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ABSTRACT

This paper presents a novel hierarchical synthesis for approximat-
ing field-programmable gate array (FPGA) based adders and mul-
tipliers. Our proposed work implements the multiplier design with
the following contributions: 1) providing four types of single-bit
approximate adders to cover a wide range of energy-quality trade-
offs, 2) presenting many approximations of multipliers by employ-
ing the single-bit adders, 3) substituting corresponding bits of the
approximate multiplier by considering the quality constrains of the
results. The novel hierarchical synthesis of the approach has been
integrated into our prior project, an FPGA-IoTmesh system in the
field of fog computing for hardware acceleration. Combining the
merits of reconfigurability of FPGAs and long-distance connection
of CSRmesh technology, this work creates a diverse range of appli-
cations such as approximate designs at the network edge, as well as
showing a demo for Internet-of-Things (IoT) connections covering
an entire building.
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1. INTRODUCTION

Today, Internet-of-Things (IoT) is becoming an hypernym for a
host of applications ranging from smart home/building, to intel-
ligent farming, to industrial IoT as well as edge/fog/cloud com-
puting to support them. To meet heterogeneous requirements for
IoT, therefore, some reconfigurable architectures such as field-
programmable gate arrays (FPGAs) have been integrated into con-
ventional servers to improve the flexibility of the entire system. As
an example shown in Fig. [I), in this integrated system the FPGA
is employed in a fog node to speedup the computation and pre-
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process data would be transferred to the cloud. In such a way the
raw data can be significantly reduced and refined before pushing up
to the higher abstract levels such as cloud or fog datacenters.
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CSRmesh Network
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Fig. 1: FPGA-CSRmesh Integrated Fog System

The integration of FPGAs and cloud servers has been proved and
evaluated by many implementations such as the Microsoft Bing.
Generally Microsoft Bing reaps the benefits in two ways: 1) by
embedding 6 x 8 torus of high-end Stratix V FPGAs into a half-
rack of 48 machines, the throughput is increased by 2.25 times,
which means that fewer than half as many servers would be needed
to sustain the target throughput at the required latency; 2) because
the FPGA is able to process requests while keeping latencies low, it
is able to absorb more than twice the offered load while executing
queries at a latency that never exceeds the software data center at
any load [4] [19].

Under this context, in this paper we integrate the FPGA based
high-speed computation system with an IoT network, capable of
reducing the latency and improving the power efficiency. The latest
Bluetooth Low Energy (BLE) mesh technology is used to solve the



problem for extending the connection distance for IoT. Fig.2]shows
the IoT network demo, involving 4 devices, the host controller, the
moisture/temperature sensor, the motor equipment, and the light
system. All these devices are self-fabricated and used to establish
the network [23]], [7]. As shown in this figure, the IoT server/host is
placed in lab 128 to make connection of all other device. The motor
controller, LED and thermal/humidity sensor are set in lab 110, lab
119B, and lab 126. The network is established to connect all the de-
vices together and collect & send all the raw data to the fog nod. In
this prototype, the thermal/humidity sensor is over the connection
distance to the server/host. Notice that the LED board is thus used
as a mesh relay to extend the communication distance to make the
connection out of direct point-to-point range. Ideally, the network
range can be expanded to a larger area to cover an entire building,
farm, and factory, through employing the BLE mesh technology.
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Fig. 2: CSRmesh Network Demo [23]]

Integrated the mesh network with the FPGA based fog node, the
platform shown in Fig. [[] can be used as a smart home/building
system. By approximating the FPGA designs with imprecise com-
ponents such as adders and multipliers, the raw data collected from
the network can be computed faster and lower power consumption.
One of the big challenges of this integrated system is the hard-
ware programmability on FPGAs. Basically, FPGA development
needs to balance resource cost with algorithm accuracy and exten-
sive hand-coding in register-level transfer (RTL). To fill the gap
between software programming and hardware design and provide
more RTL choices for different project requirements, we present
a basic FPGA design library including five different accuracy lev-
els of components for the beginning of the project: exact design
(EX), approximate design #1 (AP1), approximate design #2 (AP2),
approximate design #3 (AP3) and approximate design #4 (AP4).
More specifically, the main contributions of this paper are:

1) to present five approximation degrees of adders and multipliers
and estimate the average/maximum error distances with consider-
ing all the possible test cases;

2) to evaluate the tradeoffs between design accuracy and resource
cost, by which users can choose computation components depend-
ing on different applications and requirements;

3) to employ different approximate components to implement ap-
plications on the algorithm level. As a case study, one essential
operation of the image processing and computer vision algorithm,
the histogram equalization, has been implemented and estimated.

2. RELATED WORK

In the design of energy-efficient digital systems, approximate com-
puting is considered as a possible solution in many application
domains. Some of the operations used in this area are intrinsi-
cally error-tolerant, such as multimedia, recognition, and data min-
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ing [10] [6] [21] and [8]. For these kinds of applications, approxi-
mate computing is severed as an important part to reduce the design
area, power consumption, and computation delay in the digital sys-
tems. This is a tradeoff between accuracy and performance, that we
sacrifice accuracy to gain better performance in energy efficiency.
Basically, adders have been commonly considered for the approxi-
mate implementation as one of the important components in the cir-
cuit design. Some of the approximate adder has been discussed in
[12] [9] [14]. These works focused on the subcomponent designs,
however, the impact of the approximations on structural implemen-
tations has not been considered. In most of the applications, the
improvement on system-level has a greater potential to improve the
circuit and system performance [25] [24] [22]. The implementation
of multipliers usually has three steps: partial product configuration,
product accumulation, and the bit shifters. Ref. [13] designed the
approximate adder to produce the radix-8 booth encoding 3 x with
error reduction. [11] used 2 x 2 approximate multiplier blocks
to compute the final results. And [9] had introduced approximate
speculative adders used in the third step of a multiplier.

Recently IBM [17]], Intel [16], Microsoft [2], [1], [S] and a lot
of companies and research groups [20], (3], [15], [18], [26] pro-
posed some effective results on approximate computing. However,
most of them are limited to the software applications. Due to the
advantages of the pure hardware implementations, such as the re-
configurability and hardware parallelism, we believe that the FPGA
integrated system will be adopted in the future or next-generation
of high-performance fog/cloud systems. In this paper, thus, we pro-
pose a set of approximate FPGA design components, in order to
find a better balance between accuracy and power cost, with provid-
ing a wide rang of solutions for different energy-quality tradeoffs
corresponding to different applications.

3. PROPOSED WORKS - APPROXIMATE ADDERS
AND MULTIPLIERS

In this section, we start from the fundamental single-bit adders’
design. Then, four approximate additions are adopted to implement
the 4-bit multipliers as a case study. The tradeoffs between accuracy
and resource cost are further estimated.

3.1 Approximate adders

The sum and carry bits, denoted as Sum and Cout, of the conven-
tional single-bit full adder can be expressed as

Sum(EX) = A'B'C + ABC' + AB'C' + ABC. (1)

Cout(EX) = AC + BC + AB. 2)

where A and B represent 2 single-bit inputs and C indicates the
carry-in bit.

In what follow, we modify the K-map of the basic single-bit adder
in order to reduce the gate count. As an example shown in Fig.[3(a)]
the Sum result is modified from 1 to 0 and the Cout result is
changed from O to 1 when A=1, B=0 and C=0. After plotting the
maximum group of 1’s on the map, the algebraic expressions can
be simplified as

Sum(AP1) = ABC' + ABC + A'B'C. 3)

Cout(AP1) = A+ BC. )
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Fig. 3: Algebraic expressions of Approximate Additions

Comparing with the conventional full adder design, the AP1 design
simplifies algebraic expressions so as to reduce the hardware cost
and power consumption. Likewise, Fig. B(b)} and [3(d)] also
show the modified K-maps of the other three different approximate
adders. In the same way the algebraic expressions can be rewritten
as

Sum(AP2) = AC + BC + A'B (5)
Cout(AP2) = A (6)
Sum(AP3) = B+ A'C ©)
Cout(AP3) = A @)
Sum(AP4) = B )
Cout(AP4) = A (10)

It can be observed that the AP1 expression costs the largest number
of gate count and the AP4 consumes the least in the four approx-
imate designs. In theory, the implementation with more resource
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cost, is likely to achieve higher accuracy and vice-versa, which will
be proved in the following section.

3.2 Approximate multipliers’ design and evaluation

Based on the aforementioned adders’ design, the 4-bit unsigned
multipliers can be implemented in this section. Basically, a binary
multiplication requires shifting and adding, as shown in Fig. ] In
this figure, all the product bits, from the least significant bit (LSB)
to the most significant bit (MSB), are calculated by exact adders.

! 0 ! ADD1

0 0 0
1 0 1 1 i
ADD3

1 0 1 1

1 0 0 0 1 1 1 1
EX7 EX6 EX5 EX4 EX3 EX2 EX1 EX0

Fig. 4: 4-bit Multiplication

To estimate the accuracy of the approximate multiplications, we
replaced the exact single-bit adders by approximate adders (AP1,
AP2, AP3, and AP4) from LSB to MSB. The error distance (ED),
formulated as ED = Absolute(R — Rx) where R represents the
exact result and R* indicates the approximate result, is applied to
evaluate the multiplications’ accuracy. Since the 4-bit multiplica-
tion has 24 x 2% = 256 possible combined inputs, the average error

255
distance (AED) can be written as AED = %.
Experimental results in Fig. [5(a)] demonstrate our expectation, that
the AP1 based design achieves the minimum average error distance
in all the approximate implementations, it costs the most gate count
however. For example, in the case of replacing all the 8-bit addi-
tions, the average error distances are 16.25, 18.23, 18.09, and 26.25,
using AP1, AP2, AP3, and AP4, respectively.
The maximum error distance (MED) is also applied to estimate the
worst case of the approximate designs, which can be formulated as
MED = ma${EDO,ED1,ED2, ...... ,ED255}.
As shown in Fig.[5(B)] the worst case for each approximate design
happens when all the 8-bit additions are modified. For example,
when they are replaced with AP1 and AP2, the maximum error
distances are 81 and 105, respectively.

4. IMPLEMENTATION

As a case study, the histogram equalization algorithm is used to
estimate the performance of the approximate computations in this
section. Generally the histogram equalization is used to enhance
the contrast of images by transforming the values in an intensity
image, or the values in the colormap of an indexed image, so that
the histogram of the output image approximately matches a speci-
fied histogram.

The pseudocode for implementing the histogram equalization algo-
rithm is depicted in Algo.[T] It basically contains two procedures. In
procedure##1 we count the number of each grayscale pixel. Then,
the histogram results are computed in procedure#2 as the divi-
sion of the approximation of multiplications over the size of the
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Fig. 5: Error Data

Algorithm 1 The Histogram Equalization Algorithm Design with
Approximations

Input: Pizel array p[i](i = 1 — 256); pizel number s[i] of
value =1 —1;
Output: Configurated pizels : s[j];
1: procedure #1 - FIND THE NUMBER OF GRAYSCALE PIX-
ELS:(s[i] — pli])

2: initialize : s(0) = p(0);

3: for (i = 1;4 < 25655 =i+ 1) do

4: slt] = pli] + s(2 — 1);

5: end for

6: end procedure

7: procedure #2 - HISTOGRAM EQUALIZATION:(s[i])
8: for (j =1;7 <256;5 =i+ 1) do

9 slj] = ez aane,

10: if (s[j] < 256) s[j] = 256;

11: end for

12: end procedure

image. Finally the regulated results are distributed to each pixel in
order to achieve a better image with improved contrast.

Fig. [6] and [7] show the results of rgb and grayscale images, re-
spectively. To demonstrate the difference, we use the peak signal-
to-noise ratio (PSNR), a term for the ratio between the maximum
possible power of a signal and the power of corrupting noise that
affects the fidelity of its representation, as one of the performance
estimation parameters. It can be formulated as:

2
PSNR =10 x log;, %; (11)

where MSE is the mean squared error. Typical values for the PSNR
in lossy image and video compression are between 30 and 50 dB,
provided the bit depth is 8 bits, where higher is better.
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Fig. 7: Equalized Grayscale Image

First, we compare the Fig. [6(a)] and Fig. It can be observed
that the equalized rgb image achieves higher contrast compared
with the original image using the exact multipliers. From Fig.
to Fig. the quality of the results has been degraded but the
contrast is still enhanced compared with the Fig. [6(a)] The higher
approximations of the multipliers are employed, the worse quality
of the results.

Similarly, Fig. [7] depicts the experimental results of the grayscale
images. Note that the higher approximation degrees of the multi-
pliers are employed, the lower of the PSNRs are achieved.



5. EXPERIMENTAL RESULTS

Using the four approximate multipliers in the histogram equal-
ization, the histograms of RGB images and the histograms of
grayscale images are shown in Fig. |§| and Fig. 9] respectively. The
goal of using the histogram equalization is to make the images to
use entire range of values available to them.

Basically, histogram equalization is a nonlinear normalization that
stretches the area of histogram with high abundance intensities and
compresses the area with low abundance intensities. As an exam-
ple shown in Fig. El the equalized grayscale image is flattened in
Fig.P(b)]compared with the original Fig.[9(a)] More important, the
quality of the equalized results of Fig..l@lare not as good
as Fig. P(b)]due to the imprecise multiplications, however, the im-
ages are normalized to the original image in Fig. [P(a)] In some of
the application domains with a tolerance of errors, the imprecise
results are acceptable within the quality bound, and the resource
cost and power consumption can be significantly reduced due to
the approximating designs.

6. CONCLUSION

In this paper, we presented a new methodology to design approxi-
mate adders and multipliers that exchange the single-bit computa-
tion based on different applications. The experimental results show
that our proposed work achieves similar results to the exact de-
sign on a very common image processing algorithm, the histogram
equalization. As a tradeoff, the hardware resource cost can be sig-
nificantly reduced due to the imprecise computation on FPGA. Our
future work will keep developing more approximate design com-
ponents in our approximate library and focus on more complicate
algorithm on image processing and data mining.
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