
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.14, January 2018

15

Detecting Network Intrusion through a Deep Learning

Approach

Abhilasha Jayaswal
Student

Indore, MP

Romit Nahar
Student

Indore, MP

ABSTRACT

Intrusion Detection: collection of techniques that are used to

identify attacks on the computers and network infrastructures.

Anomaly detection, which is a key element of intrusion

detection. In Anomaly Detection, perturbations of normal

behavior suggest the presence of intentionally or

unintentionally induced attacks, faults, defects, etc. This paper

focuses on an approach based on deep learning to develop an

effective and flexible network intrusion detection system

implemented using self-taught learning on NSL-KDD data

set.

General Terms

Intrusion Detection, Network, anomalous traffic.

Keywords
Deep learning, Network Security, NIDS, sparse auto encoder.

1. INTRODUCTION
The intrusion detection problem is becoming an exigent task

due to the escalation of heterogeneous computer networks

since the increase in connectivity of computer systems gives

more access to no-members and makes it easier for intruders

to avoid identification. Intrusion Detection Systems (IDSs) are

based on the assumption that an unauthorized user's conduct

will always be different from that of an authorized user and

most of the unauthorized/illegal actions are also identifiable

[1].

1) Signature (Misuse) based NIDS (SNIDS), and 2) Anomaly

Detection based NIDS (ADNIDS) are the two classes in

which NIDSs are categorized based on the methods of

Intrusion Detection. The Signature-based Intrusion Detection

Systems follow a lot similar procedure as a virus scanner.

They search for a known member's id or signature for each

particular intrusion incident. And, while signature-based IDS

is very efficient at sniffing out known attack, it does, like anti-

virus software, depend on receiving regular signature updates,

to keep in touch with variations in hacker technique.

Expressing in different way, SIDSs is limited to the system’s

database of stored signatures.

An anomaly-based IDS works by first building a statistical

model of usage patterns describing the normal behavior of the

monitored resource. After this initial training phase, the

system uses a similarity metric to compare new input requests

with the model, and generates alerts for those deviating

significantly, considering them anomalous. Basically, in this,

intrusions are detected as they produce a dissimilar, i.e.,

abnormal, behavior then what was noticed while designing the

model. Its ability to detect previously unknown (or variants of

known) attacks when they appear is the biggest advantage of

an Anomaly-based System [2].

Two challenges that arise while developing an effective and

adaptable NIDS for upcoming attacks, in future, that are not

known: Firstly, selection of all features from the Network

Traffic dataset for anomaly detection is difficult. The features

selected for one class of attack may not work well for other

categories of attacks due to continuously changing and

evolving attack scenarios. Second, unavailability of labeled

traffic dataset from real networks for developing an NIDS [3].

Numerous machine learning techniques such as Support

Vector Machines (SVM), Random Forests (RF), Artificial

Neural Networks (ANN), Naïve- Bayesian (NB), etc. NIDS

are classifiers that differentiate unauthorized or anomalous

traffic from authorized or normal traffic. Many NIDSs

perform a feature selection task to extract a subset of relevant

features from the traffic dataset to enhance classification

results. Feature selection helps in the elimination of the

possibility of incorrect training through the removal of

redundant features and noises.

A part of a broader family of machine learning methods based

on learning data representations, as opposed to task-specific

algorithms, is Deep learning (also known as deep structured

learning or hierarchical learning). Learning can be supervised,

semi-supervised or unsupervised. Recently, deep learning

based methods have been successfully implemented in audio,

image, and speech processing apps. It is envisioned that the

deep learning based approaches can help to overcome the

challenges of developing an effective NIDS. We can collect

unlabeled network traffic data from different sources and a

good feature representation of these datasets using deep

learning techniques can be obtained. These features can, then,

be applied for supervised classification to a small, but labeled

traffic dataset consisting of normal as well as anomalous

traffic records. The traffic data for labeled dataset can be

collected in a confined, isolated and private network

environment.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.14, January 2018

16

Figure 1: Two-staged process of self-taught learning: a) Unsupervised Feature Learning (UFL) on unlabeled data. b)

Classification on labeled data.

2. OVERVIEW OF SELF TAUGHT

LEARNING AND NSL-KDD DATASET

2.1 Self Taught Learning

Self -taught learning is a machine learning framework for

using unlabeled data in supervised classification tasks. Self-

taught Learning (STL) is a deep learning approach that

consists of two stages for the classification. First, a good

feature representation is learnt from a large collection of

unlabeled data, 𝑥𝑢 , termed as Unsupervised Feature Learning

(UFL). In the second stage, this learnt representation is

applied to labeled data, 𝑥𝑙 , and used for the classification task.

There must be relevance between the unlabeled and labeled

data, although they may come from distinct distributions.

Figure 1 shows the architecture diagram of STL. Sparse Auto-

Encoder, K-Means Clustering, Restricted Boltzmann Machine

(RBM), and Gaussian Mixtures [4], are some approaches used

for UFL. The Sparse Auto-Encoder based feature learning is

used for this work due to its easy implementation and good

performance.

The input and output layers contain 𝑁 nodes and the hidden

layer contains 𝐾 nodes. The target values in the output layer

set to the input values, i.e., 𝑥 𝑖 = 𝑥𝑖 as shown in Figure 1(a).

The sparse auto-encoder network finds the optimal values for

weight matrices, 𝑊 ∈ 𝑅𝐾×𝑁 and 𝑉 ∈ 𝑅𝑁×𝐾 , and bias vectors,

𝑏1 ∈ 𝑅𝐾
 and 𝑏1 ∈ 𝑅𝑁 , using back-propagation algorithm

while trying to learn the approximation of the identity

function, i.e., output 𝑥 similar to 𝑥. Sigmoid function,

𝑔(𝑧) =
1

1−𝑒−𝑧
, is used for the activation, ℎ𝑊,𝑏 of the nodes in

the hidden and output layers:

ℎ𝑊,𝑏 𝑥 = 𝑔 𝑊𝑥 + 𝑏 … (1)

𝐽 =
1

2𝑚
 | 𝑥𝑖 − 𝑥𝑖 |2𝑚

𝑖=1 +
𝜆

2
 𝑊2

𝑘 ,𝑛
+ 𝑉2

𝑛 ,𝑘
+

 𝑏1
2

𝑘
+ 𝑏2

2

𝑛
 + 𝛽 𝐾𝐿𝐾

𝑗=1 (𝜌||𝜌𝑗) …(2)

The cost function to be minimized in sparse auto-encoder

using back-propagation is represented by equation 2. The first

term is the average of sum-of-square errors term for the all 𝑚

input data. The second term is a weight decay term, with 𝜆 as

eight decay parameters, to avoid the over-fitting in training.

The final term in the equation is Sparsity Penalty term that

puts a constraint into the hidden layer to maintain a low

average activation values, and expressed as Kullback-Leibler

(KL) divergence shown in equation 3:

𝐾𝐿(𝜌| 𝜌 𝑗 = 𝜌 log
𝜌

𝜌𝑗
+ 1 − 𝜌 log

1 − 𝜌

1 − 𝜌𝑗

where, 𝜌 is a sparsity constraint parameter ranges from 0 to 1

and 𝛽 controls the sparsity penalty term.

The 𝐾𝐿(𝜌| 𝜌 𝑗 attains a minimum value when 𝜌 = 𝜌 𝑗 , where

𝜌 𝑗 denotes the average activation value of hidden unit 𝑗 over

the all training inputs, 𝑥. Once, the optimal values for 𝑊 and

𝑏1 are learnt by applying the sparse auto-encoder on

unlabeled data, 𝑥𝑢 , thereafter, the feature representation is

evaluated 𝑎 = ℎ𝑊,𝑏1
(𝑥𝑙) for the labeled data, (𝑥𝑙 , 𝑦). This

new feature representation is used, a, with the labels vector, y,

for the classification task in the second stage. Soft-max

regression is used for the classification task, shown in Figure

1(b)[3].

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.14, January 2018

17

 2.2 NSL-KDD Dataset
As mentioned previously, the NSL-KDD dataset is used in

this work. NSL KDD here refers to Network Socket Layer

KDD. The dataset is an improvised and reduced version of the

KDD Cup 99 dataset [5]. The KDD Cup dataset was prepared

using the network traffic recorded by DARPA's 1998 IDS

evaluation program [6]. The network traffic incorporates both

normal or authorized and different kinds of attack traffic, like

DoS, Probing. The network traffic for training was collected

for seven weeks followed by the two weeks collection of

traffic for testing purpose in the form of raw TCP dump

format. The test data contains many attacks that were not

injected during the training data collection phase to make the

intrusion detection task realistic. Researchers believe that

known attacks can be used to derive most of the novel attacks.

Table 1: Traffic records distribution in the training

and test data for normal and attack traffic

Track Training Test

Normal 67343 9711

Attack

DoS 45927 7458

U2R 52 67

R2L 995 2887

Probe 11656 2421

Thenceforth, the training and test data were processed into the

datasets of five million and two million TCP/IP connection

records, respectively. For evaluation of NIDS, the KDD Cup

dataset has been widely used as a benchmark dataset for many

years. One of the major drawback with the dataset is that it

contains an enormous amount of redundant records both in the

training and test data. According to observations almost 78%

of training and 75% test data records are redundant. This

redundancy makes the learning algorithms biased towards the

frequent attack records and leads to poor classification results

for the infrequent, but harmful records. The training and test

data were classified with the minimum accuracy of 98% and

86% respectively using a very simple machine learning

algorithm. It made the comparison task difficult for various

IDSs based on different learning algorithms. NSL-KDD was

proposed to overcome the limitation of KDD Cup dataset. The

dataset is imitative of the KDD Cup dataset [4].

NSL-KDD improvised the previous dataset in two ways.

Firstly, it exterminated all the redundant records present in the

training and test data. Secondly, it apportioned all the records

present in the KDD Cup dataset into discrete levels of

difficulty based on the number of learning algorithms that can

correctly classify the records. After that, it selected the

records by random sampling of the distinct records from each

difficulty level in a fraction that is inversely proportional to

their fraction in the distinct records. These multi-steps

processing of KDD Cup dataset made the number of records

in NSL-KDD dataset reasonable for the training of any

learning algorithm and realistic as well. In NSL-KDD dataset

each record consists of 41 features and is labeled as either

normal or a particular kind of attack. These features include

basic features derived directly from a TCP/IP connection,

traffic features accumulated in a window interval, either time,

e.g. two seconds or number of connections, and content

features extracted from the application layer data of

connections. Out of 41 features, three are nominal, four are

binary, and remaining 34 features are continuous.

3. RESULTS

3.1 Implementing NIDS
As mentioned previously, the dataset contains different kinds

of attributes with different values. The dataset is preprocessed

before applying self-taught learning on it. Nominal attributes

are converted into discrete attributes using 1-to-n encoding. In

addition, there is one attribute in the dataset whose value is

always 0 for all the records in the training and test data. This

attribute is eliminated from the dataset. The total number of

attributes become 121 after performing the above-mentioned

steps. The values in the output layer during the feature

learning phase, is computed by the sigmoid function which

gives values from 0 to 1. Since, the output layer values are

identical to the input layer values in this phase, causes to

normalize the values in the input layer from 0 to 1.

Then the max min operations are performed on the new list of

attributes, to obtain this. The NSL-KDD training data without

labels is used with the new attributes for the feature learning

using sparse auto-encoder for the first stage of self-taught

learning. In the second stage, the new learned features

representation is applied on the training data itself for the

classification using soft-max regression. In this

implementation, both the unlabeled and labeled data for

feature learning and classifier training come from the same

source, i.e., NSL-KDD training data.

3.2 Metrics for Accuracy
To evaluate the performance of self-taught learning the

metrics mentioned below is used:

• Accuracy: Measure of accuracy is the percentage of records

that are classified correctly over total number of records.

• Recall(R): Recall is measure as percentage ratio of number

of records that are true positives divide by number of records

that are classified as True Positives(TP) and False

Negatives(FN).

R=
𝑇.𝑃

𝑇.𝑃+𝐹.𝑁
∗ 100%

• Precision(P): Precision is measured as the percentage ratio

of number of records that are True Positives divided by the

number of True Positive and False Positives(FP).

P=
𝑇.𝑃

𝑇.𝑃+𝐹.𝑃
∗ 100%

• F Measure(F): F Measure is equivalent to the harmonic

mean of recall and precision. F represents a balance between

R and P.

F=
2.𝑃.𝑅

𝑃+𝑅

NOTE: Here, True Positives refer to records that are correctly

classified as true whereas False positives refer to records that

are falsely classified as true. Similarly, False Negatives refer

to the records that are mistakenly classified as negative.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.14, January 2018

18

3.3 Evaluation of the Performance of NIDS
NIDS has been implemented for two different types of

classifications: a) Normal and anomaly (2-class) and b)

Normal and four different attack categories (5-class). The

values of precision, recall and f measure are evaluated for the

attacks in the case of 2-class and 5-class classification.

Figure 2: Values of precision, recall and F-measure

obtained using STL and SMR for 2-Class when applied on

training data

Figure 3: Accuracy of classification using STL and SMR

for 2-class and 5-class when applied on test data

3.3.1 Training Data Based Evaluation
In order to evaluate the classification accuracy of self-taught

learning for 2-class and 5-class 10-fold cross-validation is

applied on the training data. Further, its performance is

compared with soft-max regression (SMR) when directly

applied on dataset without feature learning. For 2-class

classification STL performs better than SMR and in case of 5-

class classification its performance is similar. From figure 2 it

is evident that STL achieved classification accuracy rate more

than 98% for all types of classification [7].

The values of precision, recall, and f-measure values for only

2-class classification is measured. A few kinds of records

were missing while performing 10-fold cross-validation

during the training or test phase for 5-class classification.

Therefore, evaluation of these metrics for 2-class only is done.

It was observed that STL achieved better values for all these

metrics as compared to SMR.

According to the evaluation using training data, it has been

established that performance of STL is comparable to the best

results obtained in various previous work.

Figure 4: Precision, Recall, and F-Measure values using

self-taught learning (STL) and soft-max regression (SMR)

for 2-class when applied on test data

Figure 5: Precision, Recall, and F-Measure values using

self-taught learning (STL) and soft-max regression (SMR)

for 5-class when applied on test data

3.3.2 Training and Test Data Based Evaluation
STL’s performance is evaluated for 2-class and 5-class

classifications using the test data. As visible in Figure 3 that

STL performs very well as compared to SMR. For the 2-class

classification, STL achieved 88.39% accuracy rate, whereas

SM achieved 78.06%. STL’s accuracy for 2-class

classification outshines many of the previous work results.

The values of precision, recall, and f-measure as per Figure 4

and Figure 5 for 2-class and 5-class. STL achieved lower

precision as compared to SM, for the 2-class. The precision

values for STL and SM are 85.44% and 96.56%, respectively.

However, STL achieved better recall values as compared to

SM, that are 95.95% and 63.73%, respectively. Due to a good

recall value, STL out-performed SM for the f-measure value.

STL achieved 90.4% f-measure value whereas SM achieved

only 76.8%. Similar observations were made for the 5-class as

in the case of 2-class shown in Figure 7. The f-measure values

for STL and SM are 75.76% and 72.14%, respectively [7].

4. CONCLUSION AND FUTURE WORK
Proposed here is a deep learning based approach to build an

effective and flexible NIDS. A sparse auto-encoder and soft-

max regression based NIDS was implemented. Benchmark

network intrusion dataset - NSL-KDD to evaluate anomaly

detection accuracy were used. We observed that the NIDS

performed very well compared to previously implemented

94

96

98

100

Precision Recall F-measure

V
al

u
es

 (
in

 %
)

Accuracy Metric

Accuracy Metrics for 2-Class

Classification (Applied on Test Data)

SMR STL

65

70

75

80

85

90

2-Class 5-Class

A
cc

u
ra

cy
 (

in
 %

)

Types of Classification

Accuracy for Various Classification

SMR STL

60

70

80

90

100

Precision Recall F-measure

V
al

u
es

 (
in

 %
)

Accuracy Metric

Accuracy Metrics for 2-Class Classification

(Applied on Training Data)

SMR STL

60

70

80

90

100

Precision Recall F-measure

V
al

u
es

 (
in

 %
)

Accuracy Metric

Accuracy Metrics for 5-Class Classification

(Applied on Training Data)

SMR STL

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.14, January 2018

19

NIDSs for the normal/anomaly detection when evaluated on

the test data. The performance can be further enhanced by

applying techniques such as Stacked Auto-Encoder, an

extension of sparse auto-encoder in deep belief nets, for

unsupervised feature learning and NB-Tree, or J48 for further

classification. In future, we implement a real-time NIDS for

real networks using deep learning technique. Additionally, on-

the-go feature learning on raw network traffic headers instead

of derived features using raw headers can be another high

impact research in this area.

5. REFERENCES
[1] B. Mukherjee, L.T. Heberlein, K.N. Levitt 1994, Network

Intrusion Detection

[2] Gustavo Nascimento, Miguel Correia, Anomaly-based

Intrusion Detection in Software as a Service

[3] Fiore, Ugo and Palmieri, Francesco and Castiglione,

Aniello and De Santis, Alfredo, 2013, “Network

Anomaly Detection with the Restricted Boltzmann

Machine”

[4] A. Coates, A. Y. Ng, and H. Lee, 2011, “An Analysis of

Single-layer Networks in Unsupervised Feature

Learning,” in International conference on artificial

intelligence and statistics, pp. 215–223.

[5] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A

Detailed Analysis of the KDD CUP 99 Data Set,” in

Computational Intelligence for Security and Defense

Applications, 2009. CISDA 2009. IEEE Symposium

[6] KDD Cup 99,

“http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.ht

ml.”

[7] Quamar Niyaz, Weiqing Sun, Ahmad Y Javaid, and

Mansoor Alam, A Deep Learning Approach for Network

Intrusion Detection System

IJCATM : www.ijcaonline.org

