
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.11, January 2018

31

Parallel Processing Approach for Pattern Matching

using MPI

Rashmi C.
High Performance Computing Project

Dept. of Studies in CS
University of Mysore, Mysuru, India

Hemantha Kumar G.
High performance Computing Project

Dept. of Studies in CS
University of Mysore, Mysuru, India

ABSTRACT

Bioinformatics is one of the field where high performance

computation widely used. Pattern matching is essential task in

Bio-informatics. A powerful technique for searching sequence

patterns in the biological sequence databases is the pattern

recognition. Significant increase in the number of protein

sequences and DNA expanded the need for the enhancement

of performance of pattern matching. Hence fast and high

performance algorithms are highly demanded in many

applications of computational molecular biology and bio-

informatics. In this paper we present a parallel processing

approach for pattern matching algorithm using distributed

parallel programming paradigm Message Passing Interface

(MPI). The focus of the research is the implementation of

basic algorithm naïve for pattern matching by utilizing

compute nodes of high performance computing server

optimally. The parallel algorithm finds correct matches and

experimental results show very high performance gain over

sequential approach.

Keywords

Pattern recognition, DNA, Parallel Processing, MPI

1. INTRODUCTION
Biological information is increasing from past few years.

Larger computations are required for the complex interactions

for determining the biological processes [1]. Different

processing elements with different characteristics on same

machine are becoming main stream in high performance

computing platforms and seem able to cope with these

requirements. As the growth rate of biological sequence

databases increased, the demand for advanced and high

performance computational method for comparing and

searching biological sequences have also increased. In DNA

sequence alignment [2], the performance of comparison and

alignment affect a lot of application processes such as

vaccines design, drugs, disease detection and curing method.

Hence with the high performance and high sensitivity DNA

sequences alignment or comparison the vaccines, drugs,

disease detection and disease curing method can be designed

and defined in a faster way. To satisfy this need, high

performance and sensitive DNA sequence matching

algorithms are very important for research and application of

molecular biology today. Biological sequence alignment is a

computationally expensive application in the field of

bioinformatics and computational biology as its computing

and memory requirements grow quadratic ally with the size of

the datasets. It aims to find out whether two or more

biological sequences are related or not. Pattern matching

focuses on finding the occurrences of a particular pattern in a

text file. The problem in pattern discovery is to determine

how often a candidate pattern occurs, as well as possibly some

information on its frequency distribution across the

sequence/text. In general, a pattern will be a description of a

set of strings, each string being a sequence of symbols. Hence,

given a pattern, it is usual to ask for its frequency, as well as

to examine its occurrences in a given sequence/text. The main

objective of this paper is to discuss and present about the

parallel algorithm for the pattern matching which were

implemented to achieve the improvements in the reduction of

execution time in bio-informatics. Parallel computation serve

as a guideline for other projects in bioinformatics for data

analysis and computer science. Multicore clusters are the most

popular option for the deployment of High Performance

Computing (HPC) infrastructures, due to their scalability and

performance/cost ratio. Message-passing interface (MPI) [3]

is the distributed memory programming and shared memory

programming model Open specification for multi-processing

(OpenMP) are the two models for parallel programming

multi-core architectures. The most commonly used paradigm

that can be employed not only within a single processing

mode but also across several connected ones is the Message

Passing Interface (MPI). To bridge the gap between the

performances offered by a parallel distributed architecture and

also to enhance portability in parallel applications MPI

standard has been designed. The standard defines semantics

and syntax for writing portable message passing programs in

Fortran, C and C++. A clearly defined base set of routine can

be implemented efficiently by parallel hardware provided by

MPI. A networks of workstations, shared memory

multiprocessors, distributed memory and a combination of

these elements can be used by MPI. This distributed memory

programming paradigm can be applied in multiple settings

and are independent of network speed or of memory

architecture.

Memory is used for programming models. An application

runs as a collection of autonomous processes each with its

local memory and processes will communicate by sending and

receiving the messages in message passing model but shared

access space is accessed by each processes in shared memory

model. Universality, Simplicity, Performance, ease of

debugging and expressivity are the advantages of message

passing model. Source-code portability of message-passing

programs written in Fortran or C across a variety of

architectures are provided by MPI. MPI allows the

development of the code on one architecture before running it

on the target machine and protecting investment in a program.

Since Brute force pattern matching is widely used for

matching the patterns, hence it is considered for

parallelization using a distributed memory programming

paradigm in Bio-informatics for DNA sequence.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.11, January 2018

32

The rest of the paper is organized as follows Section II is

Literature survey, Section III is Parallel Approach for Pattern

Matching, Section IV is Experimental System Requirements

and we make some concluding remarks in Section V.

2. LITERATURE SURVEY
Study of pattern matching algorithms the literature describes

various traditional pattern matching methodologies like Naive

Brute force, Boyer Moore, Knuth Morris Pratt and Dynamic

algorithms along with their performance issues when applied

for sequence analysis. Pattern matching is used in various

processes like DNA sequencing, Intrusion Detection System.

1) Naive Brute force

It is one of the simplest algorithms having complexity

O(MN). In this, first character of pattern P (with length m) is

aligned with first character of text T (with length n).Then

scanning is done from left to right. As shifting is done at each

step it gives less efficiency [4].

2) Boyer-Moore Algorithm

It performs larger shift-increment whenever mismatch is

detected. It differs from Naïve in the way of scanning. It scans

the string from right to left; unlike Naive i.e. P is aligned with

T such that last character of P will be matched to first

character of T. If character is matched then pointer is shifted

to left to very rest of the characters of the pattern.

If a mismatch is detected at say character c, in T which is not

in P, then P is shifted right to m positions and P is aligned to

the next character after c. If c is part of P, then P is shifted

right so that c is aligned with the right most occurrence of c in

P. The worst complexity is still O (m+n) [5].

3) Knuth-Morris-Pratt

This algorithm is based on automaton theory. Firstly a finite

state automata model M is being created for the given pattern

P. The input string T with Σ= {A, C, T, G} is processed

through the model. If pattern is present in text, the text is

accepted otherwise rejected. But the only disadvantage of the

KMP algorithm [6] is that it doesn’t tell the number of

occurrences of the pattern [7].

4) Dynamic programming Algorithms

Dynamic programming is the oldest and mostly used

algorithm. Basically Needleman Wunsch and Smith waterman

algorithm [8] come under this approach. These are much more

complex than the exact pattern matching. It involved solving

successive recurrence relations recursively i.e. smaller

problems are solved in succession to solve the main problem.

A)Smith-Waterman (local alignment)[8]

• Accuracy: good with gapped pairs

• Processing: Computationally expensive O (N2) and with

trace-back a lot of memory is required; this is slow

• Limitations: indexing to find targets is required.

B) Needleman-Wunsch (global alignment)[8]

• Good for small genomes and long matching alignments

• Processing: Computationally expensive O (N2) Talk today

showed novel pruning technique for in large matches.

• Limitations: requires hard left hand bound known query and

target size.

3. DISTRIBUTED MEMORY

PROGRAMMING
MPI is a standardized distributed memory programming,

specification for clusters, Parallel computers and

heterogeneous networks as depicted in figure 1. It primarily

addresses the message passing parallel programming model.

Data is moved from the address space of one process to that of

another process through co-operative operations on each

process. Providing a widely used standard for writing message

passing programs including interface attempts such as

practicability, portability, efficient, flexibility and ability to

run transparently on heterogeneous systems, a collection of

processors with distinct architectures. It implements

asynchronous, global and local. MPI has two modes of

communication collective and point to point communication.

Collective communication allows large number of processes

to communicate, they are of two kinds data movement

operations and collective computation operations. A value is

computed from data located in different processes for example

sum, maximum, logical OR and so forth in collective

communications. Data are rearranged in among the processes

in data movement operations. Point to Point is the simplest

form of message passing. Only two processes are involved in

communications for sending and receiving the messages but

have a some different versions which represent different

semantics in the communication. To program the parallel

computers, MPI is the language independent communication

protocol. The solution most widely used for shared memory

programming is openMP since an easy parallel application

development is achieved through compiler directives. As this

model is limited to shares memory architectures,

computational power of a single system is bounded by the

performance. Hybrid system with both shared and distributed

memory is used in order to avoid the limitation, both OpenMP

combined with MPI can be programmed for multi-core

clusters. However this hybrid model can make the

parallelization.

Fig 1: Distributed Memory Programming Paradigm

MPI programming model exhibits SPMD (Single Program

Multiple Data) to distinguish it from MPMD(Multiple

Program and Multiple Data) in which same program is

executed by every or different processor. Many versions of

high performance open source MPI library for IOGig/iWARP,

RoCE (RDMA over converged enhanced Ethernet such as

MAVAPICH(MPI-1), MAVAPICH2 (MPI-2.2 and 3.0) that

support for GPGPUs and MIC delivering scalability and best

performance to MPI applications. MVAPICH with MPI-1

semantics and MVAPICH2 with MPI-2 semantics are the two

current versions of MPI Library supporting different

computation with communication platforms. C/C++ and

Fortran programming languages are supported by these

versions. Built network topology support makes an efficient

use of MPICH2 on LINUX and UNIX platforms in contrast to

MPICH2 on windows.

MPI has become a de facto standard for communication

among process that model a parallel program running on a

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.11, January 2018

33

distributed memory system, it’s not sanctioned by any major

standards body. Computer clusters are the distributed memory

supercomputers often run such programs. The model MPI-1

model has no shared memory concept and MPI-2 has only

limited distributed shared memory concept. MPI Interface

provides communication functionality, synchronization and

virtual topology across a set of processes [10] with language

specific syntax and features in a language independent way.

Programmers commonly refer to the processes as processors,

MPI programs always work with processes. Single process

will be assigned to each CPU(or core in a multicore machine)

at runtime through the agent that starts the MPI program (MPI

daemon) called mpiexec or mpirun. Computer machine that

initiates MPI ring daemon will have process manager in its

core CPU. Process manager identified with ID 0 and all of his

worker have ID greater than 0.

4. PATTERN MATCHING
A basic algorithm for pattern matching is naïve brute force

string matching that takes a string S, of size m and pattern P,

of size n and scans the first mn elements of the string from left

to right with pattern, looking for matches. Basically algorithm

considers possible starting positions of the pattern(P) for i=0

to mn. Then for every starting position(i) the pattern (P) must

exactly match S for next consecutive n-1 positions. The result

of the algorithm is the set I containing all of the starting

positions in S where P exactly matches the string S (using

indices starting at 1) [9].The sequential form of algorithm

consists of function, where it attempts to match pattern of text

by scanning text from left to right. In sequential code, a single

process is conducting the search and when it finds a match the

algorithm will output to console the position it was found.

4.1 Sequential Algorithm
The naïve algorithm finds all valid shifts using a loop that

checks the condition P[1..m]=T[s+1…. S+m] for each of the

n-m+1 possible values of s.

Naïve String Matcher(T,P)

1. m=T.length

2. n=P.length

3. for s=0 to m-n

4. if P[1..m]==T[s+1..s+n]

5. print “Pattern occurs with shift”

4.2 Parallel Algorithm
Main procedure

main ()

{

1. Initialize MPI and OpenMP routines;

2. If (process==master) then call master(); else call worker();

3. Exit message passing operations;

}

Master sub-procedure

master()

{

1. Broadcast the name of the pattern set and text to workers;

(MPI_Bcast)

2. Broadcast the offset of the text, the blocksize and the

number of threads to workers; (MPI_Bcast)

3. Receive the results (i.e. matches) from all workers;

(MPI_Reduce)

4. Print the total results;

}

Worker sub-procedure

worker()

{

1. Receive the name of the pattern set and text; (MPI_Bcast)

2. Preprocess the pattern set;

3. Receive the offset of the text, the blocksize and the

number of threads; (MPI_Bcast)

4. Open the pattern set and text files from the local disk and

store the local subtext (from text + offset to text + offset +

blocksize) in memory;

5. Call the chosen pattern matching algorithm passing

a pointer to the subtext in memory;

7. Determine the number of matches from each process.

8. Send the results (i.e. matches) to master;

}.

5. RESULTS
In this paper we use 16 cores on Linux-based platform to

study the effect of parallel processing performance of MPI

parallel implementations for pattern matching. Cluster

Hardware comprises of Two Master nodes (Wipro-Netpower

Datasystem) with Intel® Xeon® CPU E5-2670 @ 2.60GHz,

4 X 900GB SAS HDD, 8 X 8GB RAM with 20 compute

nodes (4 X 5 Wipro Netpower Blade chassis servers) Intel®

Xeon® CPU E5-2670 @ 2.60GHz, 1 X 300GB SAS HDD, 8

X 8GB RAM.

Initially explored a solution that simply split the text up so

that each process would check one portion of the text; for

example, using 16 processes, each process would check

1/16th of the text. It’s faster than the sequential version as

depicted in table I.

Table 1. Table captions should be placed above the table

Data Set Data Size
Sequential

Time(secs)

MPI

Time(secs)

A1 2MB 140.213 15.62

A2 1MB 90.84 20.61

Total

231.053 36.23

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.11, January 2018

34

Fig 2: Graphical representation

Fig 3: Performance

6. CONCLUSION
In this paper we focused on distributed programming model

using MVAPICH2 as a message passing interface

implementation on Linux platforms. With the performance

analysis, it’s evident that the new implementation seems to

become more efficient with a higher number of processes.

The proposed work is tested with data sets. The effect of

parallel processing and also the number of cores on the

performance of parallel pattern matching has been

theoretically and experimentally studied. From the

experimental results, it is estimated that the parallel pattern

matching computation is less compared to sequential pattern

matching. But MPI has some crons hidden communication

takes place with collective communication and not always

best to use collective communication due to synchronization.

7. ACKNOWLEDGMENTS
This work is carried by Rashmi C in High Performance

Computing Laboratory, Department of Studies in Computer

Science.

8. REFERENCES
[1] A. Tumeo and O. Villa. Accelerating DNA analysis

applications on GPU clusters. In IEEE 8th Symposium

on Application Specific Processors (SASP), pages 71–

76. 2010.

[2] Mount D. Bioinformatics: Sequence and Genome

Analysis, Cold Spring Harbor Laboratory(CSHL)

Press,2004.

[3] M. J. Quinn, Parallel Programming in C with MPI and

OpenMP, Tata McGraw Hill Publications, 2003, p. 338.

[4] http://codeapirant.worpress.com/2013/05/20/brute-force-

naiveapproach-to-string-searching

[5] R.S. Boyer, J.S. Moore, "A fast string searching

algorithm,"Communication of the ACM, Vol. 20, No. 10,

1977, pp.762–772.

[6] S. Rajesh , S.Prathima, Dr.L.S.S.Reddy, “Unusual

Pattern Detection in DNA Database Using KMP

Algorithm”,2010 International Journal of Computer

Applications(0975-8887) Volume 1 – No.22.

[7] KNUTH, D. E, MORRIS JR J. H , PRATT V. R,”Fast

pattern matching in strings”, In the procd. Of SIAM

J.Comput.Vol. 6, 1, pp.323–350, 1977.

[8] Lee W-P, Stromberg MP, Ward A, Stewart C, Garrison

EP, et al. (2014) “MOSAIK: A Hash-Based Algorithm

for Accurate Next-Generation Sequencing Short-Read

Mapping.” PLoS ONE 9(3):e90581.

doi:10.1371/journal.pone.0090581.

[9] Parida, Laxmi (2008) Pattern Discovery in

Bioinformatics: Theory& Algorithms Boca Raton:

Chapman & Hall/CRC pg. 139-182,183-212

[10] Shima Soroushnia, Masoud Daneshtalab, Tapio

Pahikkala, Juhu Plosila “Parallel Implementation of

Fuzzified Pattern Matching Algorithm on GPU”, IEEE

23rd Euromicro International Conference on Parallel,

Distributed and Network-Based processing(PDP), 2015.

[11] Kefu Xu, Wenke Cui, Yue Hu, Li Guo, “Bit-Parallel

Multiple Approximate String Matching based on GPU”,

First International conference on Information

Technology and Quantitative Management, Procedia

Computer science , Vol 17,2013, pages 523-529.

[12] Daniel Luchaup, Randy Smith, Cristian Estan, Somesh

Jha, “Speculative Parallel Pattern Matching” IEEE

Transactions on Information Forensics and Security, Vol

6, Issue 2, 2011,pages 438-451.

[13] Spector, A. Z. 1989. Achieving application requirements.

In Distributed Systems, S. Mullender

[14] Sinan Sameer Mahmood Al-Dabbagh, Nawaf Hazim

Barnouti, Mustafa Abdul Sahib Naser, Zaid G. Ali,

“Parallel Quick Search Algorithm for the exact String

Matching problem using OpenMP”, Journal of Computer

and Communications, Scientific Research Publishing ,

Vol 4,2016, pages1-11.

[15] Gulfishan Firdose Ahmed, Nilay khare, “String Matching

Algorithms using Bit Parallelism”, International Journal

of Advanced Engineering and Global Technology Vol-2,

Issue-5, May 2014.

[16] Dale E. Parson, "Parallel reduced-instruction-set-

computer architecture for real-time symbolic pattern

matching", Proc. SPIE 1468, Applications of Artificial

Intelligence IX, (1 March 1991); doi: 10.1117/12.45534.

[17] Saman Ashkiani, Nina Amenta, John D. Owens,

“Parallel Appraoches to the String Matching Problem on

the GPU”, SPAA 2016.

0

50

100

150

200

250

A1 A2 Total

T
im

e
in

 s
ec

o
n

d
s

Data Set

Sequential

time

(seconds)

MPI time

taken

(seconds)

0
50

100
150
200
250

Series1

IJCATM : www.ijcaonline.org

