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ABSTRACT 

Recently, twitter users are leveraged to detect social and 

physical events such as festivals and traffic jam at real time. 

Real time event detection and summarization from Cricket 

sports is the process of detecting events such as boundary at 

real time from live Cricket tweet stream as soon as event 

happens and generating a quick game summary. This is an 

interesting, yet a complex problem. Because of the need for 

rapid detection of sports events and for the generation of a 

concise summary from huge volume of tweets for Cricket 

enthusiasts. In this paper, a novel framework is proposed for 

detecting key events from live Cricket tweets and for 

generating a game summary using the crawled tweets. Feature 

vectors of live tweets are created using incremental TF-IDF 

representation and tweet clusters are discovered using 

Locality Sensitive Hashing (LSH) where the post rate of each 

cluster determines the key event. A key event is recognized 

from that cluster using our domain specific event lexicon. 

Then, important moments from the crawled tweets are 

computed by identifying the spikes in the tweets volume. Top-

k tweets from each moment are selected by ranking tweets on 

top-k words. Representative tweets from top-k tweets are 

identified using Jaccard similarity. The evaluation on 2017 

IPL T20 Cricket live tweets using ROC measure shows that 

the proposed incremental TF-IDF based LSH approach 

detects key events with nearly 95% true positive rate and 

around 5% false positive rate. The proposed game 

summarization algorithm generates summaries which are 

readable and competitive to human tailored summaries. 

General Terms 

Machine Learning, Incremental Clustering, Social Media, 

Twitter, Data Analytics 

Keywords 

Event Detection, Incremental TF-IDF, Locality Sensitive 

Hashing, Live Sports Tweets, Event Summarization 

1. INTRODUCTION 
Modern day communication between people is happening 

with the use of high speed internet and social media sites such 

as Facebook and Twitter. Communication between people, 

groups has changed due to the invasion of online social media 

[1]. Microblogging services such as Twitter act as a famous 

platform for users and groups to share diverse digital content 

as short texts, links, images, or videos [2]. The tweets contain 

variety of information ranging from personal data, images to 

public data such as news, events where the information shared 

by them are based on their individual behaviors and interests 

[3]. In addition, Twitter is now used as a news platform to 

inform the world about live real-life events, viral news, 

crimes. It also helps everyone to be well informed with live 

data on different events. Lot of organizations are now utilizing 

the Twitter data for analyzing customer’s opinions on 

products, social issues. Recent research as considered that the 

humans act as sensors who can be used for detecting live real-

life events. Automation in event detection become 

unavoidable due to availability of huge amount of Twitter 

data and redundancy among Tweets describing the same 

events. 

Recent research have shown that social and environmental 

events such as earthquakes, deaths of celebrities, and elections 

can be detected using Twitter [4]. Detecting events from 

Twitter in real-time has lot of applications in real life. Real-

time event detection has challenges such as collection and 

processing of large volume of data in addition to the regular 

challenges such as limited tweet length, misinformation, 

typographical and grammatical errors. In addition, the 

underlying corpus used as training data should be updated 

frequently based on new stream of live data. It is also hard for 

users to follow large stream of tweets, and to filter out spams, 

irrelevant content and rumors. Thus, there is a need for an 

automatic summarization approach which can generate 

summary describing or highlights of events in a context. 

Recently few research work have been proposed for the 

domain of sports. Detecting sports events need focusing on a 

smaller scale of data. Traditional event detection approaches 

will often fail to deal with the scalability issues. Also, only a 

few research work have been proposed for real time event 

detection in sports domain mostly on NFL soccer games. 

However, there is no real-time event detection and game 

summarization approach for the Cricket sports. 

To address this demand, this paper proposes a novel event 

detection approach based on incremental TF-IDF and LSH 

techniques. In addition, we propose a novel event summary 

generation approach by using Jaccard similarity measure. To 

the best of our knowledge, ours is first of its kind that adopts 

incremental TF-IDF based LSH approach for Cricket sports 

domain to detect events from live tweets at real time. The 

major contributions of this paper are: 

1. Unlike previous approaches which used offline datasets, 

we propose a novel approach to detect key events from 

live Cricket tweets using incremental TF-IDF based LSH 

method. 

2. We also present a novel game summarization approach 

which generates a game summary utilizing the crawled 

tweets. Representative tweets are selected by scoring 

method and diversity of tweets is achieved using Jaccard 

similarity measure. 
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The rest of the paper is organized as follows. Section 2 

discusses the related work on twitter event detection and game 

summarization. Section 3 introduces the event detection 

approach, while game summary generation approach is 

presented in section 4. Experimental results of the proposed 

approach are presented in section 5. Finally, section 6 

concludes the paper with future work. 

2. RELATED WORK 
Existing event detection can be classified based on different 

domains such as social, political, environment and sports. For 

more detailed comparative study the readers are recommended 

to refer recent survey [2]. Whilst earlier work were focused 

more on physical events, recent approaches concentrate on 

social event detection. News topics are discovered [5] by 

clustering a large volume of data clustered tweets to discover 

news topics from the Twitter data. In the domain of sports, 

Hannon et al. [6] produced highlights of the world cup game 

using poste rate of tweets. These approaches works on offline 

dataset and detect events several hours after the actual event 

happened. Incremental clustering algorithm [7] is exploited 

for Twitter event detection where the similarities between 

event clusters and a tweet are calculated for detecting 

newsworthy events.  

Very few work have been proposed for game summarization 

in Twitter.  Chakrabarti et al [8] generated game summaries of 

rich events based on hypothesis that multiple events will share 

same structure. In the sports domain, Nichols et al [9] 

generated journalistic summary from tweets of World Cup 

football game. All of the above approaches focus only on 

Soccer sports and none of them on Cricket sports domain.  

Since tweets flow continuously at real time, our system needs 

to update the dictionary and clusters dynamically. Our 

approach addresses these issues efficiently. It adopts 

incremental feature representation, online clustering and 

Jaccard similarity techniques for real time event detection and 

summarization. 

3. REAL TIME EVENT DETECTION 
Real time event detection is the process of detecting key 

events from live tweet streams at near real time. The proposed 

real time event detection framework is depicted in figure 1. 

After preprocessing of live tweets, feature vectors are created 

using incremental TF-IDF representation and clustered into 

buckets of LSH. Events are detected from active clusters 

based on the predefined post rate threshold. Then, events are 

recognized by applying our domain specific event lexicon. 

The following sections will explain the individual steps in 

detail. Finally, a summary of the game is generated based on 

Jaccard similarity between tweets. 

 
Figure1: System architecture 

3.1 Preprocessing of live tweets 
Our real time event detection system requires live tweets so as 

to detect and report all key events throughout the game time. 

Fortunately, game viewers and twitter users keep posting 

interesting tweets of game events such as Boundary which are 

leveraged by the system. 

Twitter supports three types of API for gathering tweets for 

any application. As our approach needs live tweets 

continuously during the game time, we use Streaming API to 

crawl live tweets using game specific keywords. We use 

official keywords as hashtags for collecting live tweets. We 

run our system during IPL T20 2017 game between the teams 

Royal Challengers Bangalore (RCB) and Rising Pune 

Supergiant (RPS). Our system is continuously collecting 

tweets without any break during the entire game time, detects 

events from tweets at real-time and also archives all gathered 

tweets in JSON format for later game summary generation. 

The raw tweets are initially preprocessed for URLs, mentions, 

replies and stop words using Python NLTK toolkit. Then, 

feature vector is created for every preprocessed tweet, 

considering only unigram features of a tweet. Preprocessing 

has been an important step in the event detection process, 

otherwise the accuracy of detection will be affected at large. 

3.2 Incremental TF-IDF for tweets features  
Term Frequency - Inverse Document Frequency (TF-IDF) has 

been the popular term weighting schemes in text mining. TF-

IDF is the product of term frequency (TF) and inverse 

document frequency (IDF). Here, TF describes the importance 

of a term in a document and IDF represents the importance of 

the term in the entire document collection. The TF-IDF 

weighing scheme assigns weight to term w in document d 

using equation 1 and 2:  

𝑡𝑓 − 𝑖𝑑𝑓 𝑤, 𝑑 = 𝑡𝑓 𝑤, 𝑑 ∗ 𝑖𝑑𝑓 𝑤                                                      (1) 

𝑖𝑑𝑓 𝑤 = 𝑙𝑜𝑔
𝑁

𝑑𝑓 𝑤 
                                                              (2) 

The term frequency 𝑡𝑓 𝑤, 𝑑  represents the number of times 

the term w occurs in a document d. The inverse document 

frequency 𝑖𝑑𝑓(𝑤) helps to scale down the term frequency of 

w, if the term w occurs in almost all documents in a data 

corpus. Here, N is the number of documents in a data corpus 

and 𝑑𝑓(𝑤) denotes the number of documents in which the 

term w occurs at least once. Then, the features of a tweet are 

mapped to the vocabulary in order to generate the tweet 

feature vector where TF-IDF weight is assigned to a 

vocabulary term that appears in the tweet. 

As ours is a real time system where tweets are flowing in 

continuously, the number of tweets in our corpus will be 

dynamic. Thereby, the document frequency will be different 

whenever a new tweet arrives. This impacts idf of a term and 

subsequently document clustering. Therefore, the solution is 

to incrementally re-compute idf value of each term a new 

tweet is arrived.  

The new idf values are recomputed considering the past 

tweets and the tweets of the current chunk (say, 100 tweets) 

incrementally. Hence, the equations for incremental TF-IDF 

are rewritten as shown below (equation 3 and 4): 

𝑡𝑓 ∗ 𝑖𝑑𝑓𝑖   𝑤. 𝑑 = 𝑡𝑓 𝑤, 𝑡 ∗ 𝑖𝑑𝑓(𝑤)                     (3)  

𝑖𝑑𝑓 𝑤 = 𝑙𝑜𝑔
𝑁𝑖

𝑑𝑓 𝑖(𝑤)
                                                                          (4)  

Here, tf-idfi(w,t) is the tf-idf value for term w in tweet t from 

tweets of past chunks and current chunk. The idf(w) is an 

inverse document frequency of the term w. The dfi(w) is the 

number of tweets Ni (of previous chunks and the current 

chunk) in which the term w occurs at least once. Finally, tweet 

features are mapped to the dictionary in order to generate its 

tweet feature vector where weight is assigned to dictionary 

terms that appear in the tweet. 
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3.3 Event detection using Incremental 

clustering 
We first introduce the idea of approximate nearest neighbors 

and locality sensitive hashing technique that clusters feature 

vectors created from the preprocessed live tweets. Also, we 

explain the construction of signatures for tweet feature vectors 

for indexing buckets of LSH. Finally, we explain how key 

events are detected from tweet clusters based on the post rate 

of a cluster. 

Given a set of N points P = {P1,P2,P3,…,PN} represented as a 

matrix M and a query point Q, a nearest neighbor search 

computes the distance between all points in P to Q and selects 

the one point Pi ∈ P which is the closest to Q ∈ M [10]. The 

nearest neighbor approach is computationally expensive for 

high dimensional data. To alleviate this problem, a variation 

known as Approximate Nearest Neighbor (ANN) search was 

proposed. The ANN search finds an approximate nearest 

neighbor point P' in P that is the closest to Q within a radius r, 

as shown in equation 5. 

∀𝑃′ ∈ 𝑃, 𝑑 𝑃′ , 𝑄 <  1 + 𝜀 𝑑 𝑃′ , 𝑄                                           (5) 

Here, 𝑑 𝑃′ , 𝑄  is the distance between 𝑃′  and 𝑄 and  1 + 𝜀  

is a constant factor [10]. Locality Sensitive Hashing (LSH) 

[10] is a popular approach to address the problem of ANN 

search.  

The key assumption of LSH is that objects close to each other 

will most likely fall into the same bucket. Intuitively, a hash 

function is locality sensitive if two points that are close under 

the similarity distance measure are more likely to collide into 

the same bucket [10]. Recently, LSH has become a successful 

solution for clustering large social media streams, such as 

tweets. The LSH approach applies hash functions such that 

the probability of collision, i.e., falling into the same bucket, 

is much higher for similar tweets than that of dissimilar 

tweets. 

Our proposed methodology for discovering clusters of tweets 

uses hash table based LSH for computing nearest neighbors. 

In our approach, each tweet feature vector is hashed using k 

hash functions and stored in L buckets. We use hash table to 

represent a bucket. The hash value of tweet feature vectors 

acts as an index of a hash table. The nearest neighbor of a 

feature vector of an incoming tweet is found by retrieving 

similar tweet feature vector from each bucket and selecting 

the one with a highest cosine similarity distance value. The 

cosine distance is a dot product of tweet feature vectors 

normalized by their norms. The cosine distance will be 1 if 

two feature vectors are parallel and 0 if orthogonal to each 

other.  

The k-bit signature for each tweet feature vector is generated 

using the hash function proposed by Charikar [11] (as shown 

in equation 6). It computes the dot product between the tweet 

feature vector u and m-dimensional random unit vector r and 

retains the sign of the resulting product. Each dimension in r 

is drawn from Gaussian distribution with mean 0 and variance 

1. 

𝑕 𝑢 =  
1, 𝑖𝑓 𝑟. 𝑢 ≥ 0
0, 𝑖𝑓 𝑟. 𝑢 < 0

                        (6) 

The k-bit signature reduces the dimension of the original 

tweet feature vector. As it is a low dimensional vector, LSH 

approach clusters large number of tweet vectors very fast. 

Charikar applied cosine similarity metric to compute the 

similarity between two document vectors and is defined in 

equation 7. 

cos 𝜃 𝑢, 𝑣  = cos  1 − Pr 𝑕 𝑢 = 𝑕 𝑣   𝜋                             
(7) 

Here, 𝜃 𝑢, 𝑣  is the cosine angle between the vectors 𝑢 and 𝑣 

and is proportional to the hamming distance of their signature 

vectors while preserving the cosine similarity in high 

dimensional space. Pr 𝑕 𝑢 = 𝑕 𝑣   is the probability that a 

random hyper plane separates two vectors, which is 

proportional to the cosine angle between them. The hamming 

distance is the number of bits that differ between two binary 

vectors. 

The proposed algorithm for incremental TF-IDF based LSH 

for event detection and recognition is depicted in figure 2. 

Here, incoming tweets are preprocessed, feature vectors are 

created for the preprocessed tweets based on incremental TF-

IDF representation and clustered using LSH. Simultaneously, 

IDF values are updated once the number of incoming tweets 

reaches the maximum chunk size. Post rate of a cluster is 

computed which is the number of tweets at a given time. If it 

is above a predefined threshold, an event is declared detected. 

A cluster is deleted once an event is detected from it. An 

event that has occurred most number of times in the 

representative tweets of a cluster, is the recognized event.  

Algorithm: Real time event detection and recognition 

Input: Live tweets, similarity threshold ST, buckets L, signature 

length K, post rate T, chunk size CHUNK 

Output: Event name and its tweets 

1:   create event lexicon for pre-determined event types 

2:   build TF-IDF dictionary Ɒ using lexicon 

3:   for each bucket i ϵ L do 

4:         create hash table ht[i] 

5:         create random vector rv using Gaussian distribution 

6:   end for 

7:   repeat 

8:          for each incoming tweet t do 

9:                re-build TF-IDF dictionary Ɒ using CHUNK tweets 

10:              construct tweet feature vector tv for t using Ɒ 

11:              create k-bit signature ts for tv 

12:              for each bucket i ϵ L do 

13:                    get collision for ts 

14:                    add tv with key ts in ht[i] 

15:              end for 

16:              get nearest neighbor NN for tv from collisions 

17:              if similarity(tv, NN) < ST then 

18:                    create new cluster c 

19:                    addTweetVectorToCluster(tv, c) 

20:              else 

21:                    if tv not in NN’s cluster cNN then 

22:                           addTweetVectorToCluster(tv, cNN) 

23:                    end if 

24:              end if 

25:         end for 

26:  until connection closed 

 

27:  for each cluster c ϵ C do 

28:        if postRate(c) > T then 

29:              get text of all tweets in cluster c 

30:              select event with highest document freq. using lexicon 

31:  display event name and its tweets using lexicon 

32:              delete cluster c 

33:        end if 

34:  end for 

 

Algorithm: Game summary generation 
Input: Offline tweets, k, m 

Output: Game summary 

1: compute peaks using tweet frequency per second 

2: Let moments be filtered peaks using 3*median + std. deviation 

3: for each moment ϵ moments do 

4:       select tweets around moment 

5:       find top-k words from tweets 

6:       get top-k tweets ranked on top-k words from tweets 
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7:       rank top-k tweets using Jaccard similarity 

8:       display m tweets from ranked tweets 

9: end for 

Figure 2: Proposed algorithm 

We obtain an optimal number of clusters by characterizing the 

size and life span of each cluster. We do not consider clusters 

that contain a single tweet. Similarly, we delete all clusters 

whose life span is more than five minutes, because we expect 

an event would occur within five minutes itself in Cricket 

sports. An important requirement for a real time event 

detection system is that it should detect and report events at 

near real time to the interested people. With optimal clusters, 

our online incremental clustering approach detects and 

recognizes key events at near real time.  

3.4 Lexicon based event recognition 
Our real time event detector continuously monitors clusters 

and computes the post rate of each cluster. If the post rate of a 

cluster is more than the predefined threshold, then the system 

assumes that some key event, defined in our event lexicon, 

has happened in that cluster. Therefore, the event recognizer 

computes the tweet frequency of each key event and selects an 

event whose tweet frequency is the maximum. Tweet 

frequency of an event is the number of tweets that contain this 

event.  

Care has been taken to design an event lexicon for Cricket 

sports, as event recognizer recognizes key events that are 

defined in the event lexicon. Since tweeting style of every 

game viewer is unique, describing an event with proper event 

name is very crucial. That is, event names should be more 

descriptive, as every game viewer tweets about the same event 

in different ways, using different words. Our event lexicon 

describes 37 Cricket sports events, such as bowled out, run-

out, lbw and leg bye. The lexicon is populated with different 

event terminologies collected from ESPNCricInfo 

(www.espncricinfo.com/ci/ content/story/ 239756.html) 

website. 

The domain specific event lexicon is the preferred 

representation for event recognition at real time. Unlike 

statistical event recognition models which require training, 

our lexicon based recognition is free from training and easy 

for implementation. Further, there is no training data for some 

applications such as celebrity deaths and terrorist attacks, 

which results lexicon based approach a natural choice. 

Reporting of duplicate events has been an important issue for 

the event detector. The LSH approach solves this issue by 

clustering similar tweets into the same bucket. It also prevents 

the creation of new clusters until a new tweet is sufficiently 

dissimilar from existing clusters. As we adopted incremental 

TF-IDF features for live tweets representation, the continuous 

update of the vector space model greatly improves the 

similarity computation between a new tweet and tweets of 

existing clusters and hence the most similar nearest neighbor 

is found for the incoming new tweet. Since, our incremental 

TF-IDF achieves better similarity than the standard TF-IDF 

model, all similar tweets will go into the same cluster and thus 

the number of event alerts is minimized.  

4. GAME SUMMARY GENERATION 
Throughout game time, many interesting events (aka, 

moments) happen. At the end of the game, many sports 

enthusiasts would be interested to know a gist of the game. 

Game summarization is nothing but a generation of textual 

summary utilizing important key words from important tweets 

of the entire game. The proposed game summarization 

workflow is depicted in figure 3.  

 

Figure 3: Game summarization workflow 

First, key events are detected based on the spikes in the tweets 

volume. Then, game moments are selected by considering the 

tweets of the spikes that are above the threshold. 

Representative tweets of the game moments are preprocessed 

for noise such as spam, URLs and non-English tweets. They 

are ranked on top-k words using Jaccard similarity measure 

and tweet summary is presented to users. 

4.1 Important moments detection 
In addition to detecting key events at real time, we also 

simultaneously archive crawled tweets as JSON objects for 

offline processing. We leverage the offline tweets for 

generating a game summary once the game is finished. 

Cricket sports events consists of a sequence of moments (for 

simplicity, we call moments as just events) where each 

moment represents the actions by players, referee or audience 

of the game. In the Twitter streams, sudden increases or 

spikes in the volume of tweets indicate the occurrence of 

some key events in the game that the game viewers found 

interesting. 

Shamma et al. [12] suggested that key moments can be 

detected from Twitter when the volume of tweets increases 

sharply. Over the game time, the sharp increase of tweets 

volume happens several times as shown in the tweets volume 

graph of our game RCBvRPS (figure 4). 

 
Figure 4: RCBvRPS tweet volume graph 

Key moments can be detected from the volume of tweets in 

two ways – either by considering the absolute value of the 

volume or the spike in the volume. We choose the later 

approach because sometimes the tweet volume stays high for 

several minutes and have several local peaks. Also, game 

viewers sometime miss tweeting some key events resulting a 

less traffic. 

Our algorithm to detect the key moments of a game is based 

on the approach described in [9]. We consider a granularity of 

minutes for characterizing the tweet volume. Our algorithm 

computes the threshold for the entire game considering all 

slopes for the entire tweet volume. We compute the threshold 

for the slope with the formula 3 * median + standard 

deviation. We have tried several variations and empirically 

arrived at this equation, which provides best results for our 

domain. After identifying all slopes from offline tweets that 

exceed our threshold, the list of spikes which correspond to 
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the key moments of a game is generated. We consider spikes 

as points in the tweet volume graph where the slope changes 

from positive to negative and the absolute number of tweets in 

that minute exceeds our threshold. 

4.2 Tweets selection 
After generating all spikes corresponding to key moments of 

the game, the next task is to identify representative tweets for 

each key moment that will be used to generate the game 

summary. It is important that the selection of representative 

tweets greatly influence the quality of the game summary. 

Obviously, a very large spread of tweets in each key moment 

will result into more false positives (ie. selecting a tweet that 

does not describe a key moment). On the other hand, a narrow 

spread of tweets in a key moment will lead to more false 

rejections (ie. ignoring a tweet that describes a key moment). 

Our algorithm selects all tweets that are near to the peak of 

each key moment. An interval of k-minutes defines the range 

for including the tweets. We observed best results when the 

value of k =2. Also, our algorithm assumes that the interval 

need not be symmetric about the peak of a key moment. 

4.3 Noise removal from tweets 
Noise removal has been a very crucial preprocessing step for 

generating game summaries. Once all representative tweets of 

important key moments are selected, noise removal 

techniques should be applied to filter out spam and other 

irrelevant tweets. We remove tweets containing up to 3 words, 

as these tweets may not contribute to describing the game 

summary. Spam tweets are removed using a dictionary of 

common terms. Stop words are removed using NLTK Python 

library. We also consider URLs and other personal pronouns 

as noises and our algorithm removes all of them. 

4.4 Game summary presentation 
Upon removing all noises from the representative tweets, the 

final step is to generate a summary for the game. Our 

approach follows a simple scoring method to rank the tweets. 

Initially, our algorithm computes top-k words (T) based on 

their frequency from the tweets of a moment. If the list of top-

k words contain any word whose frequency is up to 2, then the 

algorithm deletes those words from the list. It also deletes 

spam words and other common words of Cricket sports that 

do not have discriminating power. The score for each 

representative tweet of a key moment is calculated (as shown 

in equation 8) based on the occurrences of top-k words in each 

tweet t. 

𝑆𝑐𝑜𝑟𝑒 𝑡 =  𝑓𝑟𝑒𝑞(𝑡𝑡𝑖
𝑛
𝑖=1 )                       (8)  

Where tti ∈ T. Note that the score for a term of a tweet (tt) that 

does not appear in T will be 0. Based on the tweet score, our 

algorithm ranks all tweets and selects the top-m tweets as part 

of the game summary.  

However, this simple scoring method suffers from some 

weaknesses. For example, if scores of several tweets are same, 

then all these tweets will be considered as top ranked tweets 

for this specific moment. Thereby, all these tweets will be part 

of the result. Therefore, the algorithm should choose diverse 

tweets for a key moment. The algorithm selects a set of k 

diverse tweets from the ranked top-m tweets using Jaccard 

similarity measure. The Jaccard similarity between tweets ti 

and tj is denoted as follows (equation 9): 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑡𝑖 , 𝑡𝑗  =
| 𝑊𝑖 ∩ 𝑊𝑗  |

| 𝑊𝑖 ∪ 𝑊𝑗  |
                       (9) 

Here, Wi and Wj refer to the set of words in tweets ti and tj 

respectively. The algorithm considers all possible sets of k 

tweets from the ranked top-m tweets, computes a sum of 

Jaccard similarity scores for each set of k tweets and selects 

the set with a least similarity score. This way the algorithm 

selects k diverse tweets and prevents redundant tweets of each 

key moment.  

5. EXPERIMENTAL RESULTS 
In this section, we will present the experimental results of our 

incremental TF-IDF based key events detection approach. We 

evaluate the proposed approach using the live tweets of IPL 

T20 2017 cricket sports. The proposed approach has been 

implemented in Python. The evaluation proves that the 

proposed approach can detect events at real time with nearly 

95% true positives and around 5% false positives. We will 

also present the results of our Jaccard similarity based game 

summarization approach. In the following subsections, we 

will now present the data set, evaluation criteria and 

parameter setup and evaluation results. 

5.1 Dataset 
Twitter’s Streaming API was used to crawl live tweets at real 

time using official hashtags of games provided by Indian 

Premier League (www.iplt20.com) in 2017 IPL T20 season 

held during April 2017 in India. Our dataset contains tweets 

of 44 games with a file size of over 6GB. Out of these games, 

we selected a game RCBvsRPS held on 16 April 2017 as it 

was considered an interesting and most anticipated match. 

Table 1 shows the details of tweets (T) and retweets (RT) of 

RCBvRPS game. We have collected ground truth of all events 

from IPL live commentary site (www.iplt20.com). We have 

also cross-verified the time of each event with other live 

commentary websites. The ground truth events for the 

RCBvRPS game include 24 boundaries, 6 catches, 9 sixes and 

42 other events. 

Table 1. RCBvRPS game statistics 

 Total 
Total 

min 

Mean/ 

min 

Min/  

min 

Max/  

min 

Std. 

Dev 

T 34967 232 150.7 38 354 67.5 

R

T 
16162 232 69.6 13 176 34.5 

 

5.2 Evaluation criteria 
Using RCBvRPS game from 2017 IPL T20 cricket season, we 

illustrate the effectiveness of our incremental TF-IDF based 

LSH approach for event detection using Receiver Operating 

Characteristics (ROC) curves.  

The results generated by our event detector are compared 

against the ground truth of RCBvRPS game. We define four 

evaluation windows with different times namely 1min, 5min, 

10min and 15mins for comparison. Accordingly, we compute 

the number of hits and misses for each evaluation window. A 

detection is considered a hit if the detected event is reported 

within a particular evaluation window, otherwise it is a miss.  

Like any binary classifier, our detector can make two types of 

errors: reporting an event when nothing happens (i.e., false 

positive) and reporting nothing when an event happens (i.e., 

false negative). True Positive Rate and False Positive Rate 

(equation 10 and 11) are computed as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (10)                                                                                                                                                                   

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                  (11) 

For a particular study, different set of TPRs and FPRs are 

computed with various parameter settings. The parameters for 
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LSH are kept fixed for all experiments. We fix nearest 

neighbor similarity threshold as 0.5, number of hash tables as 

10 and number of projections as 13 for all experiments. We 

consider three post rates namely, 0.2, 0.5 and 0.8. The tweet 

chunk size is fixed as 100, 250, 500, 1000 or 2000 tweets. For 

an experiment with a particular parameter setup with different 

Post Rates results in a set of TPRs and FPRs. The RoC curves 

are plotted using these rates and Area Under ROC curves 

(AUC) are calculated. The AUC represents the accuracy of 

the event detector. A high AUC denotes a high true positive 

rate and low false positive rate while a low AUC denotes a 

low true positive rate and high false positive rate. 

5.3 Results of event recognition 
We evaluate the proposed incremental TF-IDF approach using 

2017 IPL T20 cricket games and present the accuracy of the 

event detection for key events such as boundary, catch, sixer, 

boundary+catch+sixer, boundary+catch, boundary+sixer, 

catch+sixer. We also show the influence of various chunk 

sizes for tweets on event detection. We also compare our 

incremental TF-IDF based LSH approach against the naïve 

TF-IDF based LSH approach. 

5.3.1 Performance on detecting events 
Figure 5 shows the ROC curves that illustrate the performance 

of our incremental TF-IDF based LSH approach in detecting 

different Cricket events such as boundary, catch, sixer, and 

major events (boundary+catch+sixer, boundary+catch, 

boundary+sixer, catch+sixer) in the RCBvRPS game. The 

evaluation is conducted for a tweet chunk size of 100 and for 

different evaluation window sizes such as 1, 5, 10 and 15 

minutes. 

 
 

  

Figure 5: Detection performance on individual events 

Results show that our proposed approach delivers good 

performance in detecting game events for chunk size of 100 

tweets. Within 1 min evaluation window, almost all individual 

events are showing similar performance where the combined 

events are also detected similarly where major events 

(B+C+S) show slightly better and appreciable accuracy. When 

size of the evaluation window increases, boundary is detected 

well, as twitter users reported this event with a smaller delay. 

This user delay is treated normal as the event boundary is 

considered frequent and rapidly happening. Due to a high 

initial excitement among twitter users, catch and sixer are 

detected well within 5 minutes. The performance slightly 

decreases for 10 and 15 min windows. This is due to users’ 

behavior in delayed reporting of interesting events such as 

catch and sixer even after the actual happening of the event 

for long time. Major events (boundary+catch+sixer 

combination) of the game are also detected well with our 

approach. Other major events also perform better for a 5 min 

window. From these graphs, we can observe that almost all 

key events are detected with a decent accuracy (with 85 

percent true positives and less than 20 percent false positives) 

within an evaluation window of 5 minutes itself. So, we can 

conclude that most of the key events are detected and reported 

well even within 5 minutes from the actual happening of those 

events. 

5.3.2 Detection under different chunks 
Figure 6 shows the ROC curves that illustrate the performance 

of incremental TF-IDF based LSH approach for a chunk size 

of 250 tweets. The evaluation is conducted for a tweet chunk 

size of 250 and for different evaluation window sizes such as 

1, 5, 10 and 15 minutes. 

  

  

Figure 6: Detection performance with chunk size 250 

These results under parameter setup of chunk size 250 show 

that all events (boundary, catch and sixer), including major 

events are detected well within 5 minutes itself. For boundary, 

true positives improves consistently when the size of the 

evaluation window increases. Because, game viewers tweet 

this event with a smaller delay. Other individual events also 

show performance improvement in most cases when the 

evaluation windows increases. Major event 

(Boundary+Catch+Sixer combination) is detected best with 

over 90 percent true positives in our approach.  

Figure 7 shows the ROC curves that illustrate the performance 

of incremental TF-IDF based LSH approach for a chunk size 

of 500 tweets. The evaluation is conducted for a tweet chunk 

size of 500 and for different evaluation window sizes such as 

1, 5, 10 and 15 minutes. 
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Figure 7: Detection performance with chunk size 500 

Results show that the event catch is detected well within 5 

mins itself. The event boundary shows the best performance 

when the size of the window increases. Similarly, boundary 

and sixer also show consistent performance for increased 

window sizes. Major event (B+C+S combination) is detected 

well with over 90 percent true positives and less than 5 

percent false positives, within 15mins. Other major events are 

also detected well with over 80 true positives. 

Figure 8 shows the ROC curves that illustrate the performance 

of incremental TF-IDF based LSH approach for a chunk size 

of 1000 tweets. The evaluation is conducted for a tweet chunk 

size of 1000 and for different evaluation window sizes such as 

1, 5, 10 and 15 minutes. 

  

  

Figure 8: Detection performance with chunk size 1000  

Results show that the performance of events (B, C and S) are 

similar to the performance with a chunk size of 500 tweets. 

All major events are detected well when the size of the 

evaluation window increases, except C+S combination, where 

the performance degrades slightly for the evaluation window 

of 15 mins. 

Figure 9 shows the ROC curves that illustrate the performance 

of incremental TF-IDF based LSH approach for a chunk size 

of 2000 tweets. The evaluation is conducted for a tweet chunk 

size of 2000 and for different evaluation window sizes such as 

1, 5, 10 and 15 minutes. 

  

  

Figure 9: Detection performance with chunk size 2000 

Results show that the event sixer is detected well within 5 

minutes and its performance remains constant for other 

window sizes, as the tweeting behavior of audience remains 

same. The event catch is detected better within 5 minutes and 

afterwards its performance degrades slightly. All major events 

are detected well with over 85 percent true positives within 10 

minutes itself. 

5.3.3 Influence of chunk size 
Figure 10 shows the ROC curves that illustrate the 

performance of our incremental TF-IDF based LSH approach 

in detecting key events for different evaluation windows. The 

influence of various chunk sizes (100, 250, 500 and 1000) on 

event detection is evaluated for key events and a combination 

of key events under different evaluation window sizes such as 

1, 5, 10 and 15 minutes. 

  

  

Figure 10: Influence of chunk size on event detection 

From the results shown in the ROC curves, our proposed 

approach achieves better accuracy when the chunk size is 

small which can be noticed easily in the case of major events 

(B+C+S). The intuition is that when the chuck size is small, 

the document frequency of the dictionary terms will be 

updated frequently and hence TF-IDF values will improve 

during retraining with smaller corpus. Practically, for larger 

chunks, our approach performs similar to LSH event detection 

approach with naïve TF-IDF features. Also, the computational 

complexity increase when the chunk size is set too low. From 

the experiments it can be seen the chunk sizes 250 and 500 

perform fairly and can balance the speed-accuracy tradeoff.  
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5.3.4 Performance of w/o incremental tfidf 
Figure 11 shows the ROC curves that illustrate the 

performance of our incremental TF-IDF based LSH approach 

against the naïve TF-IDF based LSH approach in detecting 

key events and a combination of key events under different 

evaluation window sizes such as 1, 5, 10 and 15 minutes. 

  

  

Figure 11: Performance w/o incremental TF-IDF 

From the results shown in the ROC curves, it is apparent that 

incremental TF-IDF based LSH generally improves the 

accuracy of event detection, which we can observe easily 

based on the performance of catch event detection. Similarly, 

the event sixer is detected well within 5 minutes itself for our 

proposed approach. However, performance of sixer degrades 

for No Incremental TF-IDF approach consistently for the 

evaluation window of 5, 10 and 15 minutes. The boundary 

event is detected well within 5 minutes and the accuracy is 

constantly better with a permissible small delay in tweeting. 

Similar to boundary event, major event (C+S) is also detected 

well within 5 minutes. The accuracy is consistently better for 

the evaluation window of 5, 10 and 15 minutes. For other 

cases, the standard TF-IDF performs slightly better than our 

proposed approach, because of the amount of duplicates 

which is 90 percent. This is something undesirable for any 

event detector. However, processed tweets are generally well 

represented in our proposed approach. This helps the event 

detector to easily find the nearest neighbors and eventually 

reduces the false alarm rate in event detection. 

5.4 Results of game summary generation 
We evaluate the performance of the proposed Jaccard 

similarity based game summarization approach with the 

crawled tweets. We evaluate the proposed approach 

subjectively. As we do not have any gold standard for 

evaluating the summarization approach, ROUGE 

summarization approach is not used. The articles in many 

sports websites contain only overview of a game and not any 

moment wise summary. Hence, we create a manual summary 

and compare against the results of our approach as shown in 

table 2. It can be noticed that our game summary is 

meaningful and non-redundant. It also achieves good 

coverage of many key moments of the game. 

 

 

 

 

 

Table 2. Manual summary vs generated summary 

M
an

u
al

 

S
u
m

m
ar

y
 

RPS asked to bat first, RPS 50 in 5 overs, Rahane 

bowled out by Badree, Tripati caught out by Kohli, 

Amazing four by Dhoni, Super six by Dhoni, Dhoni 

bowled out by Watson, Smith bowled off 

immediately, Manoj Diwari struck two sixes and 

three boundaries, Virat Kholi and AB de Villers 

dismissed in eleventh over 

G
en

er
at

ed
 

S
u
m

m
ar

y
 

Bangalore opt to bowl, RPS have raced off to 50 in 

5 overs, Badree strikes and Rahane has been 

cleaned up, Stunning catch at cover, One more 

amazing shot by Dhoni goes for a 4, Huge six from 

Dhoni, The big fish is caught - msd bowled out on 

watto’s delivery, Dhoni and Smith bowled off back 

to back deliveries 

6. CONCLUSION 
In contrast to existing event detection approaches, a novel 

incremental TF-IDF based LSH approach for real time event 

detection and Jaccard similarity based game summarization 

methods are presented in this paper. The proposed approach 

first detects key events from live tweets and generates a game 

summary using the crawled tweets immediately after the 

game.  

Since tweets flow continuously, our system needs to update 

the dictionary and clusters dynamically. Our proposed 

approach addresses these issues efficiently by adopting 

incremental feature representation and online clustering 

techniques. Also, representative tweets are ranked using 

scoring and diversity for game summary is achieved using 

Jaccard similarity. 

Results of the extensive experiments demonstrated the 

efficacy of the proposed event detection and summarization 

approach. Most of the events were detected with a chunk size 

of just 100 tweets. It shows that frequent re-computation of 

IDF values improves the accuracy of event detection. We 

have investigated the influence of various tweet chunk sizes. 

Based on the comparison, we can note that incremental TF-

IDF approach, not only improves the accuracy, but also 

minimizes the amount of duplicate event reporting greatly. In 

future, we would investigate the ways of improving feature 

representation and clustering methods. 
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