
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

22

Real Time Event Detection Adopting Incremental TF-IDF

based LSH and Event Summary Generation

Jeyakumar Kannan

Dept. of Computer Science
Jamal Mohamed College (Auto)

Tiruchirappalli, India

Ar Md Shanavas
Dept. of Computer Science

Jamal Mohamed College (Auto)
Tiruchirappalli, India

Sridhar Swaminathan
Dept. of Computer Sci & Engg

Bennett University
Greater Noida, India

ABSTRACT

Recently, twitter users are leveraged to detect social and

physical events such as festivals and traffic jam at real time.

Real time event detection and summarization from Cricket

sports is the process of detecting events such as boundary at

real time from live Cricket tweet stream as soon as event

happens and generating a quick game summary. This is an

interesting, yet a complex problem. Because of the need for

rapid detection of sports events and for the generation of a

concise summary from huge volume of tweets for Cricket

enthusiasts. In this paper, a novel framework is proposed for

detecting key events from live Cricket tweets and for

generating a game summary using the crawled tweets. Feature

vectors of live tweets are created using incremental TF-IDF

representation and tweet clusters are discovered using

Locality Sensitive Hashing (LSH) where the post rate of each

cluster determines the key event. A key event is recognized

from that cluster using our domain specific event lexicon.

Then, important moments from the crawled tweets are

computed by identifying the spikes in the tweets volume. Top-

k tweets from each moment are selected by ranking tweets on

top-k words. Representative tweets from top-k tweets are

identified using Jaccard similarity. The evaluation on 2017

IPL T20 Cricket live tweets using ROC measure shows that

the proposed incremental TF-IDF based LSH approach

detects key events with nearly 95% true positive rate and

around 5% false positive rate. The proposed game

summarization algorithm generates summaries which are

readable and competitive to human tailored summaries.

General Terms

Machine Learning, Incremental Clustering, Social Media,

Twitter, Data Analytics

Keywords

Event Detection, Incremental TF-IDF, Locality Sensitive

Hashing, Live Sports Tweets, Event Summarization

1. INTRODUCTION
Modern day communication between people is happening

with the use of high speed internet and social media sites such

as Facebook and Twitter. Communication between people,

groups has changed due to the invasion of online social media

[1]. Microblogging services such as Twitter act as a famous

platform for users and groups to share diverse digital content

as short texts, links, images, or videos [2]. The tweets contain

variety of information ranging from personal data, images to

public data such as news, events where the information shared

by them are based on their individual behaviors and interests

[3]. In addition, Twitter is now used as a news platform to

inform the world about live real-life events, viral news,

crimes. It also helps everyone to be well informed with live

data on different events. Lot of organizations are now utilizing

the Twitter data for analyzing customer’s opinions on

products, social issues. Recent research as considered that the

humans act as sensors who can be used for detecting live real-

life events. Automation in event detection become

unavoidable due to availability of huge amount of Twitter

data and redundancy among Tweets describing the same

events.

Recent research have shown that social and environmental

events such as earthquakes, deaths of celebrities, and elections

can be detected using Twitter [4]. Detecting events from

Twitter in real-time has lot of applications in real life. Real-

time event detection has challenges such as collection and

processing of large volume of data in addition to the regular

challenges such as limited tweet length, misinformation,

typographical and grammatical errors. In addition, the

underlying corpus used as training data should be updated

frequently based on new stream of live data. It is also hard for

users to follow large stream of tweets, and to filter out spams,

irrelevant content and rumors. Thus, there is a need for an

automatic summarization approach which can generate

summary describing or highlights of events in a context.

Recently few research work have been proposed for the

domain of sports. Detecting sports events need focusing on a

smaller scale of data. Traditional event detection approaches

will often fail to deal with the scalability issues. Also, only a

few research work have been proposed for real time event

detection in sports domain mostly on NFL soccer games.

However, there is no real-time event detection and game

summarization approach for the Cricket sports.

To address this demand, this paper proposes a novel event

detection approach based on incremental TF-IDF and LSH

techniques. In addition, we propose a novel event summary

generation approach by using Jaccard similarity measure. To

the best of our knowledge, ours is first of its kind that adopts

incremental TF-IDF based LSH approach for Cricket sports

domain to detect events from live tweets at real time. The

major contributions of this paper are:

1. Unlike previous approaches which used offline datasets,

we propose a novel approach to detect key events from

live Cricket tweets using incremental TF-IDF based LSH

method.

2. We also present a novel game summarization approach

which generates a game summary utilizing the crawled

tweets. Representative tweets are selected by scoring

method and diversity of tweets is achieved using Jaccard

similarity measure.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

23

The rest of the paper is organized as follows. Section 2

discusses the related work on twitter event detection and game

summarization. Section 3 introduces the event detection

approach, while game summary generation approach is

presented in section 4. Experimental results of the proposed

approach are presented in section 5. Finally, section 6

concludes the paper with future work.

2. RELATED WORK
Existing event detection can be classified based on different

domains such as social, political, environment and sports. For

more detailed comparative study the readers are recommended

to refer recent survey [2]. Whilst earlier work were focused

more on physical events, recent approaches concentrate on

social event detection. News topics are discovered [5] by

clustering a large volume of data clustered tweets to discover

news topics from the Twitter data. In the domain of sports,

Hannon et al. [6] produced highlights of the world cup game

using poste rate of tweets. These approaches works on offline

dataset and detect events several hours after the actual event

happened. Incremental clustering algorithm [7] is exploited

for Twitter event detection where the similarities between

event clusters and a tweet are calculated for detecting

newsworthy events.

Very few work have been proposed for game summarization

in Twitter. Chakrabarti et al [8] generated game summaries of

rich events based on hypothesis that multiple events will share

same structure. In the sports domain, Nichols et al [9]

generated journalistic summary from tweets of World Cup

football game. All of the above approaches focus only on

Soccer sports and none of them on Cricket sports domain.

Since tweets flow continuously at real time, our system needs

to update the dictionary and clusters dynamically. Our

approach addresses these issues efficiently. It adopts

incremental feature representation, online clustering and

Jaccard similarity techniques for real time event detection and

summarization.

3. REAL TIME EVENT DETECTION
Real time event detection is the process of detecting key

events from live tweet streams at near real time. The proposed

real time event detection framework is depicted in figure 1.

After preprocessing of live tweets, feature vectors are created

using incremental TF-IDF representation and clustered into

buckets of LSH. Events are detected from active clusters

based on the predefined post rate threshold. Then, events are

recognized by applying our domain specific event lexicon.

The following sections will explain the individual steps in

detail. Finally, a summary of the game is generated based on

Jaccard similarity between tweets.

Figure1: System architecture

3.1 Preprocessing of live tweets
Our real time event detection system requires live tweets so as

to detect and report all key events throughout the game time.

Fortunately, game viewers and twitter users keep posting

interesting tweets of game events such as Boundary which are

leveraged by the system.

Twitter supports three types of API for gathering tweets for

any application. As our approach needs live tweets

continuously during the game time, we use Streaming API to

crawl live tweets using game specific keywords. We use

official keywords as hashtags for collecting live tweets. We

run our system during IPL T20 2017 game between the teams

Royal Challengers Bangalore (RCB) and Rising Pune

Supergiant (RPS). Our system is continuously collecting

tweets without any break during the entire game time, detects

events from tweets at real-time and also archives all gathered

tweets in JSON format for later game summary generation.

The raw tweets are initially preprocessed for URLs, mentions,

replies and stop words using Python NLTK toolkit. Then,

feature vector is created for every preprocessed tweet,

considering only unigram features of a tweet. Preprocessing

has been an important step in the event detection process,

otherwise the accuracy of detection will be affected at large.

3.2 Incremental TF-IDF for tweets features
Term Frequency - Inverse Document Frequency (TF-IDF) has

been the popular term weighting schemes in text mining. TF-

IDF is the product of term frequency (TF) and inverse

document frequency (IDF). Here, TF describes the importance

of a term in a document and IDF represents the importance of

the term in the entire document collection. The TF-IDF

weighing scheme assigns weight to term w in document d

using equation 1 and 2:

𝑡𝑓 − 𝑖𝑑𝑓 𝑤, 𝑑 = 𝑡𝑓 𝑤, 𝑑 ∗ 𝑖𝑑𝑓 𝑤 (1)

𝑖𝑑𝑓 𝑤 = 𝑙𝑜𝑔
𝑁

𝑑𝑓 𝑤
 (2)

The term frequency 𝑡𝑓 𝑤, 𝑑 represents the number of times

the term w occurs in a document d. The inverse document

frequency 𝑖𝑑𝑓(𝑤) helps to scale down the term frequency of

w, if the term w occurs in almost all documents in a data

corpus. Here, N is the number of documents in a data corpus

and 𝑑𝑓(𝑤) denotes the number of documents in which the

term w occurs at least once. Then, the features of a tweet are

mapped to the vocabulary in order to generate the tweet

feature vector where TF-IDF weight is assigned to a

vocabulary term that appears in the tweet.

As ours is a real time system where tweets are flowing in

continuously, the number of tweets in our corpus will be

dynamic. Thereby, the document frequency will be different

whenever a new tweet arrives. This impacts idf of a term and

subsequently document clustering. Therefore, the solution is

to incrementally re-compute idf value of each term a new

tweet is arrived.

The new idf values are recomputed considering the past

tweets and the tweets of the current chunk (say, 100 tweets)

incrementally. Hence, the equations for incremental TF-IDF

are rewritten as shown below (equation 3 and 4):

𝑡𝑓 ∗ 𝑖𝑑𝑓𝑖 𝑤. 𝑑 = 𝑡𝑓 𝑤, 𝑡 ∗ 𝑖𝑑𝑓(𝑤) (3)

𝑖𝑑𝑓 𝑤 = 𝑙𝑜𝑔
𝑁𝑖

𝑑𝑓 𝑖(𝑤)
 (4)

Here, tf-idfi(w,t) is the tf-idf value for term w in tweet t from

tweets of past chunks and current chunk. The idf(w) is an

inverse document frequency of the term w. The dfi(w) is the

number of tweets Ni (of previous chunks and the current

chunk) in which the term w occurs at least once. Finally, tweet

features are mapped to the dictionary in order to generate its

tweet feature vector where weight is assigned to dictionary

terms that appear in the tweet.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

24

3.3 Event detection using Incremental

clustering
We first introduce the idea of approximate nearest neighbors

and locality sensitive hashing technique that clusters feature

vectors created from the preprocessed live tweets. Also, we

explain the construction of signatures for tweet feature vectors

for indexing buckets of LSH. Finally, we explain how key

events are detected from tweet clusters based on the post rate

of a cluster.

Given a set of N points P = {P1,P2,P3,…,PN} represented as a

matrix M and a query point Q, a nearest neighbor search

computes the distance between all points in P to Q and selects

the one point Pi ∈ P which is the closest to Q ∈ M [10]. The

nearest neighbor approach is computationally expensive for

high dimensional data. To alleviate this problem, a variation

known as Approximate Nearest Neighbor (ANN) search was

proposed. The ANN search finds an approximate nearest

neighbor point P' in P that is the closest to Q within a radius r,

as shown in equation 5.

∀𝑃′ ∈ 𝑃, 𝑑 𝑃′ , 𝑄 < 1 + 𝜀 𝑑 𝑃′ , 𝑄 (5)

Here, 𝑑 𝑃′ , 𝑄 is the distance between 𝑃′ and 𝑄 and 1 + 𝜀

is a constant factor [10]. Locality Sensitive Hashing (LSH)

[10] is a popular approach to address the problem of ANN

search.

The key assumption of LSH is that objects close to each other

will most likely fall into the same bucket. Intuitively, a hash

function is locality sensitive if two points that are close under

the similarity distance measure are more likely to collide into

the same bucket [10]. Recently, LSH has become a successful

solution for clustering large social media streams, such as

tweets. The LSH approach applies hash functions such that

the probability of collision, i.e., falling into the same bucket,

is much higher for similar tweets than that of dissimilar

tweets.

Our proposed methodology for discovering clusters of tweets

uses hash table based LSH for computing nearest neighbors.

In our approach, each tweet feature vector is hashed using k

hash functions and stored in L buckets. We use hash table to

represent a bucket. The hash value of tweet feature vectors

acts as an index of a hash table. The nearest neighbor of a

feature vector of an incoming tweet is found by retrieving

similar tweet feature vector from each bucket and selecting

the one with a highest cosine similarity distance value. The

cosine distance is a dot product of tweet feature vectors

normalized by their norms. The cosine distance will be 1 if

two feature vectors are parallel and 0 if orthogonal to each

other.

The k-bit signature for each tweet feature vector is generated

using the hash function proposed by Charikar [11] (as shown

in equation 6). It computes the dot product between the tweet

feature vector u and m-dimensional random unit vector r and

retains the sign of the resulting product. Each dimension in r

is drawn from Gaussian distribution with mean 0 and variance

1.

𝑕 𝑢 =
1, 𝑖𝑓 𝑟. 𝑢 ≥ 0
0, 𝑖𝑓 𝑟. 𝑢 < 0

 (6)

The k-bit signature reduces the dimension of the original

tweet feature vector. As it is a low dimensional vector, LSH

approach clusters large number of tweet vectors very fast.

Charikar applied cosine similarity metric to compute the

similarity between two document vectors and is defined in

equation 7.

cos 𝜃 𝑢, 𝑣 = cos 1 − Pr 𝑕 𝑢 = 𝑕 𝑣 𝜋
(7)

Here, 𝜃 𝑢, 𝑣 is the cosine angle between the vectors 𝑢 and 𝑣

and is proportional to the hamming distance of their signature

vectors while preserving the cosine similarity in high

dimensional space. Pr 𝑕 𝑢 = 𝑕 𝑣 is the probability that a

random hyper plane separates two vectors, which is

proportional to the cosine angle between them. The hamming

distance is the number of bits that differ between two binary

vectors.

The proposed algorithm for incremental TF-IDF based LSH

for event detection and recognition is depicted in figure 2.

Here, incoming tweets are preprocessed, feature vectors are

created for the preprocessed tweets based on incremental TF-

IDF representation and clustered using LSH. Simultaneously,

IDF values are updated once the number of incoming tweets

reaches the maximum chunk size. Post rate of a cluster is

computed which is the number of tweets at a given time. If it

is above a predefined threshold, an event is declared detected.

A cluster is deleted once an event is detected from it. An

event that has occurred most number of times in the

representative tweets of a cluster, is the recognized event.

Algorithm: Real time event detection and recognition

Input: Live tweets, similarity threshold ST, buckets L, signature

length K, post rate T, chunk size CHUNK

Output: Event name and its tweets

1: create event lexicon for pre-determined event types

2: build TF-IDF dictionary Ɒ using lexicon

3: for each bucket i ϵ L do

4: create hash table ht[i]

5: create random vector rv using Gaussian distribution

6: end for

7: repeat

8: for each incoming tweet t do

9: re-build TF-IDF dictionary Ɒ using CHUNK tweets

10: construct tweet feature vector tv for t using Ɒ

11: create k-bit signature ts for tv

12: for each bucket i ϵ L do

13: get collision for ts

14: add tv with key ts in ht[i]

15: end for

16: get nearest neighbor NN for tv from collisions

17: if similarity(tv, NN) < ST then

18: create new cluster c

19: addTweetVectorToCluster(tv, c)

20: else

21: if tv not in NN’s cluster cNN then

22: addTweetVectorToCluster(tv, cNN)

23: end if

24: end if

25: end for

26: until connection closed

27: for each cluster c ϵ C do

28: if postRate(c) > T then

29: get text of all tweets in cluster c

30: select event with highest document freq. using lexicon

31: display event name and its tweets using lexicon

32: delete cluster c

33: end if

34: end for

Algorithm: Game summary generation
Input: Offline tweets, k, m

Output: Game summary

1: compute peaks using tweet frequency per second

2: Let moments be filtered peaks using 3*median + std. deviation

3: for each moment ϵ moments do

4: select tweets around moment

5: find top-k words from tweets

6: get top-k tweets ranked on top-k words from tweets

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

25

7: rank top-k tweets using Jaccard similarity

8: display m tweets from ranked tweets

9: end for

Figure 2: Proposed algorithm

We obtain an optimal number of clusters by characterizing the

size and life span of each cluster. We do not consider clusters

that contain a single tweet. Similarly, we delete all clusters

whose life span is more than five minutes, because we expect

an event would occur within five minutes itself in Cricket

sports. An important requirement for a real time event

detection system is that it should detect and report events at

near real time to the interested people. With optimal clusters,

our online incremental clustering approach detects and

recognizes key events at near real time.

3.4 Lexicon based event recognition
Our real time event detector continuously monitors clusters

and computes the post rate of each cluster. If the post rate of a

cluster is more than the predefined threshold, then the system

assumes that some key event, defined in our event lexicon,

has happened in that cluster. Therefore, the event recognizer

computes the tweet frequency of each key event and selects an

event whose tweet frequency is the maximum. Tweet

frequency of an event is the number of tweets that contain this

event.

Care has been taken to design an event lexicon for Cricket

sports, as event recognizer recognizes key events that are

defined in the event lexicon. Since tweeting style of every

game viewer is unique, describing an event with proper event

name is very crucial. That is, event names should be more

descriptive, as every game viewer tweets about the same event

in different ways, using different words. Our event lexicon

describes 37 Cricket sports events, such as bowled out, run-

out, lbw and leg bye. The lexicon is populated with different

event terminologies collected from ESPNCricInfo

(www.espncricinfo.com/ci/ content/story/ 239756.html)

website.

The domain specific event lexicon is the preferred

representation for event recognition at real time. Unlike

statistical event recognition models which require training,

our lexicon based recognition is free from training and easy

for implementation. Further, there is no training data for some

applications such as celebrity deaths and terrorist attacks,

which results lexicon based approach a natural choice.

Reporting of duplicate events has been an important issue for

the event detector. The LSH approach solves this issue by

clustering similar tweets into the same bucket. It also prevents

the creation of new clusters until a new tweet is sufficiently

dissimilar from existing clusters. As we adopted incremental

TF-IDF features for live tweets representation, the continuous

update of the vector space model greatly improves the

similarity computation between a new tweet and tweets of

existing clusters and hence the most similar nearest neighbor

is found for the incoming new tweet. Since, our incremental

TF-IDF achieves better similarity than the standard TF-IDF

model, all similar tweets will go into the same cluster and thus

the number of event alerts is minimized.

4. GAME SUMMARY GENERATION
Throughout game time, many interesting events (aka,

moments) happen. At the end of the game, many sports

enthusiasts would be interested to know a gist of the game.

Game summarization is nothing but a generation of textual

summary utilizing important key words from important tweets

of the entire game. The proposed game summarization

workflow is depicted in figure 3.

Figure 3: Game summarization workflow

First, key events are detected based on the spikes in the tweets

volume. Then, game moments are selected by considering the

tweets of the spikes that are above the threshold.

Representative tweets of the game moments are preprocessed

for noise such as spam, URLs and non-English tweets. They

are ranked on top-k words using Jaccard similarity measure

and tweet summary is presented to users.

4.1 Important moments detection
In addition to detecting key events at real time, we also

simultaneously archive crawled tweets as JSON objects for

offline processing. We leverage the offline tweets for

generating a game summary once the game is finished.

Cricket sports events consists of a sequence of moments (for

simplicity, we call moments as just events) where each

moment represents the actions by players, referee or audience

of the game. In the Twitter streams, sudden increases or

spikes in the volume of tweets indicate the occurrence of

some key events in the game that the game viewers found

interesting.

Shamma et al. [12] suggested that key moments can be

detected from Twitter when the volume of tweets increases

sharply. Over the game time, the sharp increase of tweets

volume happens several times as shown in the tweets volume

graph of our game RCBvRPS (figure 4).

Figure 4: RCBvRPS tweet volume graph

Key moments can be detected from the volume of tweets in

two ways – either by considering the absolute value of the

volume or the spike in the volume. We choose the later

approach because sometimes the tweet volume stays high for

several minutes and have several local peaks. Also, game

viewers sometime miss tweeting some key events resulting a

less traffic.

Our algorithm to detect the key moments of a game is based

on the approach described in [9]. We consider a granularity of

minutes for characterizing the tweet volume. Our algorithm

computes the threshold for the entire game considering all

slopes for the entire tweet volume. We compute the threshold

for the slope with the formula 3 * median + standard

deviation. We have tried several variations and empirically

arrived at this equation, which provides best results for our

domain. After identifying all slopes from offline tweets that

exceed our threshold, the list of spikes which correspond to

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

26

the key moments of a game is generated. We consider spikes

as points in the tweet volume graph where the slope changes

from positive to negative and the absolute number of tweets in

that minute exceeds our threshold.

4.2 Tweets selection
After generating all spikes corresponding to key moments of

the game, the next task is to identify representative tweets for

each key moment that will be used to generate the game

summary. It is important that the selection of representative

tweets greatly influence the quality of the game summary.

Obviously, a very large spread of tweets in each key moment

will result into more false positives (ie. selecting a tweet that

does not describe a key moment). On the other hand, a narrow

spread of tweets in a key moment will lead to more false

rejections (ie. ignoring a tweet that describes a key moment).

Our algorithm selects all tweets that are near to the peak of

each key moment. An interval of k-minutes defines the range

for including the tweets. We observed best results when the

value of k =2. Also, our algorithm assumes that the interval

need not be symmetric about the peak of a key moment.

4.3 Noise removal from tweets
Noise removal has been a very crucial preprocessing step for

generating game summaries. Once all representative tweets of

important key moments are selected, noise removal

techniques should be applied to filter out spam and other

irrelevant tweets. We remove tweets containing up to 3 words,

as these tweets may not contribute to describing the game

summary. Spam tweets are removed using a dictionary of

common terms. Stop words are removed using NLTK Python

library. We also consider URLs and other personal pronouns

as noises and our algorithm removes all of them.

4.4 Game summary presentation
Upon removing all noises from the representative tweets, the

final step is to generate a summary for the game. Our

approach follows a simple scoring method to rank the tweets.

Initially, our algorithm computes top-k words (T) based on

their frequency from the tweets of a moment. If the list of top-

k words contain any word whose frequency is up to 2, then the

algorithm deletes those words from the list. It also deletes

spam words and other common words of Cricket sports that

do not have discriminating power. The score for each

representative tweet of a key moment is calculated (as shown

in equation 8) based on the occurrences of top-k words in each

tweet t.

𝑆𝑐𝑜𝑟𝑒 𝑡 = 𝑓𝑟𝑒𝑞(𝑡𝑡𝑖
𝑛
𝑖=1) (8)

Where tti ∈ T. Note that the score for a term of a tweet (tt) that

does not appear in T will be 0. Based on the tweet score, our

algorithm ranks all tweets and selects the top-m tweets as part

of the game summary.

However, this simple scoring method suffers from some

weaknesses. For example, if scores of several tweets are same,

then all these tweets will be considered as top ranked tweets

for this specific moment. Thereby, all these tweets will be part

of the result. Therefore, the algorithm should choose diverse

tweets for a key moment. The algorithm selects a set of k

diverse tweets from the ranked top-m tweets using Jaccard

similarity measure. The Jaccard similarity between tweets ti

and tj is denoted as follows (equation 9):

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑡𝑖 , 𝑡𝑗 =
| 𝑊𝑖 ∩ 𝑊𝑗 |

| 𝑊𝑖 ∪ 𝑊𝑗 |
 (9)

Here, Wi and Wj refer to the set of words in tweets ti and tj

respectively. The algorithm considers all possible sets of k

tweets from the ranked top-m tweets, computes a sum of

Jaccard similarity scores for each set of k tweets and selects

the set with a least similarity score. This way the algorithm

selects k diverse tweets and prevents redundant tweets of each

key moment.

5. EXPERIMENTAL RESULTS
In this section, we will present the experimental results of our

incremental TF-IDF based key events detection approach. We

evaluate the proposed approach using the live tweets of IPL

T20 2017 cricket sports. The proposed approach has been

implemented in Python. The evaluation proves that the

proposed approach can detect events at real time with nearly

95% true positives and around 5% false positives. We will

also present the results of our Jaccard similarity based game

summarization approach. In the following subsections, we

will now present the data set, evaluation criteria and

parameter setup and evaluation results.

5.1 Dataset
Twitter’s Streaming API was used to crawl live tweets at real

time using official hashtags of games provided by Indian

Premier League (www.iplt20.com) in 2017 IPL T20 season

held during April 2017 in India. Our dataset contains tweets

of 44 games with a file size of over 6GB. Out of these games,

we selected a game RCBvsRPS held on 16 April 2017 as it

was considered an interesting and most anticipated match.

Table 1 shows the details of tweets (T) and retweets (RT) of

RCBvRPS game. We have collected ground truth of all events

from IPL live commentary site (www.iplt20.com). We have

also cross-verified the time of each event with other live

commentary websites. The ground truth events for the

RCBvRPS game include 24 boundaries, 6 catches, 9 sixes and

42 other events.

Table 1. RCBvRPS game statistics

 Total
Total

min

Mean/

min

Min/

min

Max/

min

Std.

Dev

T 34967 232 150.7 38 354 67.5

R

T
16162 232 69.6 13 176 34.5

5.2 Evaluation criteria
Using RCBvRPS game from 2017 IPL T20 cricket season, we

illustrate the effectiveness of our incremental TF-IDF based

LSH approach for event detection using Receiver Operating

Characteristics (ROC) curves.

The results generated by our event detector are compared

against the ground truth of RCBvRPS game. We define four

evaluation windows with different times namely 1min, 5min,

10min and 15mins for comparison. Accordingly, we compute

the number of hits and misses for each evaluation window. A

detection is considered a hit if the detected event is reported

within a particular evaluation window, otherwise it is a miss.

Like any binary classifier, our detector can make two types of

errors: reporting an event when nothing happens (i.e., false

positive) and reporting nothing when an event happens (i.e.,

false negative). True Positive Rate and False Positive Rate

(equation 10 and 11) are computed as follows:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (11)

For a particular study, different set of TPRs and FPRs are

computed with various parameter settings. The parameters for

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

27

LSH are kept fixed for all experiments. We fix nearest

neighbor similarity threshold as 0.5, number of hash tables as

10 and number of projections as 13 for all experiments. We

consider three post rates namely, 0.2, 0.5 and 0.8. The tweet

chunk size is fixed as 100, 250, 500, 1000 or 2000 tweets. For

an experiment with a particular parameter setup with different

Post Rates results in a set of TPRs and FPRs. The RoC curves

are plotted using these rates and Area Under ROC curves

(AUC) are calculated. The AUC represents the accuracy of

the event detector. A high AUC denotes a high true positive

rate and low false positive rate while a low AUC denotes a

low true positive rate and high false positive rate.

5.3 Results of event recognition
We evaluate the proposed incremental TF-IDF approach using

2017 IPL T20 cricket games and present the accuracy of the

event detection for key events such as boundary, catch, sixer,

boundary+catch+sixer, boundary+catch, boundary+sixer,

catch+sixer. We also show the influence of various chunk

sizes for tweets on event detection. We also compare our

incremental TF-IDF based LSH approach against the naïve

TF-IDF based LSH approach.

5.3.1 Performance on detecting events
Figure 5 shows the ROC curves that illustrate the performance

of our incremental TF-IDF based LSH approach in detecting

different Cricket events such as boundary, catch, sixer, and

major events (boundary+catch+sixer, boundary+catch,

boundary+sixer, catch+sixer) in the RCBvRPS game. The

evaluation is conducted for a tweet chunk size of 100 and for

different evaluation window sizes such as 1, 5, 10 and 15

minutes.

Figure 5: Detection performance on individual events

Results show that our proposed approach delivers good

performance in detecting game events for chunk size of 100

tweets. Within 1 min evaluation window, almost all individual

events are showing similar performance where the combined

events are also detected similarly where major events

(B+C+S) show slightly better and appreciable accuracy. When

size of the evaluation window increases, boundary is detected

well, as twitter users reported this event with a smaller delay.

This user delay is treated normal as the event boundary is

considered frequent and rapidly happening. Due to a high

initial excitement among twitter users, catch and sixer are

detected well within 5 minutes. The performance slightly

decreases for 10 and 15 min windows. This is due to users’

behavior in delayed reporting of interesting events such as

catch and sixer even after the actual happening of the event

for long time. Major events (boundary+catch+sixer

combination) of the game are also detected well with our

approach. Other major events also perform better for a 5 min

window. From these graphs, we can observe that almost all

key events are detected with a decent accuracy (with 85

percent true positives and less than 20 percent false positives)

within an evaluation window of 5 minutes itself. So, we can

conclude that most of the key events are detected and reported

well even within 5 minutes from the actual happening of those

events.

5.3.2 Detection under different chunks
Figure 6 shows the ROC curves that illustrate the performance

of incremental TF-IDF based LSH approach for a chunk size

of 250 tweets. The evaluation is conducted for a tweet chunk

size of 250 and for different evaluation window sizes such as

1, 5, 10 and 15 minutes.

Figure 6: Detection performance with chunk size 250

These results under parameter setup of chunk size 250 show

that all events (boundary, catch and sixer), including major

events are detected well within 5 minutes itself. For boundary,

true positives improves consistently when the size of the

evaluation window increases. Because, game viewers tweet

this event with a smaller delay. Other individual events also

show performance improvement in most cases when the

evaluation windows increases. Major event

(Boundary+Catch+Sixer combination) is detected best with

over 90 percent true positives in our approach.

Figure 7 shows the ROC curves that illustrate the performance

of incremental TF-IDF based LSH approach for a chunk size

of 500 tweets. The evaluation is conducted for a tweet chunk

size of 500 and for different evaluation window sizes such as

1, 5, 10 and 15 minutes.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

28

Figure 7: Detection performance with chunk size 500

Results show that the event catch is detected well within 5

mins itself. The event boundary shows the best performance

when the size of the window increases. Similarly, boundary

and sixer also show consistent performance for increased

window sizes. Major event (B+C+S combination) is detected

well with over 90 percent true positives and less than 5

percent false positives, within 15mins. Other major events are

also detected well with over 80 true positives.

Figure 8 shows the ROC curves that illustrate the performance

of incremental TF-IDF based LSH approach for a chunk size

of 1000 tweets. The evaluation is conducted for a tweet chunk

size of 1000 and for different evaluation window sizes such as

1, 5, 10 and 15 minutes.

Figure 8: Detection performance with chunk size 1000

Results show that the performance of events (B, C and S) are

similar to the performance with a chunk size of 500 tweets.

All major events are detected well when the size of the

evaluation window increases, except C+S combination, where

the performance degrades slightly for the evaluation window

of 15 mins.

Figure 9 shows the ROC curves that illustrate the performance

of incremental TF-IDF based LSH approach for a chunk size

of 2000 tweets. The evaluation is conducted for a tweet chunk

size of 2000 and for different evaluation window sizes such as

1, 5, 10 and 15 minutes.

Figure 9: Detection performance with chunk size 2000

Results show that the event sixer is detected well within 5

minutes and its performance remains constant for other

window sizes, as the tweeting behavior of audience remains

same. The event catch is detected better within 5 minutes and

afterwards its performance degrades slightly. All major events

are detected well with over 85 percent true positives within 10

minutes itself.

5.3.3 Influence of chunk size
Figure 10 shows the ROC curves that illustrate the

performance of our incremental TF-IDF based LSH approach

in detecting key events for different evaluation windows. The

influence of various chunk sizes (100, 250, 500 and 1000) on

event detection is evaluated for key events and a combination

of key events under different evaluation window sizes such as

1, 5, 10 and 15 minutes.

Figure 10: Influence of chunk size on event detection

From the results shown in the ROC curves, our proposed

approach achieves better accuracy when the chunk size is

small which can be noticed easily in the case of major events

(B+C+S). The intuition is that when the chuck size is small,

the document frequency of the dictionary terms will be

updated frequently and hence TF-IDF values will improve

during retraining with smaller corpus. Practically, for larger

chunks, our approach performs similar to LSH event detection

approach with naïve TF-IDF features. Also, the computational

complexity increase when the chunk size is set too low. From

the experiments it can be seen the chunk sizes 250 and 500

perform fairly and can balance the speed-accuracy tradeoff.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

29

5.3.4 Performance of w/o incremental tfidf
Figure 11 shows the ROC curves that illustrate the

performance of our incremental TF-IDF based LSH approach

against the naïve TF-IDF based LSH approach in detecting

key events and a combination of key events under different

evaluation window sizes such as 1, 5, 10 and 15 minutes.

Figure 11: Performance w/o incremental TF-IDF

From the results shown in the ROC curves, it is apparent that

incremental TF-IDF based LSH generally improves the

accuracy of event detection, which we can observe easily

based on the performance of catch event detection. Similarly,

the event sixer is detected well within 5 minutes itself for our

proposed approach. However, performance of sixer degrades

for No Incremental TF-IDF approach consistently for the

evaluation window of 5, 10 and 15 minutes. The boundary

event is detected well within 5 minutes and the accuracy is

constantly better with a permissible small delay in tweeting.

Similar to boundary event, major event (C+S) is also detected

well within 5 minutes. The accuracy is consistently better for

the evaluation window of 5, 10 and 15 minutes. For other

cases, the standard TF-IDF performs slightly better than our

proposed approach, because of the amount of duplicates

which is 90 percent. This is something undesirable for any

event detector. However, processed tweets are generally well

represented in our proposed approach. This helps the event

detector to easily find the nearest neighbors and eventually

reduces the false alarm rate in event detection.

5.4 Results of game summary generation
We evaluate the performance of the proposed Jaccard

similarity based game summarization approach with the

crawled tweets. We evaluate the proposed approach

subjectively. As we do not have any gold standard for

evaluating the summarization approach, ROUGE

summarization approach is not used. The articles in many

sports websites contain only overview of a game and not any

moment wise summary. Hence, we create a manual summary

and compare against the results of our approach as shown in

table 2. It can be noticed that our game summary is

meaningful and non-redundant. It also achieves good

coverage of many key moments of the game.

Table 2. Manual summary vs generated summary

M
an

u
al

S
u
m

m
ar

y

RPS asked to bat first, RPS 50 in 5 overs, Rahane

bowled out by Badree, Tripati caught out by Kohli,

Amazing four by Dhoni, Super six by Dhoni, Dhoni

bowled out by Watson, Smith bowled off

immediately, Manoj Diwari struck two sixes and

three boundaries, Virat Kholi and AB de Villers

dismissed in eleventh over

G
en

er
at

ed

S
u
m

m
ar

y

Bangalore opt to bowl, RPS have raced off to 50 in

5 overs, Badree strikes and Rahane has been

cleaned up, Stunning catch at cover, One more

amazing shot by Dhoni goes for a 4, Huge six from

Dhoni, The big fish is caught - msd bowled out on

watto’s delivery, Dhoni and Smith bowled off back

to back deliveries

6. CONCLUSION
In contrast to existing event detection approaches, a novel

incremental TF-IDF based LSH approach for real time event

detection and Jaccard similarity based game summarization

methods are presented in this paper. The proposed approach

first detects key events from live tweets and generates a game

summary using the crawled tweets immediately after the

game.

Since tweets flow continuously, our system needs to update

the dictionary and clusters dynamically. Our proposed

approach addresses these issues efficiently by adopting

incremental feature representation and online clustering

techniques. Also, representative tweets are ranked using

scoring and diversity for game summary is achieved using

Jaccard similarity.

Results of the extensive experiments demonstrated the

efficacy of the proposed event detection and summarization

approach. Most of the events were detected with a chunk size

of just 100 tweets. It shows that frequent re-computation of

IDF values improves the accuracy of event detection. We

have investigated the influence of various tweet chunk sizes.

Based on the comparison, we can note that incremental TF-

IDF approach, not only improves the accuracy, but also

minimizes the amount of duplicate event reporting greatly. In

future, we would investigate the ways of improving feature

representation and clustering methods.

7. REFERENCES
[1] Boyd, D. M, Ellison, N. B. 2007. Social network sites:

Definition, history, and scholarship. Journal of

Computer-Mediated Communication, 13(1): 210–230

[2] Atefeh, F, Khreich, W. 2015. A survey of techniques for

event detection in twitter. Computational Intelligence,

31(1): 132-164

[3] Zhao, D, Rosson, M.B. 2009. How and why people

Twitter: The role that micro-blogging plays in informal

communication at work. In Proc. ACM International

Conference on Supporting Group Work, GROUP ’09,

243–252

[4] Zhao, S., Zhong, L., Wickramasuriya, J, Vasudevan, V.

2011. Human as real-time sensors of social and physical

events: A case study of twitter and sports games,

arXiv:1106.4300

[5] Sankaranarayanan, J., Samet, H., Teitler, B. E.,

Lieberman, M. D., and Sperling, J. 2009. TwitterStand:

news in tweets. In Proc. ACM SIGSPATIAL

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.13, January 2018

30

[6] Hannon, J., McCarthy, K., Lynch, J and Smyth, B. 2011.

Personalized and automatic social summarization of

events in video. In Proc. ACM IUI

[7] Becker, H., Naaman, M and Gravano, L. 2011. Beyond

Trending Topics: Real-World Event Identification on

Twitter. In Proc. ICWSM, 11: 438–441

[8] Deepayan Chakrabarti, Kunal Punera. 2011. Event

Summarization Using Tweets. ICWSM

[9] Nichols, J, Mahmud, J, Drews, C. 2012. Summarizing

sporting events using twitter. In proc. ACM IUI

[10] Indyk, P, Motwani, R. 1998. Approximate nearest

neighbors: Towards removing the curse of

dimensionality. In Proc. Thirtieth Annual ACM

Symposium on Theory of Computing, 604–613

[11] Charikar, M.S. 2002. Similarity estimation techniques

from rounding algorithms. In Proc. 34th Annual ACM

Symposium on Theory of Computing, Montreal, Quebec,

Canada, 380-388

[12] Shamma, D.A., Kennedy, L., Churchill, E.F. 2011. Peaks

and persistence: modeling the shape of microblog

conversations. In Proc. of CSCW

IJCATM : www.ijcaonline.org

