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ABSTRACT 

Intrusion Detection: collection of techniques that are used to 

identify attacks on the computers and network infrastructures. 

Anomaly detection, which is a key element of intrusion 

detection. In Anomaly Detection, perturbations of normal 

behavior suggest the presence of intentionally or 

unintentionally induced attacks, faults, defects, etc. This paper 

focuses on an approach based on deep learning to develop an 

effective and flexible network intrusion detection system 

implemented using self-taught learning on NSL-KDD data 

set. 
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1. INTRODUCTION 
The intrusion detection problem is becoming an exigent task 

due to the escalation of heterogeneous computer networks 

since the increase in connectivity of computer systems gives 

more access to no-members and makes it easier for intruders 

to avoid identification. Intrusion Detection Systems (IDSs) are 

based on the assumption that an unauthorized user's conduct 

will always be different from that of an authorized user and 

most of the unauthorized/illegal actions are also identifiable 

[1]. 

1) Signature (Misuse) based NIDS (SNIDS), and 2) Anomaly 

Detection based NIDS (ADNIDS) are the two classes in 

which NIDSs are categorized based on the methods of 

Intrusion Detection. The Signature-based Intrusion Detection 

Systems follow a lot similar procedure as a virus scanner. 

They search for a known member's id or signature for each 

particular intrusion incident. And, while signature-based IDS 

is very efficient at sniffing out known attack, it does, like anti-

virus software, depend on receiving regular signature updates, 

to keep in touch with variations in hacker technique. 

Expressing in different way, SIDSs is limited to the system’s 

database of stored signatures. 

An anomaly-based IDS works by first building a statistical 

model of usage patterns describing the normal behavior of the 

monitored resource. After this initial training phase, the 

system uses a similarity metric to compare new input requests 

with the model, and generates alerts for those deviating 

significantly, considering them anomalous. Basically, in this, 

intrusions are detected as they produce a dissimilar, i.e., 

abnormal, behavior then what was noticed while designing the 

model. Its ability to detect previously unknown (or variants of 

known) attacks when they appear is the biggest advantage of 

an Anomaly-based System [2]. 

Two challenges that arise while developing an effective and 

adaptable NIDS for upcoming attacks, in future, that are not 

known: Firstly, selection of all features from the Network 

Traffic dataset for anomaly detection is difficult. The features 

selected for one class of attack may not work well for other 

categories of attacks due to continuously changing and 

evolving attack scenarios. Second, unavailability of labeled 

traffic dataset from real networks for developing an NIDS [3]. 

Numerous machine learning techniques such as Support 

Vector Machines (SVM), Random Forests (RF), Artificial 

Neural Networks (ANN), Naïve- Bayesian (NB), etc. NIDS 

are classifiers that differentiate unauthorized or anomalous 

traffic from authorized or normal traffic. Many NIDSs 

perform a feature selection task to extract a subset of relevant 

features from the traffic dataset to enhance classification 

results. Feature selection helps in the elimination of the 

possibility of incorrect training through the removal of 

redundant features and noises. 

A part of a broader family of machine learning methods based 

on learning data representations, as opposed to task-specific 

algorithms, is Deep learning (also known as deep structured 

learning or hierarchical learning). Learning can be supervised, 

semi-supervised or unsupervised. Recently, deep learning 

based methods have been successfully implemented in audio, 

image, and speech processing apps. It is envisioned that the 

deep learning based approaches can help to overcome the 

challenges of developing an effective NIDS. We can collect 

unlabeled network traffic data from different sources and a 

good feature representation of these datasets using deep 

learning techniques can be obtained. These features can, then, 

be applied for supervised classification to a small, but labeled 

traffic dataset consisting of normal as well as anomalous 

traffic records. The traffic data for labeled dataset can be 

collected in a confined, isolated and private network 

environment. 
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Figure 1: Two-staged process of self-taught learning: a) Unsupervised Feature Learning (UFL) on unlabeled data. b) 

Classification on labeled data. 

 

2. OVERVIEW OF SELF TAUGHT 

LEARNING AND NSL-KDD DATASET 

2.1 Self Taught Learning  

Self -taught learning is a machine learning framework for 

using unlabeled data in supervised classification tasks. Self-

taught Learning (STL) is a deep learning approach that 

consists of two stages for the classification. First, a good 

feature representation is learnt from a large collection of 

unlabeled data, 𝑥𝑢 , termed as Unsupervised Feature Learning 

(UFL). In the second stage, this learnt representation is 

applied to labeled data, 𝑥𝑙 , and used for the classification task. 

There must be relevance between the unlabeled and labeled 

data, although they may come from distinct distributions. 

Figure 1 shows the architecture diagram of STL. Sparse Auto-

Encoder, K-Means Clustering, Restricted Boltzmann Machine 

(RBM), and Gaussian Mixtures [4], are some approaches used 

for UFL. The Sparse Auto-Encoder based feature learning is 

used for this work due to its easy implementation and good 

performance. 

The input and output layers contain 𝑁 nodes and the hidden 

layer contains 𝐾 nodes. The target values in the output layer 

set to the input values, i.e., 𝑥 𝑖 =  𝑥𝑖 as shown in Figure 1(a). 

The sparse auto-encoder network finds the optimal values for 

weight matrices, 𝑊 ∈ 𝑅𝐾×𝑁  and 𝑉 ∈ 𝑅𝑁×𝐾 , and bias vectors, 

𝑏1 ∈ 𝑅𝐾
 and 𝑏1 ∈ 𝑅𝑁 , using back-propagation algorithm 

while trying to learn the approximation of the identity 

function, i.e., output 𝑥  similar to  𝑥. Sigmoid function, 

𝑔(𝑧)  =  
1

1−𝑒−𝑧
, is used for the activation, ℎ𝑊,𝑏  of the nodes in 

the hidden and output layers: 

ℎ𝑊,𝑏 𝑥 =  𝑔 𝑊𝑥 + 𝑏                                               … (1) 
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The cost function to be minimized in sparse auto-encoder 

using back-propagation is represented by equation 2. The first 

term is the average of sum-of-square errors term for the all 𝑚 

input data. The second term is a weight decay term, with 𝜆 as 

eight decay parameters, to avoid the over-fitting in training. 

The final term in the equation is Sparsity Penalty term that 

puts a constraint into the hidden layer to maintain a low 

average activation values, and expressed as Kullback-Leibler 

(KL) divergence shown in equation 3: 

𝐾𝐿(𝜌| 𝜌 𝑗  =  𝜌 log
𝜌

𝜌𝑗 
+  1 − 𝜌 log

1 − 𝜌

1 − 𝜌𝑗 
 

where, 𝜌 is a sparsity constraint parameter ranges from 0 to 1 

and 𝛽 controls the sparsity penalty term.  

The 𝐾𝐿(𝜌| 𝜌 𝑗   attains a minimum value when 𝜌 = 𝜌 𝑗  , where 

𝜌 𝑗  denotes the average activation value of hidden unit 𝑗 over 

the all training inputs, 𝑥. Once, the optimal values for 𝑊 and 

𝑏1 are learnt by applying the sparse auto-encoder on 

unlabeled data, 𝑥𝑢 , thereafter, the feature representation is 

evaluated 𝑎 =  ℎ𝑊,𝑏1
(𝑥𝑙) for the labeled data, (𝑥𝑙 , 𝑦). This 

new feature representation is used, a, with the labels vector, y, 

for the classification task in the second stage. Soft-max 

regression is used for the classification task, shown in Figure 

1(b)[3]. 
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 2.2 NSL-KDD Dataset 
As mentioned previously, the NSL-KDD dataset is used in 

this work. NSL KDD here refers to Network Socket Layer 

KDD. The dataset is an improvised and reduced version of the 

KDD Cup 99 dataset [5]. The KDD Cup dataset was prepared 

using the network traffic recorded by DARPA's 1998 IDS 

evaluation program [6]. The network traffic incorporates both 

normal or authorized and different kinds of attack traffic, like 

DoS, Probing. The network traffic for training was collected 

for seven weeks followed by the two weeks collection of 

traffic for testing purpose in the form of raw TCP dump 

format. The test data contains many attacks that were not 

injected during the training data collection phase to make the 

intrusion detection task realistic. Researchers believe that 

known attacks can be used to derive most of the novel attacks. 

Table 1: Traffic records distribution in the training 

and test data for normal and attack traffic 

Track Training Test 

Normal 67343 9711 

 

 

Attack 

DoS 45927 7458 

U2R 52 67 

R2L 995 2887 

Probe 11656 2421 

 

Thenceforth, the training and test data were processed into the 

datasets of five million and two million TCP/IP connection 

records, respectively. For evaluation of NIDS, the KDD Cup 

dataset has been widely used as a benchmark dataset for many 

years. One of the major drawback with the dataset is that it 

contains an enormous amount of redundant records both in the 

training and test data. According to observations almost 78% 

of training and 75% test data records are redundant. This 

redundancy makes the learning algorithms biased towards the 

frequent attack records and leads to poor classification results 

for the infrequent, but harmful records. The training and test 

data were classified with the minimum accuracy of 98% and 

86% respectively using a very simple machine learning 

algorithm. It made the comparison task difficult for various 

IDSs based on different learning algorithms. NSL-KDD was 

proposed to overcome the limitation of KDD Cup dataset. The 

dataset is imitative of the KDD Cup dataset [4].  

NSL-KDD improvised the previous dataset in two ways. 

Firstly, it exterminated all the redundant records present in the 

training and test data. Secondly, it apportioned all the records 

present in the KDD Cup dataset into discrete levels of 

difficulty based on the number of learning algorithms that can 

correctly classify the records. After that, it selected the 

records by random sampling of the distinct records from each 

difficulty level in a fraction that is inversely proportional to 

their fraction in the distinct records. These multi-steps 

processing of KDD Cup dataset made the number of records 

in NSL-KDD dataset reasonable for the training of any 

learning algorithm and realistic as well. In NSL-KDD dataset 

each record consists of 41 features and is labeled as either 

normal or a particular kind of attack. These features include 

basic features derived directly from a TCP/IP connection, 

traffic features accumulated in a window interval, either time, 

e.g. two seconds or number of connections, and content 

features extracted from the application layer data of 

connections. Out of 41 features, three are nominal, four are 

binary, and remaining 34 features are continuous. 

3. RESULTS 

3.1 Implementing NIDS 
As mentioned previously, the dataset contains different kinds 

of attributes with different values. The dataset is preprocessed 

before applying self-taught learning on it. Nominal attributes 

are converted into discrete attributes using 1-to-n encoding. In 

addition, there is one attribute in the dataset whose value is 

always 0 for all the records in the training and test data. This 

attribute is eliminated from the dataset. The total number of 

attributes become 121 after performing the above-mentioned 

steps. The values in the output layer during the feature 

learning phase, is computed by the sigmoid function which 

gives values from 0 to 1. Since, the output layer values are 

identical to the input layer values in this phase, causes to 

normalize the values in the input layer from 0 to 1.  

Then the max min operations are performed on the new list of 

attributes, to obtain this. The NSL-KDD training data without 

labels is used with the new attributes for the feature learning 

using sparse auto-encoder for the first stage of self-taught 

learning. In the second stage, the new learned features 

representation is applied on the training data itself for the 

classification using soft-max regression. In this 

implementation, both the unlabeled and labeled data for 

feature learning and classifier training come from the same 

source, i.e., NSL-KDD training data. 

3.2 Metrics for Accuracy 
To evaluate the performance of self-taught learning the 

metrics mentioned below is used: 

• Accuracy: Measure of accuracy is the percentage of records 

that are classified correctly over total number of records. 

• Recall(R): Recall is measure as percentage ratio of number 

of records that are true positives divide by number of records 

that are classified as True Positives(TP) and False 

Negatives(FN). 

R= 
𝑇.𝑃

𝑇.𝑃+𝐹.𝑁
∗ 100% 

• Precision(P): Precision is measured as the percentage ratio 

of number of records that are True Positives divided by the 

number of True Positive and False Positives(FP). 

P=
𝑇.𝑃

𝑇.𝑃+𝐹.𝑃
∗ 100%    

• F Measure(F): F Measure is equivalent to the harmonic 

mean of recall and precision. F represents a balance between 

R and P. 

F= 
2.𝑃.𝑅

𝑃+𝑅
 

NOTE: Here, True Positives refer to records that are correctly 

classified as true whereas False positives refer to records that 

are falsely classified as true. Similarly, False Negatives refer 

to the records that are mistakenly classified as negative. 
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3.3 Evaluation of the Performance of NIDS 
NIDS has been implemented for two different types of 

classifications: a) Normal and anomaly (2-class) and b) 

Normal and four different attack categories (5-class). The 

values of precision, recall and f measure are evaluated for the 

attacks in the case of 2-class and 5-class classification. 

 

Figure 2: Values of precision, recall and F-measure 

obtained using STL and SMR for 2-Class when applied on 

training data 

 
Figure 3: Accuracy of classification using STL and SMR 

for 2-class and 5-class when applied on test data 

3.3.1 Training Data Based Evaluation 
In order to evaluate the classification accuracy of self-taught 

learning for 2-class and 5-class 10-fold cross-validation is 

applied on the training data. Further, its performance is 

compared with soft-max regression (SMR) when directly 

applied on dataset without feature learning. For 2-class 

classification STL performs better than SMR and in case of 5-

class classification its performance is similar. From figure 2 it 

is evident that STL achieved classification accuracy rate more 

than 98% for all types of classification [7]. 

The values of precision, recall, and f-measure values for only 

2-class classification is measured. A few kinds of records 

were missing while performing 10-fold cross-validation 

during the training or test phase for 5-class classification. 

Therefore, evaluation of these metrics for 2-class only is done. 

It was observed that STL achieved better values for all these 

metrics as compared to SMR.  

According to the evaluation using training data, it has been 

established that performance of STL is comparable to the best 

results obtained in various previous work. 

 
Figure 4: Precision, Recall, and F-Measure values using 

self-taught learning (STL) and soft-max regression (SMR) 

for 2-class when applied on test data 

 
Figure 5: Precision, Recall, and F-Measure values using 

self-taught learning (STL) and soft-max regression (SMR) 

for 5-class when applied on test data 

3.3.2 Training and Test Data Based Evaluation 
STL’s performance is evaluated for 2-class and 5-class 

classifications using the test data. As visible in Figure 3 that 

STL performs very well as compared to SMR. For the 2-class 

classification, STL achieved 88.39% accuracy rate, whereas 

SM achieved 78.06%. STL’s accuracy for 2-class 

classification outshines many of the previous work results.  

The values of precision, recall, and f-measure as per Figure 4 

and Figure 5 for 2-class and 5-class. STL achieved lower 

precision as compared to SM, for the 2-class. The precision 

values for STL and SM are 85.44% and 96.56%, respectively. 

However, STL achieved better recall values as compared to 

SM, that are 95.95% and 63.73%, respectively. Due to a good 

recall value, STL out-performed SM for the f-measure value. 

STL achieved 90.4% f-measure value whereas SM achieved 

only 76.8%. Similar observations were made for the 5-class as 

in the case of 2-class shown in Figure 7. The f-measure values 

for STL and SM are 75.76% and 72.14%, respectively [7]. 

 

4. CONCLUSION AND FUTURE WORK 
Proposed here is a deep learning based approach to build an 

effective and flexible NIDS. A sparse auto-encoder and soft-

max regression based NIDS was implemented. Benchmark 

network intrusion dataset - NSL-KDD to evaluate anomaly 

detection accuracy were used. We observed that the NIDS 

performed very well compared to previously implemented 
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NIDSs for the normal/anomaly detection when evaluated on 

the test data. The performance can be further enhanced by 

applying techniques such as Stacked Auto-Encoder, an 

extension of sparse auto-encoder in deep belief nets, for 

unsupervised feature learning and NB-Tree, or J48 for further 

classification. In future, we implement a real-time NIDS for 

real networks using deep learning technique. Additionally, on-

the-go feature learning on raw network traffic headers instead 

of derived features using raw headers can be another high 

impact research in this area. 
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