. of Processors = 3

1

10

100

1000

10000

1 2 3 4 5

Examples

C
o

m
p

le
x

it
y

Algorithm (28)

Present

algorithm

No. of Processors = 4

1

10

100

1000

10000

100000

1000000

1 2 3 4 5

Examples

C
o

m
p

le
x

it
y

Algorithm (28)

Present

algorithm

No. of Processors = 5

1

100

10000

1000000

100000000

1 2 3 4 5

Examples

C
o

m
p

le
x

it
y

Algorithm (28)

Present

algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.10, January 2018

44

Algorithm, IEEE Transactions on Reliability, 45, 254-

260.

[6] Contreras, Javier, Losi, Arturo, Russo, Mario and Wu,

Felix F. 2000. DistOpt: A Software Framework for

Modeling and Evaluating Optimization Problem

Solutions in Distributed Environments”, Elsevier Inc.,

60(6), 741 – 763.

[7] Ensink, Brian, Stanley, Joel and Adve, Vikram. 2003.

Program Control Language: a programming language for

adaptive distributed applications, Elsevier Inc., Vol.

63(12) 1082 –1104.

[8] Fitzgerald, Kent, Latifi, Shahram and Srimani, Pradip K.

2002. Reliability Modeling and Assessment of the Star-

Graph Networks, IEEE Transactions on Reliability, 51,

49-57.

[9] Grosu, Daniel and Chronopoulos, Anthony T. 2005.

Noncooperative load balancing in distributed

systems. Elsevier Inc., 65(9), 1022-1034.

[10] Iqbal, Saeed and Carey, Graham F. 2005. Performance

analysis of dynamic load balancing algorithms with

variable number of processors. Elsevier Inc., 65(8), 934-

948.

[11] Jan, Gene Eu and Lin, Ming-Bo. 2005. Concentration,

load balancing, partial permutation routing, and

superconcentration on cube-connected cycles parallel

computers. Elsevier Inc., 65(12),1471-1482.

[12] Kandemir M., Ramanujam J. and Choudhary A. 2000.

Compiler Algorithms for Optimizing Locality and

Parallelism on Shared and Distributed-Memory

Machines, Elsevier Inc., 60(8), 924 – 965.

[13] Kuang, Hairong, Bic, Lubomir F. and Dillencourt,

Michael B. 2005. PODC: Paradigm-oriented distributed

computing. Elsevier Inc., 65(4), 506-518.

[14] Kumar, Avanish. 1999. Optimizing for the Dynamic

Task Allocation, in proceedings of the „III Conference of

the International Academy of Physical Sciences, 1999

Allahabad, 281-294.

[15] Kumar, Avanish. 2001. An Algorithm for Optimal Index

to Tasks Allocation Based on Reliability and cost, in

proceedings of „International Conference on

Mathematical Modeling‟ 2001Roorkee, 150-155.

[16] Kumar, V. Singh, M. P. and Yadav, P.K. 1995. An

Efficient Algorithm for Allocating Tasks to Processors in

a Distributed System, in proceedings of the „19th

National system conference, SSI‟, 1995 Coimbatore, 82-

87.

[17] Kumar, V. Singh, M.P. and Yadav, P.K. 1995. A Fast

Algorithm for Allocating Tasks in Distributed Processing

System, in proceedings of the „30th Annual Convention

of CSI‟, 1995 Hyderabad, 347-358.

[18] Kumar, V. Singh, M.P. and Yadav, P.K. 1996. An

Efficient Algorithm for Multi-processor Scheduling with

Dynamic Reassignment, in proceedings of the „6th

National seminar on theoretical Computer Science‟, 1996

Banasthally Vidyapeeth, 105-118.

[19] Kwok,Yu-Kwong, Maciejewski, Anthony A.,

Siegel,Howard Jay, Ahmad, Ishfaq and Ghafoor, Arif.

2006. A semi-static approach to mapping dynamic

iterative tasks onto heterogeneous computing systems,

Elsevier Inc., 66(1), 77-98.

[20] Lin, Min-Sheng 2002. A Linear-time Algorithm for

Computing K-terminal Reliability on Proper Interval

Graphs, IEEE Transactions on Reliability, 51, 58-62.

[21] Lyu, Michael R., Rangarajan, Sampath and Moorsel, Aad

P. A. Van. 2002. Optimal Allocation of test Resources

for Software Reliability growth modeling in Software

Development, IEEE Transactions on Reliability, 51, 183-

192.

[22] Mitchell D. Theys, Howard Jay Siegel and Edwin K. P.

Chong. 2001. Heuristics for Scheduling Data Requests

Using Collective Communications in a Distributed

Communication Network Elsevier Inc., 61(9), 1337 –

1366.

[23] Muhammad K. Dhodhi, Imtiaz Ahmad, Anwar Yatama

and Ishfaq Ahmad 2002. An Integrated Technique for

Task Matching and Scheduling onto Distributed

Heterogeneous Computing Systems Elsevier Inc., 62(9),

1338 – 1361.

[24] Ormon, Stephen W., Cassady, C. Richard and

Greenwood, Allen G. 2002. Reliability Prediction model

to Support Conceptual Design, IEEE Transactions on

Reliability, 51, 151-157.

[25] Painton, L. and Campbell, J. 1992. Genetic Algorithm in

Optimization of System Reliability, IEEE Transactions

on Reliability, 44, 172-178.

[26] Palmer, J. and Mitrani, I. 2005. Optimal and heuristic

policies for dynamic server allocation, Elsevier Inc.,

65(10), 1204-1211.

[27] Ravindran, Binoy, Devarasetty, Ravi K. and Shirazi,

Behrooz. 2002. Adaptive Resource Management

Algorithms for Periodic Tasks in Dynamic Real-Time

Distributed Systems, Elsevier Inc., 62(10) 1527 – 1547.

[28] Richard R.Y., Lee, E.Y.S. and Tsuchiya, M. 1982. A

Task Allocation Model for Distributed Computer

System, IEEE Transactions on Computer, 31, 41-47.

[29] Singh, M.P., Kumar, V. and Kumar, A. 1999. An

Efficient Algorithm for Optimizing Reliability Index in

Tasks-Allocation, Acta Ciencia Indica, xxv(m), 437-444.

[30] Ucar, Bora, Aykanat, Cevdet, Kaya, Kamer and Ikinci,

Murat. 2006. Task assignment in heterogeneous

computing systems. Elsevier Inc., 66(1),32-46.

[31] Wong, Han Min, Bharadwaj, Veeravalli and Gerassimos,

Barlas. 2005. Design and performance evaluation of load

distribution strategies for multiple divisible loads on

heterogeneous linear daisy chain networks. Elsevier Inc.,

65(12), 1558-1577.

IJCATM : www.ijcaonline.org

