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ABSTRACT
Test case prioritization assigns new order of test cases for detecting
regression faults at early. In regression testing when new version is
released, all the test cases of both previous and current versions are
executed to ensure the desired functionality. This process increases
the volume of test cases in regression testing, which is expensive
and time consuming. That is why the test cases are needed to be
reordered for exploring maximum faults in minimum test cases
execution. Usually test case prioritization techniques are designed
based on source code coverage, requirements clustering, etc. Most
of these techniques contain the similarity relationship among the
test cases. However, similarity based technique may stuck in local
minima. To overcome the limitation of similarity based prioritiza-
tion, this paper proposed the dissimilar clustering based approach
using historical data analysis to detect maximum faults. In this ap-
proach, dissimilar test cases placed in the top of the test suites and
executed earlier than similar test cases. Proposed scheme is eval-
uated using well established Defects4j dataset, and it has reported
that proposed strategy performs 54.95%, 41.83% and 7.00% bet-
ter than untreated (normal ordering), random and similarity cluster
based prioritization methods respectively.
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1. INTRODUCTION
Test case prioritization reschedules test cases for execution to in-
crease the regression testing effectiveness. The regression testing
revalidates the software to ensure that the newly introduced code
does not affect existing software adversely [1]. This revalidating
procedure runs both previous and newly introduced test cases,
which is costly in terms of expense and time [2]. It has been ex-
perimented that more than 50 days are required to test 20,000 lines
of code [2]. Therefore, diverse methods are introduced to improve
regression testing performance based on cost effectiveness, which
are categorized into Test Suite Reduction (TSR), Test Case Selec-
tion (TCS), and Test Case Prioritization [3], [2]. TSR removes re-
dundant code coverage test cases, where TCS picks only those test
cases that covers changed portion of the software [2]. While TSR
and TCS reduce regression testing reliability by omitting test cases
which can also detect faults, test case prioritization reorders test

cases to meet testing goals, such as rate of fault detection, source
code coverage, and quick feedback [4].
Several test case prioritization methods has been proposed to in-
crease fault detection rate in regression testing which may catego-
rized into requirement coverage [3][5], code coverage [6][1], prob-
abilistic based [4][7], history based [8][9], etc. Using requirement
similarity clustering Arafeen et al. proposed prioritization method
to investigate regression testing efficiency [3]. Different software
artifacts such as requirements, design diagrams and source code are
used for prioritization [5]. Modified genetic algorithm has also been
used for prioritizing test cases to improve code coverage, where
control flow graph was generated from the selected program [6].
History based prioritization approach was proposed to evaluate the
performance under severe time and resource constraints [10]. Cus-
tomer and developer assigned priority are also used to provide test
cases priority [8]. Similarity based prioritization using historical
failure data was proposed to rank new test cases in regression test-
ing [11]. Bayesian Network and its modified test case clustering
version has been used for prioritization to improve fault detection
rate [4][7]. However, test case clustering on code coverage profile
contains risk to detect similar fault consecutively. As a result, get
similar priority that leads to decrease the efficacy of fault detection
rate. This scenario is illustrated by following example, where nine
test cases cover nine faults as shown below.
TC1 :< f1, f4, f5, f6, f7 >,TC2 :< f2, f3, f4, f5, f6 >,
TC3 :< f2, f3, f4, f7, f8 >,TC4 :< f2, f3, f7, f8, f9 >
, TC5 :< f1, f6, f7, f9 >,TC6 :< f1, f5, f6, f7.f9 >,
TC7 :< f1, f2, f3, f4, f8 >,TC8 :< f1, f6 >,TC9 :<
f1, f2, f3, f4, f6 > .
Cluster − 1 :< TC1, TC5, TC6, TC8 >,
Cluster − 2 :< TC2, TC3, TC4 >,
Cluster − 3 :< TC7, TC9 >.
The majority test cases in cluster-1 detect faults f1, f6 and f7, but
f2, f3 and f8 faults are uncovered. On the other hand, test cases in
cluster-2 cover faults f2 and f3, excluding fault f1. Both test cases
in cluster-3 detect faults f1, f3, f4 and f9, but faults f5 and f7 are
out of coverage. In this example, same faults covered by more than
one clusters. However, any single cluster cannot cover all faults,
which is the limitation of similar cluster based test case prioritiza-
tion which shares same properties.
This paper presents dissimilar test case clustering technique to
overcome the similar clustering based prioritization problem. In
the proposed approach, present version test cases are used to gen-
erate call dependency graph which forms similar test case cluster.
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On the other hand, both present and previous version test cases are
considered to generate failure history call dependency graph. Intra
cluster test cases are prioritized on test case degree of connectiv-
ity and failure history. At the end, dissimilar clusters are formed
selecting top test cases from similar clusters to cover maximum
varieties of faults. The preliminary investigation about the dissim-
ilar cluster based test case prioritization has been presented in [9].
In that paper, a short methodology description has been addressed
for similar and dissimilar clustering. In Addition, no direction has
been presented for orphan test suite handling and dissimilar test
suite formation. This research introduces the complete dissimilar
cluster based prioritization using historical failure data including
the solution of several limitations in our previous work.
The proposed technique has been experimented with Defects4j
dataset [12], and experimental results are evaluated with differ-
ent significant strategies named as random prioritization, similarity
based prioritization and untreated prioritization. The investigated
result shows that dissimilarity based prioritization using failure his-
tory performs 54.95%, 41.83% and 7.00% better than untreated,
random and similarity based prioritization methods respectively.
The rest of this paper is organized as follows, Section 2 describes
the literature review. Section 3 and 4 illustrated the proposed
method and result analysis respectively. Finally section 5 concludes
this paper with future research direction.

2. LITERATURE REVIEW
Test case prioritization technique rearranges test case ordering to
maximize testing objectives, such as improving fault detection rate,
reducing execution time, etc. Because of significance in practice,
several prioritization techniques have been developed, which may
categorized in requirement coverage [3][5], source code coverage
[6][1], probabilistic based [4][7], and history based [8][9]. Several
prioritization techniques are discussed in this section.

2.1 Requirement Coverage based Prioritization
Requirement similarity clustering has been used for investigating
the efficiency of regression testing in test case prioritization [3].
Term document matrix has been generated from software require-
ments, which lead to k-means clustering algorithm. Clusters of test
cases was formed using requirements test case mapping traceabil-
ity matrix. Execution sequence of clusters was ordered using code
modification information and clients requirement priority. Result
indicates that the strategy improved effectiveness of prioritization.
Test case prioritization using the collaboration of different software
artifacts such as requirements, design diagrams and source code
has been proposed by [5]. This scheme overcomes the limitation of
traditional single SDLC phase consideration in software testing. In
their approach, requirements connectivity, design inter-dependency
and code metrics are collected, and multiplied by their weight for
measuring final priority of test case. The experimental analysis fig-
ure out that use of collaborative information in test case prioritiza-
tion was significant. However, direction was undeclared for assign-
ing weight to SDLC phases, and the result would be more effective
by incorporating historical failure data.
Dusica et al. proposed a multi-perspective prioritization framework
in time-constrained environments for faster fault detection [13].
This scheme considers execution time, inter dependent function-
ality, failure impact and frequency factors for selecting the multi-
perspective values. This approach prioritizes test cases having max-
imum inter dependence functional coverage, failure impact and fre-
quency. Though, this technique used multiple factors for prioritiz-

ing test cases, dissimilar based test suite selection has not been con-
sidered to detect different types of fault at early execution.

2.2 Code Coverage based Prioritization
Rothermel et al. demonstrated a number of prioritization strategies
to improve fault detection rate in regression testing [2]. They per-
formed empirical studies to evaluate quality, importance and quan-
tity of the rate of fault detection of different techniques. In their
analysis seven different programs with both current and modified
versions were used. Empirical result indicated that the proposed
approach detect fault efficiently at early. Results also showed that
code coverage based prioritization performed better than additional
branch coverage, where total statements coverage approach per-
formed efficiently than additional statement coverage strategy.
Patipat et al. implemented a modified genetic algorithm for prior-
itizing test cases to improve code coverage [6] in regression test-
ing. A control flow graph was generated from the selected program,
which derived to get decision graph. Test cases were generated ran-
domly from the decision graph according to the population size in
genetic algorithm. Test suites was formed using selected test cases
measuring conditions covered by each test case. The fitness value
of every test case was determined based on the coverage informa-
tion, which is used to rank the suites. Finally test suites were ranked
using fitness value. The result showed that modified genetic algo-
rithm performed better than Bee Colony and random approaches.
However, generating complex decision graph for large scale soft-
ware may overhead of this approach.
Rothermel et al. presented a prioritization approach using control
flow graph of procedure or program and its modified version [1].
Using these graphs the method selects the test cases having changes
from the original test cases. The proposed approach chooses test
cases that may execute for the first time in new version. The ap-
proach can manage test case selection of regression testing both for
single and groups of interacting methods. The main contribution is
reduction of execution time required in regression testing. Another
contribution is saving of time and costing. The limitations of pro-
posed method are time estimation, artifacts construction that can
lead to a scope of work for further research on this field.

2.3 Probabilistic based Prioritization
Bayesian Network based prioritization framework has been pro-
posed to improve fault detection rate by Siavash et al. [4]. The
proposed methodology used the most known statistical probability
principle with the utilization of bayesian network. The framework
took program modification, tendency of fault occurrence and test
case coverage information as a input and produces the probability
of test case as output. In first step, source code was taken into ac-
tion in order to extract several proofs from this source code. After
extracting the evidence, the second step took all necessary infor-
mation to an individual bayesian network model to accomplish. In
the final step, statistical probabilistic theorem has been applied to
measure the probability success. The result showed that proposed
method performed better than other implemented techniques such
as normal ordering and random ordering, if the available faults are
remarkable. However, in this proposed approach, several test cases
may indicate similar faults in execution.
Xiaobin et al. proposed an enhanced Bayesian Network (BN) based
method for prioritization, where test cases are clustered using
method level coverage matrix [7]. Intra cluster test cases are pri-
oritized based on their fault detection probability by BN approach.
Source code change information and class level coverage matrix are
fed as input to get failure probability as output. The result shows
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that the improved BN scheme is more effective than normal BN
model for test case prioritization. However, failure history which is
effective to detect fault in regression testing has not been consid-
ered for test case prioritization in the proposed strategy.

2.4 History based Prioritization
History based regression test case prioritization using requirement
priority was proposed where, customer and developer assigned pri-
ority are used to provide test cases priority [8]. Initially prioritized
test cases were executed and fault detection history was recorded
for next execution. The differences of requirement priority between
two adjacent test cases are used to reorder the execution sequence
dynamically. An industrial experimentation has been performed in
order to evaluate the technique, and result analysis has shown that
the history based prioritization method improved testing effective-
ness and fault detection ability than random and other common
methods. However, the efficiency of this technique depends on the
assigned requirement priority by customers and developers which
may biased and affect the deserved prioritization effectiveness.
Jung et al. proposed a history-based test prioritization approach
to evaluated the performance under severe time and resource con-
straints of several Regression Test Selection (RTS) techniques [10].
If the resource constraints are not considered, prioritization perfor-
mance may become unpredictable. The cost and benefits of sev-
eral RTS techniques under two different software evolution models
has been investigated. Results strongly supported that regression
testing might have to perform differently in constrained environ-
ments than non-constrained ones. In addition, historical informa-
tion might be useful in reducing costs and increasing the effective-
ness of long running regression testing process.

2.5 Fault based Prioritization
Similarity based prioritization approach using historical failure data
was proposed to rank new test cases in regression testing [11]. Se-
quence of method call by previously failed and new test cases has
been generated to measure distance value from each other, which
is used to form similarity matrix in descending order. Similarity
between test cases defined by calculating their method calling se-
quence. The experimental result stated that the proposed similarity
based approach performed more efficiently as it can effectively pri-
oritize test cases compared to other traditional strategies. However,
there is no direction when faults history is absent or not adequate.
Do Hyunsook et al. introduced an experimental measurement of
test case prioritization using fault mutation strategy [14]. This pa-
per represents prioritization effectiveness for hand seeded faults
and mutant faults. The fault mutation was performed by changing
operators such as logical operator, arithmetic operator, overriding
variable changing etc. The experimental analysis showed that prior-
itization performance depends on some independent and dependent
variables such as test suite granularity, fault detection rate, etc.
The analysis of existing prioritization approaches shows that differ-
ent prioritization strategies have been proposed for regression test-
ing such as code coverage, clustering, historical data etc. Incorpo-
rating historical data with similarity clusters is recently introduced
where similar test cases are stuck on uniform faults and inefficient
in detection of variety faults. However, no direction has been found
yet to detect dissimilar faults using historical data, which may in-
crease variant fault detection rate in regression testing.

3. PROPOSED METHODOLOGY
The dissimilar based test case prioritization framework is proposed
to improve the performance of regression testing by executing dis-
similar test cases earlier. This method selects and executes more
significant test cases earlier with intent to cover divergent faults. In
this approach, similar and dissimilar test cases are clustered using
function call connectivity, which are depicted at call dependency
graph. Similar cluster test cases are internally ordered based on
failure history and connectivity among other test cases. Finally top
test cases are selected from every cluster to form a dissimilar test
suite. This process is iterated until all the test cases are covered,
which makes the desired prioritization sequence of this approach.
The proposed method is divided into following five steps.

Step 1: Call Dependency Graph (CDG) Generation
Step 2: Similar Test Case Cluster Formation
Step 3: Failure History CDG Generation
Step 4: Intra Cluster Elements Prioritization
Step 5: Dissimilar Test Cases Cluster Formation

Detail descriptions of the above steps are given in the following
sub-sections.

3.1 Step 1: Call Dependency Graph (CDG) Generation
Function call dependency graph represents the list of inter-
connected test cases in terms of function call, which is used to find
similarity among test cases. Similarity between two test cases de-
fines their degree of relationship, which is measured with the CDG.
The value of presence or absence of connectivity between two test
cases is presented in CDG. The connectivity value is Boolean,
which is either connected (1) or disconnected (0).

Fig. 1. CDG of present version test cases

Present version test cases are taken as input to find out the list of
connected test cases in term of function call. After that, function
call dependency graph G (V, E) is generated, where test cases and
function calls between two test cases are presented as vertex (V) and
edges (E) respectively. Degree of connectivity for each test case is
computed on the basis of CDG connections. The CDG generation
process is illustrated at Figure 1.

3.2 Step 2: Similar Test Case Cluster Formation
Similar clusters are formed based on the similar test cases by con-
sidering fault coverage. Among various clustering algorithm [15],
K-means [16] is used for similar cluster formation, where the pre-
liminary number of cluster is defined by the square root ceiling
value of total test cases (n). Test cases are decreasingly ordered
based on their degree of connectivity using CDG, and assigned the
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top n test cases as the cluster heads. Initially clusters are formed
using only the header test case.
pseudocode [h] Input: Call Dependency Graph G(V,E)
Output: Test Case Cluster (C) Similar Cluster Formation [1] Be-
gin Ts ← Sorted Test Suite on degree of connectivity Number of
cluster (n) =

⌈√
Ts

⌉
+ 1 C ← {}

all i ∈ {1...(n − 1)} Ci ← Ci ∪ {ti} ti ∈ Ts Li ← φ Cj ∈ C
tj is connected to anyCi Lj ← Lj ∪ {Ci} C ← C − {Ci}
Lj = φ Ciso ∈ Ciso ∪ {ti} else if |Lj | = 1 then Ci ← Lj

Ci ← max(Lj) End
The similar cluster formation process in presented in Algorithm
1, which takes call dependency graph G(V,E) as input and gener-
ated similar cluster (C) as output. In the algorithm, n number of
empty clusters (C) is created (line 4) and these clusters are initial-
ized with n number of top test cases (line 5, 6, and 7). An empty
mapping (Lj) for jth test case is created (line 9). Test cases con-
nectivity with cluster head are checked (line 10-15) to form similar
cluster. Disconnect, single connection and multiple connection are
presented in line 19, 20 and 21 accordingly.
After assigning the headers, remaining test cases are required to as-
sign inside these clusters based on their degree of connectivity. If
any test case connects to single cluster head, it is assigned to that
cluster. On the other hand, for multiple connectivity; it is assigned
to the cluster whose degree of connectivity is maximum. Test cases
having no connectivity are inserted inside an orphan cluster, which
is previously created containing disconnected test cases. This pro-
cess will be continued until all the test cases are assigned. In the
next step, orphan cluster test cases are assigned to other clusters by
measuring the connectivity with members of other clusters.
This approach is continued until orphan cluster members get their
cluster identity. The remaining orphan cluster test cases those do
not get access inside any clusters are considered as isolated cluster
member. Thus, a number of cluster is formed those are two cate-
gories defined as similar connectivity clusters and isolated cluster.

Fig. 2. Overview of Similar Cluster Formation

For example of 9 test cases with the degree of connectivity are <
TC1, 2 >,< TC2, 3 >,< TC3, 1 >,< TC4, 3 >,< TC5, 4 >
,< TC6, 1 >,< TC7, 2 >,< TC8, 1 >,< TC9, 2 >. There

should have 4 clusters including 1 isolated cluster. The test
cases are sorted in descending order according to their degree of
connectivity and the top three test cases < TC5, TC2, TC4 >
are selected as cluster head. Here, TC1 is connected with all head,
however, maximum connection exists with TC5, as a result, TC1 is
assigned insider Cluster-1. Where TC7 is connected with TC2 and
TC4, also degree of connectivity is equal; as a result, it is assigned
randomly. However, TC3 is not connected to any header, so it is
assigned in isolated cluster. The whole overview of similar cluster
formation is shown in Figure 2, and the example test cases will
form the following clusters.

Cluster-1:< TC5, TC1, TC9, TC8 >
Cluster-2:< TC2, TC7, TC6 >
Cluster-3:< TC4 >
Isolated Cluster:< TC3 >

3.3 Step 3: Failure History CDG Generation
Failure history call dependency graph is generated using both
present and previous version test cases. Because, previously failed
test cases have highest possibility to fail in subsequent execution in
regression testing [11]. A list of similar test cases is forwarded from
that failure history call dependency graph. The listed similar tests
cases with their corresponding number of fault detection history are
profiled as previous execution history. This profile will be used for
assigning priority to present version test cases in Step 4. Similarity
between previous and present version test cases is measured using
inter function connectivity (degree of connectivity) of both versions
which are presented in Figure 3. Basic CDG generation process is
described elaborately in Step 1.

3.4 Step 4: Intra Cluster Elements Prioritization
Intra cluster test cases are prioritized using failure history and de-
gree of connectivity of previous and current version test cases re-
spectively. The priority of every test case is calculated using their
corresponding degree of connectivity and fault detection ability,
which is depicted in Equation (1). To calculate individual test case’s
priority, total degree of connectivity is divided by total number of
test cases, and then the outcome is added with number of detected
faults. To normalize the result, degree of connectivity is divided by
the total number of test cases. Random ordering will be applied,
when similar priority is calculated for multiple test cases.

Fig. 3. Failure History CDG Generation

pseudocode [h] Internal Test Case Ordering Input: Test Case
Cluster Ci, failure history Lf
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Output: Prioritize test case P [1] Begin T ←
read all test cases from every clusterCi DoC ←
calculate degree of connectivity ofT Lf ←
number of faults for eachfailure test cases
ti ∈ T ti ∪ Lf Pi ← Lf [ti] +

DoC[ti]
NumberofTc

Pi ← DoC[ti]
NumberofTc

End
The internal test case ordering of similar clusters (Ci) is repre-
sented in Algorithm 2, where (Ci) and profiled failure history
(Lf ) takes as input and prioritize test cases (P) are generated
as output. Priority of ith test case (Pi) is measured by number
of detected faults (Lf [ti]) and normalized degree of connectivity
(DoC[ti])/No. of Tc) (Algorithm 2 line 6-7). Where, test cases
dissimilar to previously fail are prioritized by normalized degree of
connectivity only (Algorithm 2 line 9).

TCpriority =
Degree of Connectivity

Number of Test Cases
+NumberofFaults

(1)
For given example of 9 test cases in Step 2, Degree of Connectivity
(DoC) and failure history are presented as follows:

Degree of Connectivity: < Test Case,DoC >=< TC1, 2 >
,< TC2, 3 >,< TC3, 1 >,< TC4, 3 >,< TC5, 4 >,<
TC6, 1 >,< TC7, 2 >,< TC8, 1 >,< TC9, 2 >

Failure History: < Test case,Number of Faults >=<
TC2, 1 >,< TC4, 1 >,< TC5, 2 >

Several clusters are formed using these test cases and internally
prioritized using Equation (1) which are as follows.
Cluster-1:< TC5(2.44), TC1(0.22), TC9(0.22), TC8(0.11) >
Cluster-2:< TC2(1.33), TC7(0.22), TC6(0.11) >
Cluster-3:< TC4(1.33) >
Isolated Cluster:< TC3(0.11) >.
Test cases are formed similar cluster and ordered in descending
based on their calculated priority, where dissimilar cluster forma-
tion will be described in the subsequent step.

3.5 Step 5: Dissimilar Test Cases Cluster Formation
Dissimilar test case clusters are formed using internally prioritized
similar clusters from Step 4. Test cases having equal level of prior-
ity form a distinct dissimilar cluster together. Where, level of prior-
ity denotes the internal position of a test case inside a cluster. For
example, first dissimilar cluster will be formed with test cases hav-
ing first level of priority of prioritized similar clusters. This dissim-
ilar cluster generation process will be continued until two similar
clusters contain at least one test case. If only one similar cluster re-
mains for processing, the dissimilar cluster formation will be termi-
nated. The remaining similar cluster forms a separate cluster. The
whole process of dissimilar cluster formation is depicted in Figure
4, and example of it is given below.
For example, intra prioritized test cases in Step 4 will form the
following dissimilar clusters. The dissimilar clusters test cases are
internally ordered using their corresponding priority which is the
subsequent of the example of Step 4.

Dissimilar Clusters
Cluster−1 :< TC5(2.44), TC4(1.33), TC2(1.33), TC3(0.11) >
, Cluster − 2 :< TC9(0.22), TC6(0.11) >,Cluster − 3 :<
TC7(0.22), TC1(0.22) >, Cluster4 :< TC8(0.11) >

pseudocode [h] Dissimilar Cluster Formation Input: Similar clus-
ter Cs

Output: Dissimilar clusters Cdis [1] Begin Cs ← Read all similar
clusters Cn ← Number of similar clusters Cn ← {}
i to 1... |Cn| all clusters Ci ← Cs Cdis ← Cdis ∪ Ci{ti} Ci ←
Ci − {ti} End
The dissimilar cluster formation process is presented in Algorithm
3, which takes similar clusters (Cs) as input and generated dissimi-
lar clusters (Cdis) as output. The similar clusters are ordered based
on number of assigned test cases and the second highest cluster ele-
ment number is used to form empty dissimilar clusters (Cdis) (Al-
gorithm 3, line 4). Because, at least two non-empty similar clusters
are required processing dissimilar cluster formation. Top test cases
from each similar cluster are selected to create dissimilar clusters
(Algorithm 3 line 5-7). This process will iterated until at least two
similar clusters are remains with element.

Fig. 4. Dissimilar Cluster Formation Overview

The proposed dissimilar clustering prioritization approach is imple-
mented to re-order test cases in such a way, faults can be revealed in
early of the testing phase. This dissimilar clustering strategy uses
function call dependency connectivity graph G (V, E) to identify
dissimilarity between the test cases. The test cases are ranked in
descending order on the failure history and degree of connectivity
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value. The top ordered test cases indicate early fault detection, and
should be executed earlier than other test cases.

4. EVALUATION
The detailed experimental study, dataset and evaluated results are
demonstrated in this section. Also, the effectiveness of proposed
dissimilarity based test case prioritization strategy is evaluated.

4.1 Experimental Prioritization Method
Proposed dissimilarity based test case prioritization method is com-
pared with four different prioritization techniques named as Un-
treated Test case Prioritization (UTP), Random Test case Priori-
tization (RTP) and Similar Test case Prioritization (STP). Where,
UTP refers to normal ordering of test cases of a test suite and RTP
denotes random order of test cases of a test suite. On the other hand,
STP refers to similarity based test case clustering and ordered with
fault detection average weight.

4.2 Research Questions
In this thesis following research questions has been investigated:

RQ 1: Can the proposed method improve prioritization effective-
ness compare to UTP?

RQ 2: Can DTP technique performs better than RTP?
RQ 3: Can DTP strategy detect faults at early of testing phase com-

pare to STP?

4.3 Dataset
Two versions of three different projects named as JodaTime, Clo-
sure, and Chart from well reputed Defects4j dataset are used for
experimental analysis in this paper [12]. Defects4j dataset contains
20,109 tests and 357 bugs in each individual projects. Each ver-
sion of project contains buggy and fixed code segments with cor-
responding test cases. All the test cases are written in Junit test
method. Projects which are used as dataset for this paper experi-
mentation from Defects4j are shown in below.

Table 1. Used Dataset

Identifier Project name Number
of bugs

Number of
Test Cases

Closure Closure compiler 133 7,927
Chart Jfreechart 26 2,205
JodaTime Joda-Time 27 2,245

4.4 Environment Setup
The research work evaluation has been performed on a single per-
sonal computer having 2.5 GHz core i5 CPU and4GB memory run-
ning the Ubuntu14.04 LTS version operating system. To run De-
fects4j java 1.7, perl 5.0.10, git 2.10.1, and SVN 1.9.5 have been
installed. LAMPP server has been installed in order to execute php
scripts, which are used to generate dissimilar test suites.

4.5 Evaluation Metric
In test case prioritization technique, standard measurement metric
named as APFD (Average Percentage of Faults Detection) is used
to calculate the average fault detection percentage for the test suite
[2]. The limit of APFD result is 0 to 100, where higher number

indicates faster fault detection rate. Let a test suite T containing n
test cases; F denotes a set having m faults which is revealed by test
suite T. TFi is the position number of earliest test case of test suite
T which detects fault i. The APFD is calculated using the following
Equation (2).

APFD = 1− TF1 + TF2 + TF3 + ...+ TFm

n ∗m
+

1

2n
(2)

4.6 Result Analysis
The defects4j dataset mentions which test case actually fails in the
current version [12]. So, the rank of the first failing test cases pro-
vided by different approaches in each version is compared. The
mutation is done to increase the faults as there is only one fault per
version in defects4j. In the rest of this section research questions
answer is discussed.

Table 2. APFD based on Various Percentage of Test Execution
Datasets Methods APFD

Input
20% 40% 60% 80% 100%

Closure v2 UTP 36.53 36.53 42.30 100 100
RTP 19.61 45.38 57.69 78.07 100
STP 98.07 98.07 98.07 100 100
DTP 100 100 100 100 100

Closure v3 UTP 34.61 40.38 46.15 100 100
RTP 28.84 56.92 68.07 97.69 100
STP 86.53 96.15 100 100 100
DTP 94 100 100 100 100

Chart v2 UTP 10.52 10.52 42.10 100 100
RTP 13.68 32.63 64.21 88.37 100
STP 26.31 26.31 57.89 100 100
DTP 100 100 100 100 100

Chart v3 UTP 0 0 29.16 83 100
RTP 20 36.65 62.50 73.32 100
STP 54.16 87.50 100 100 100
DTP 79 79 79 96 100

Joda Time v2 UTP 0 20 20 100 100
RTP 10 18 64 94 100
STP 80 90 100 100 100
DTP 80 100 100 100 100

Joda Time v3 UTP 0 28 28 100 100
RTP 17 45.60 63 91 100
STP 72 88 92 100 100
DTP 80 90 100 100 100

4.6.1 Experimental results for RQ1. To evaluate RQ1, the result
of UTP and DTP is compared. In the experiment, for every project
of two versions, DTP performs better than UTP which is shown
in the Table 2. For example in Chart v3 dataset, APFD values of
DTP for different input size are 79%,79%,79% and 96% where
UTP APFD values are 0%, 0%, 29.16% and 83% respectively.
The various APFD results for UTP and DTP are averaged and fig-
ured out at Figure 5, where the area under the curve represents
the APFD, and it shows that APFD of proposed DTP method is
88.54%, which is higher than UTP 40.77%.

4.6.2 Experimental result for RQ2. RTP and DTP prioritization
methods are compared to answer RQ2. According to the Table 2,
APFD of RTP is lower than proposed method DTP. In the experi-
mental analysis for dataset Jodatime v3 the DTP APFD values for
different input sizes are 80%, 90%, 100%, 100% and 100% which
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Fig. 5. Average APFD of various prioritization schemes

Table 3. APFD Comparison
Dataset Version APFD (%)

UTP RTP STP DTP
Closure v2 36.91 49.00 52.98 87.74

v3 28.24 45.90 84.43 81.19
Chart v2 46.73 54.46 95.55 95.10

v3 47.91 59.77 87.23 90.32
Joda Time v2 41.32 49.61 90.84 92.12

v3 43.52 50.26 83.02 84.79
Average 40.77 51.50 82.34 88.54

are always higher than RTP APFD values 17%,45.60%,63%, 91%
and 100% respectively. The various APFD results for RTP and DTP
are averaged and figured out at Figure 5. According to Figure 5, the
area under the curve represents the APFD, and it shows that our
DTP method APFD is 88.54%, which is higher than RTP APFD
51.50%.

4.6.3 Experimental results for RQ3. Test case prioritization ef-
fectiveness of STP and DTP is evaluated to get the RQ3 an-
swer. In this paper the proposed method DTP detects faults ear-
lier than STP in 66.67% cases which is measure according to
the APFD metric. According to the Table 2 for dataset Jodatime
v3, the calculative APFD for proposed DTP method for various
input size are 80%,90%,100%,100%,100% where STP APFD is
72%,88%,92%,100% & 100% respectively.
The various APFD results for STP and DTP are averaged and fig-
ured out at Figure 5, where the area under the curve represents the
APFD, and it shows that our DTP method APFD is 88.54%, which
is higher than STP APFD 82.34%.

4.7 Discussion
Table 3 and Average APFD figure 5 show the results of experi-
ment on three different projects. The table shows that the perfor-
mance ranking of four different test case prioritization techniques
are UTP < RTP < STP < DTP for three projects datasets
based on APFD metric calculation. APFD values of UTP and RTP
techniques are always lower than proposed DTP technique; and
66.67% cases DTP have higher APFD value than STP method. The
box-plot of figure 6 represents the average APFD value of each test
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Fig. 6. Box plot of Several Prioritization Techniques

case prioritization method of three projects where DTP has higher
value 88.54% compare to UTP, RTP, and STP 40.77%, 51.50%, and
82.344% value respectively. That means the dissimilar test suite se-
lection can reduce the test case execution time and maximize the
fault detection rate.

4.8 Threats to Validity
Without the prior concern of internal dependent variables and ex-
ternal conditions threats may raise in prioritization system. The po-
tential threats to the validity of the studies will be related to the
regression test case dataset. More specifically, the absence of pre-
vious version test case and failure history may affect the final ac-
curacy, which is one of the threat of proposed dissimilarity based
approach.

5. CONCLUSION
This paper presents a dissimilarity based test case prioritization us-
ing historical failure data. The main contribution of this work is to
reorder test cases for improving performance of prioritization us-
ing dissimilar test cases and previous testing failure information.
The proposed technique combines failure history, and regression
versions’ test cases (current and previous) for prioritization. At
first similarity is measured between two test cases using call de-
pendency graph which leads to form several similar clusters. Intra
cluster test cases are ordered using previous testing failure infor-
mation. Finally test cases are selected from every distinct cluster
to create the new dissimilar test suite. This technique has been ex-
perimented on Defects4j dataset which includes three java projects
named as JodaTime, Closure, and Chart. The proposed prioritiza-
tion framework is evaluated with the well known measurement met-
ric named as Average Percentage of Fault Detection (APFD). Per-
formance of proposed dissimilar approach has been compared with
untreated, random and similar clustering scheme, and found that
54.95%, 41.83% and 7.00% better result respectively. The inves-
tigated results reveal that the use of dissimilar approaches proves
the effectiveness of prioritization in terms of higher rate of fault
detection, compared with existing untreated, random and similar
approaches. Dissimilarity based clustering still has a certain extent
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of similarity among the intra-cluster test cases. Minimizing those
similarity will be the future direction of this research.
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