
International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.17, February 2018

27

Improving Privacy of OpenID Cloud Identity Management

Framework: Formal Analysis, Verification of Protocol

Roshni Bhandari
Department of Computer

Engineering
S. S. Agrawal Inst. Of Engg. &

Technology, Navsari

Dhiren Patel
Department of Computer

Engineering
National Institute of

Technology, Surat, India

Brijesh A. Bhandari
Department of Computer

Engineering
S. S. Agrawal Inst. Of Engg. &

Technology, Navsari

ABSTRACT

Cloud computing is a new trend of computing paradigm that

provides a set of scalable resources on demand. However, it

also being a target of cyber attacks and creates risk for data

privacy and protection. An Identity Management System

(IDM) supports the management of multiple digital identities

for authentication and authorization. The various identity

management frameworks that help making Cloud

environment more secure. OpenID 2.0 is a user-centric Web

single sign-on protocol with over one billion OpenID-enabled

user accounts, and thousands of supporting websites. The

security of the protocol is critical.

In OpenID Identity Management Framework, User Privacy is

the issue. In this paper we had introduced the results of a

systematic analysis of the OpenID authentication protocol

using scyther tool. Our formal analysis reveals that the

protocol does not guarantee the authenticity and integrity of

the authentication request, and it lacks bindings among the

protocol messages and the browser. We provide a simple and

scalable defense mechanism for service providers to ensure

the authenticity and integrity of the protocol messages.

General Terms

Identity Management, User Provider, Service Provider,

Identity Provider, Cloud Computing

Keywords

Single Sign-on, OpenID, Authentication, Protocol Analysis

1. INTRODUCTION
Cloud Computing is the use of computing resources

(Hardware and Software) that are delivered as a service over

an Internet. Today’s Identity Management infrastructures are

adhocracies, built one application or system at a time. The

result is a spider web of overlapping repositories, inconsistent

policy frameworks and process discontinuities. The resulting

systems are error-prone, expensive to manage and riddled

with security loopholes. To address this scope and

complexity, a simple model is required-a framework that can

be used to discuss the major business issues and how to deal

with them effectively and efficiently.

A framework will serve as a basis for vital understanding

between business management and technical managers on all

identity management initiatives. For Cloud Computing, one

has to carefully choose appropriate Identify Management

framework that can support large number of users running

applications in Virtualized environment. In identity

management frameworks there is requirement of preserving

user privacy and as well as user identity. Thus there is a need

for a privacy preserving protocol that doesn’t adversely affect

the adjoining identity management protocols. OpenID 2.0 is a

user-centric Web single sign-on protocol with over one billion

OpenID-enabled user accounts, and tens of thousands of

supporting websites.

OpenID 2.0 is a decentralized web Single-Sign-On solution.

In the OpenID, users are free to choose their own OpenID

provider and do not require any pre-registration of service

provider to identity provider. While the security of the

protocol is critical, so security analysis is required. Based on

the analyses, three weaknesses of the OpenID protocol were

identified: (i) a lack of authenticity guarantee of the

authentication request, (ii) a lack of bindings between the

authentication messages and the browser, and (iii) a lack of

integrity protection of the authentication request the weakness

of the OpenID; authentication and integrity. The solution of

the said weaknesses improves the privacy of the users. These

backgrounds motivated for the current research work. Some

of the commonly agreed upon goals of identity management

are: A formal specification and analysis of the OpenID

protocol that identifies three weaknesses and correlates

possible attack vectors. A protocol is verified using Scyther

tool. Proposed mechanism is to prevent attacks that exploit the

uncovered weaknesses in the protocol.

2. MATERIALS AND METHODS
In this section, a summarization of the related work on

OpenID identity management framework. Several possible

threats are documented in the OpenID specification itself,

including (i) a phishing attack that redirects users to a

malicious replica of an IdP website, (ii) the masquerade of an

IdP by an Man-In-The-Middle attacker between the SP and

IdP to impersonate users on the SP, (iii) a replay attack that

exploits the lack of assertion nonce checking by SPs, and (iv)

a denial-of-service (DoS) attack that attempts to exhaust the

computational resources of SPs and IdPs.

The related work in Tsyrklevich and Tsyrklevich [1]

demonstrate a series of possible attacks on the OpenID

protocol: (i) a malicious user could trick an SP to perform port

scans and exploit non accessible internal hosts; (ii) an MITM

attacker between the SP and IdP could perform two distinct

DH key exchanges with each party to sign authentication

assertions on behalf of the IdP; (iii) an IdP could track all the

websites a user has logged into via the return to parameter;

(iv) a network attacker could sniff the wire to intercept an

authentication response to log into the SP as the victim user;

and (v) a Web attacker could insidiously log a user into her SP

via a cross-site forged login request.

Barth et al. [2] introduce login CSRF, in which an attacker

logs the victim into a site as the attacker by using the victim's

browser to issue a forged cross-site login request embedded

with the attacker's user name and password. The authors also

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.17, February 2018

28

illustrate how the session swapping attack works in OpenID

and in PHP cookie-less authentication. In the case of OpenID

session swapping, the attacker first signs into Service Provider

using the attacker's identity, intercepts the authentication

response, and then embeds the intercepted response in a web

page that victims will visit.

Cross-site request forgery that enables an unauthorized and

unrelated “third-party” website to retrieve information from or

perform actions on the “first-party” website that the user has

voluntarily interacted.

Security Analysis of OpenID [3] The Author examined the

OpenID extension framework and found that, due to an

improper verification of OpenID assertions, the extension

parameter values sent within the OpenID protocol could be

manipulated if the channel is not SSL-protected.

Attribute exchange security alert [4] The Author found some

SP implementations do not check that the information passed

through Attribute Exchange extension was signed, which

allows an attacker to modify the profile attributes returned

from an IdP.

2.1 OpenID Authentication Protocol
The main flow of OpenID is shown in Figure 1 and is detailed

as follows [5]:

2.1.1 The user requests access to a service or resource at the

SP site. At this moment, we assume that the user is not

authenticated.

2.1.2 The SP requires the authentication of the user and asks

for his OpenID identifier. In order to do so, the SP shows the

user a OpenID login page, where he can supply an OpenID

identifier.

2.1.3 The user provides an OpenID identifier. He may have

several identifiers, and he can choose which one to use.

Additionally, OpenID 2.0 allows the user to simply provide

the identifier of his identity provider, enhancing this way his

privacy by reducing the chances of being traced through his

identifier.

2.1.4 The SP performs a discovery process using the supplied

identifier to locate the IdP of the user.

2.1.5 The SP and the IdP perform an association process, that

is, they generate a shared secret through a Diffie Hellman key

exchange. This shared secret will be used to verify subsequent

communications.

2.1.6 The SP constructs an authentication request and

redirects the user to the IdP site through an HTTP redirection.

We will assume that the Attribute Exchange extension is used,

so the SP also includes a petition for a set of attributes into the

authentication request.

2.1.7 The user gets authenticated by the IdP, for example, by

providing his credentials. OpenID does not define a method of

authentication, but password-based methods are the most

common ones.

2.1.8 The IdP constructs an authentication response, which

contains an assertion about the result of the authentication. In

case the SP asks for attributes, the IdP also includes their

values. Additionally, the IdP signs the request. The user is

then redirected back to the SP site in order to continue with

the authentication process.

2.1.9 The SP verifies the authentication response and reads

the attribute values included within.

2.1.10 The user gets authenticated at the SP site and is able to

access to the requested service.

Fig 1: OpenID Authentication Protocol [5]

2.2 Protocol Formalization
UP -> SP : i , Login Request

User UP selects an IdP, or enters her OpenID identifier i

(URL) into an OpenID login form on an SP. The browser B

then sends i (URL) to SP “Login Request”.

SP -> UP : IdP, i, h, SP, Auth Request

SP sends i (URL), h (optional), and a return URL r to IdP via

B to obtain an assertion “Auth Request”. The return URL r is

where IdP should return the response back to SP (via B).

UP -> IdP : IdP, i, h, SP, E(na, KUI) , UP to IdP

authentication

B sends i, r, and h to IdP. The user sends identity providers a

nonce na with a shared key k.

IdP -> UP : E(nb , kUI), k1=H(na,nb)

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.17, February 2018

29

IdP checks i and h against its own local storage. If h is not

presented, IdP generates a new session handle h and a session

key k. In addition, if a cookie that was previously set after a

successful authentication with UP is present in the request,

IdP could omit the next steps. IdP presents a login form to

authenticate the user. IdP sends UP another nonce nb also

encrypted with k. UP computes a new key k1 = H(na.nb) and

sends back IdP the value of nb encrypted with k1.

UP -> IdP : E(nb , k1), IdP authenticates UP on nb

UP provides her credentials to authenticate with IdP, and then

consents to the release of her profile information. IdP sends

UP another nonce nb also encrypted with k.

 IdP -> UP : IdP, i, h, SP, n, s , s=HMAC(IdP,i,h,SP,n,KSI)

IdP sends idp, i, h, r, n, and s to the URL specified in r via

Bdan “Auth Response”.

UP -> SP : IdP, i, h, SP, n, s, Assertion Validation

B redirects the authentication response to SP.SP computes sˈ

= HMAC(idp.i.h.r.n, k) over the received idp, i, h, r, and n,

and checks whether sˈ = s.

We have designed the security goals to analyze the OpenID

protocol. These goals will ensure that whether the OpenID

protocol meets its specific security requirements or not.

The security goals are specified as follows:

G1: RP authenticates IdP on the value of the signature s =

HMAC(IdP.i.h.RP.n, kRI).

When an SP receives an Auth Response, the SP has to check

that the Auth Response is generated by the IdP.

G2: RP authenticates IdP on the value of UB.

When an UP receives an Auth Request and Auth Response,

the UP has to check that the Auth Request and Auth Response

is generated by the IdP.

G3: IdP authenticates UB on the value of nb.

G4: The session key k1 = H(na.nb) should be kept secret

between UB and IdP. UP has been authenticated by the IdP.

G5: IdP authenticates SP on the value of the Auth Request

(IdP.i.h.SP).

When an IdP receives an Auth Request, the IdP has to make

sure that the Auth Request is originated by the SP.

G6: SP authenticates UB on the value of the OpenID identifier

i.

The SP needs to ensure the Login Request is initiated by the

UB with the user’s OpenID identifier.

3. THE OPENID VULNERABILITY

ASSESSMENT TOOL
Scyther and its GUI were developed by Cas Cremers in 2007

[6]. Scyther is an automatic push-button tool for the

verification and falsification of security protocols.

Scyther is freely available for Windows, Linux, and Max OS

X platforms. It can be downloaded from [7].

Scyther tool analyzed security protocols in three different

ways [6]:

1) Verification of claims: The input language of Scyther

allows the specification of security properties in terms of

claim events, i.e., in a role specification one can claim that

a certain value is confidential (secrecy) or certain

properties should hold for the communication partners

(authentication). Scyther can be used to verify these

properties or falsify them.

2) Automatic claims: If the protocol specification contains

no security claims, Scyther can automatically generate

claims. At the end of each role, authentication and secrecy

claims are added. This augmented protocol description is

then analyzed by Scyther as in the previous case.

3) Characterization: For protocol analysis, each protocol role

can be “characterized”. Scyther analyzes the protocol, and

provides a finite representation of all traces that contain an

execution of the protocol role. By manually inspecting

these patterns, one can quickly gain insight in the potential

problems with the protocol and modify it if necessary. For

example, the Needham-Schroeder protocol, Scyther

determines that there are only two patterns for the

responder role: one is the correct behavior of the protocol,

and the other is the well-known man-in-the-middle attack.

Hence, there are no other possible ways of executing the

responder role.

3.1 Defense Mechanisms
Hash-based message authentication code (H-MAC)

Data passes between a Sender and a Receiver, sometimes

through one or more intermediaries. The data contained in the

request message from the Sender influences the Receiver

behavior. There is a risk that an attacker could manipulate

messages in transit between the Sender and the Receiver to

maliciously alter the behavior of the Receiver.

Message manipulation can take the form of data modification

within the message, or even substitution of credentials, to

change the apparent source of the request message. Working

of Hash-based message authentication code involves the

following steps: The sender creates a MAC uses a shared

secret key and attaches it to the message. The sender sends the

message and MAC to the receiver.

The receiver verifies that the MAC that was sent with the

message by using the same shared secret key that was used to

create the MAC [8].

UP -> SP : i, t1, t1=HMAC(UP.i.kSP), Login Request

SP -> UP : IdP, i , h , SP, t2, t2=HMAC(UP,IdP,i,h,SP, kSI)

Auth Request

UP -> IdP : IdP, i, h, SP, t2, E(na, kUI), UP-to-IdP

authentication

IdP -> UP : E(nb , kUI), k1=H(na,nb)

UP -> IdP : E(nb , k1), IdP authenticates UP on nb

IdP -> UP : IdP, i, h, SP, t2, n, s ,

s=HMAC(IdP,i,h,SP,t2,n,KSI) Auth Response

UP -> SP : IdP, i, h, SP, t2, n, s.

When delivering a login form, SP generates token t1 and add

it to the login form as a hidden form field. kSP is a session

level secret key generated by SP. Token t1 is used to ensure

the login request is originated from the SP itself.

On receiving a login request, SP computes t1’ and checks

whether t1’= t1 from the request. If it is then SP initiates an

Auth Request with parameter t2 delivered to the return_to

URL of the Auth Request.

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.17, February 2018

30

On receiving an Auth Response, SP extracts t2 from the

return_to URL, computes t2’ and check whether t2’=t2 to the

Auth response signature validation.

The lack of security guarantee in the OpenID protocol .We

aimed to satisfy the following properties when designing our

defense mechanisms:

Completeness: The defense mechanism must address all

weaknesses uncovered from our formal model.

Compatibility: The protection mechanism must be compatible

with the existing OpenID protocol and must not require

modifications to IdPs and the browsers.

Scalability: Statelessness is a desirable property of the defense

mechanism.

Simplicity: it should only use cryptographic functions (i.e.,

HMAC) and data that are readily accessible to SPs.

4. EXPERIMENTAL RESULTS
We formally model the OpenID authentication protocol in

Scyther tool.

The main goal of the OpenID authentication protocol is to

check to a service provider that the user owns a specific

OpenID URL controlled by the identity provider.

Fig 2: Scyther output of OpenID Authentication Protocol

Compromising G2

Fig 3: Session swapping and impersonation attack on

OpenID authentication protocol

The violation of the G2 goal reveals that the OpenID protocol

lacks bindings between the Auth Request, Auth Response, and

the browser. This means that when an SP receives an Auth

Response, the SP cannot assert that the Auth Response is sent

from the same browser through which the authentication

request was issued.

The lack of contextual binding in the protocol enables many

possible attacks when an Auth Response is intercepted by an

intruder, such as (1) a session swapping attack that forces the

user’s browser to initialize a session authenticated as the

attacker, (2) an impersonation attack that impersonate the user

by sending the intercepted Auth Response via a browser agent

controlled by the attacker.

Compromising G5

Fig 4: A SSO CSRF and parameter forgery attack on

OpenID authentication protocol

The violation of the G5 goal indicates that the authenticity and

integrity of the Auth Requests are not protected by the

OpenID protocol. That is, an IdP might accept an Auth

Request sent from the intruder or the Auth Request might be

altered during the transmission. This weakness could be

exploited in many ways, such as (1) a SSO CSRF attack that

forces the victim to log into her RP website by sending a

forged Auth Request via the victim’s browser, (2) a parameter

forgery attack that manipulates the victims profile attributes

requested by the RP websites through a modification of the

Auth Request within the protocol. Compromising G6

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.17, February 2018

31

Fig 5: A SSO CSRF Attack via Login Request on OpenID

Authentication Protocol

5. VERIFICATION OF MODIFIED

OPENID AUTHENTICATION

PROTOCOL
The defense mechanism of the OpenID Authentication

Protocol is stateless, and designed to be implemented

completely on the SP server-side. All required cryptographic

functions (i.e., HMAC) and data (i.e., Auth Request) are

readily accessible to the SP. The mitigation approach uses an

HMAC function to bind the session identifier to the protocol

messages in order to provide binding and ensure the integrity

and authenticity of the authentication request. Using an

HMAC code as a validation token avoids the exposure of the

session identifier, and prevents an attacker who learned the

token from inferring with the user’s session identifier. For SPs

that support an OpenID extension, the extension request

parameters can be included in the return_to URL to be

protected by the defense mechanism.

Our defense mechanism prevents SSO CSRF via Login

Request attacks as an attacker is not able to compute the

validation token t1 without knowing the session identifier and

the SP’s secret key. SSO CSRF via Auth Request and session

swapping attacks are mitigated as well, because the session

identifier in the attacker’s browser session is different from

the one in the victim’s browser. The integrity of Auth Request

is guaranteed as the Auth Request is accompanied by an

HMAC.

Fig 6: Scyther output of modified OpenID authentication

protocol

6. CONCLUSION
We conducted a formal model checking analysis of the

OpenID 2.0 protocol.

From the present study following conclusions are drawn:

Our model checking analysis revealed that the OpenID

protocol does not provide an authenticity or

integrity guarantee for the authentication requests. We have

improved it to provide a simple and scalable defense

mechanism for service providers to ensure

the authenticity and integrity of the protocol messages.

In future work, we plan to do analysis of other identity

management frameworks.

7. REFERENCES
[1] Barth A, Jackson C, and Mitchell JC, Robust defenses

for cross-site request forgery, In Proceedings of the 15th

ACM Conference on Computer and Communications

Security (CCS’08), New York, USA, 2008.

[2] Sovis P, Kohlar F, and Schwenk J, Security analysis of

OpenID, In Proceedings of the Securing Electronic

Business Processese Highlights of the Information

Security Solutions Europe 2010 Conference; October

2010.

[3] Lindholm A. Security evaluation of the OpenID protocol,

Master of Science Thesis, Royal Institute of Technology,

2009.

[4] Wang R, Chen S, and Wang X, Attribute exchange

security alert, http://openid.net/2011/05/05/attribute-

exchange-securityalert

[5] Nunez D, Agudo I, and Lopez J, Integrating openid with

proxy re-encryption to enhance privacy in cloud-based

identity services, in Cloud Computing Technology and

Science (CloudCom), 2012 IEEE 4th International

Conference on, 2012.

[6] Cremers C, Scyther tool,

http://people.inf.ethz.ch/cremersc/scyther

[7] Cremers, C. Scyther - semantics and verification of

security protocols, Ph.D. dissertation, Eindhoven

University of Technology, 2006.

IJCATM : www.ijcaonline.org

