
International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.18, February 2018

1

To Study the Functionality and Performance of Web

Services

Dharmendra Choukse
Institute of Engg. & Science

IPS Academy

Indore, India

Umesh Kumar Singh
Institute of Comp. Science

Vikram University

Ujjain, India

ABSTRACT

Nowadays, the ability to smoothly exchange information

between internal business units, customers, and partners is

essential for success. On the other hand, most administrations

service a variety of disparate applications that store and

exchange data in different ways and therefore cannot "talk" to

one another effectively. Net Application and Access models

have evolved as a practical, cost-effective solution for

consolidate information distributed between critical applications

over the operating system, platform, and language barriers that

were previously blocked. This study presents the analytical

review of Web services functionality and their performance

through latency and throughput.

Keywords
Webservices,UDDI,SMTP,XML

1. INTRODUCTION
Web services are software mechanisms that communicate using

pervasive, standards-based Web technologies including HTTP

and XML-based messaging and this structure are based on a

collection of standards and protocols that allow us to make

handling requests to remote systems by delivering a standard,

nonproprietary language and using conventional transport

protocols such as HTTP and SMTP. The efficient e-business

perception calls for a smooth integration of business processes,

applications, and Web services over the Internet. Web service

technology enables e-business and e-commerce to become a

reality. It has become a competitive tool for companies by

reducing cost through fast, efficient, and reliable services to

clients, dealers, and partners over the Internet. It permits more

efficient business processes via the Web and improves business

chances for companies, Web services are planned to be accessed

by other applications and differ in complication from primary

activities, such as examine a banking account balance online, to

complicated processes running CRM (customer relationship

management) or enterprise resource planning (ERP) systems

because these are based on open standards such as HTTP and

XML-based protocols including SOAP and WSDL. Web

services are powered by XML and three other core technologies:

WSDL, SOAP, and UDDI. In a Web service model, a service

supplier proposals Web services which deliver tasks or business

operations which can be arranged over the Internet, in the hope

that they will be invoked by partners or customers; a Web

service requester defines requirements to trace service provider.

Publishing, binding, and discovering Web services are three key

tasks in the model. Discovery is the process of finding Web

services provider locations which satisfy specific requirements.

Web services are useless if they cannot be discovered. So,

discovery is the most important task in the Web service model.

The Web service model in Fig. 3.2 shows the interaction

between a service requester, service providers, and a service

discovery system.

1. The service providers proposal Web services which
deliver functions or business operations. They are formed by
companies or societies. In order to be invoked, the Web services
must be defined. This will facilitate discovery and arrangement.
WSDL or service profile of semantic Web service is used to
carry out this task.

2. The Web service requester defines requirements in order
to locate service providers. Service requesters usually contain a
description of the Web service, though it is not a Web service
which can run on the Internet. The requirements are typically
defined by WSDL, service template or service profile.

3. The Web service discovery or service registry is a broker
that provides registry and examine tasks. The service providers
advertise their service info in the discovery system. This info
will be kept in the registry and will be searched once there is a
demand from service requester. UDDI is used as a registry
typical for Web service.

Figure 3.2: Web Services Model

The above three mechanisms interact with each other via
publishing, discovery, and binding operations. These operations
are elaborated upon as follows:

1. Publish: the Web service providers publish their service
information through the discovery system for requesters to
discover. Through the publishing operation, the Web service
provider stores the service description in the discovery system.

2. Discovery: the Web service requesters repossess service
providers from the service archive. Based on service
explanations, which describes the requests of the Web service
clients, the discovery system will output a list of Web service
suppliers which satisfy the requirements.

3. Bind: After discovering, the discovery system provides
some Web service providers. The Web service requester invokes

Find
Publish

Request / Response

UDDI Registry

Web Service

Consumer
Web Service

Provider

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.18, February 2018

2

these Web service providers. The binding occurs at runtime. The
Web service requesters and Web service providers will
communicate via SOAP protocol which is an XML based
protocol for Web service exchange information.

2. LITERATURE SURVEY
While an effective feedback mechanism has been identified as a

key feature in building a successful electronic marketplace [7],

the lack of effective mechanisms to provide feedback,

performance measures and reputation systems have been

identified by practitioners as significant issues in the adoption of

Web service electronic marketplaces [8]. In an information

service based situation, an effective device that reports on the

quality and performance of the information service is an

important feature. Since Web services are provided in

information-based service environments, it is important to

evaluate their quality & performance and to develop a feedback

mechanism to provide adequate information for the client’s

decision-making activities.

Maximilien and Singh (2002)[10] proposed a conceptual model

for Web service standing, using which repute information can be

prearranged and shared and service selection can be facilitated

and automated. [10] Discuss the significance of considering key

attributes of the Web services’ presentation and assigning them

weights based on their relative influence on their overall

reputation in reputation systems in the business domain. [10]

Present a theoretical model of presentation driven Web service

collection and highlight the importance of defining the

dimensions to measure the quality and performance of Web

services. While[10] address the technical condition of such Web

service selection mechanism, they do not specify the

presentation and quality dimensions of Web services that are

essential to inform this quality-driven Web service selection

process. Our literature review reveals that while extant literature

is familiar with the significance of measuring the quality and

presentation of Web services, it does not provide metrics that

take into account the technical and business dimensions of Web

services in an electronic marketplace.

IBM defines Web services as a technology that allows

applications to communicate with each other in a platform- and

programming language-independent manner [11]. In added

words, a Web service is a software interface that describes a

gathering of processes that can be accessed over the network

using identical messaging protocols. A Web service is basically

a special type of electronic service. The literature stream in the

quality and performance of electronic services is a applicable

and useful literature stream to help describe the quality and

performance measures of a Web service [12], considered one of

the early assistances to the field e-services quality, have

proposed measures for the quality of e-services as a

multidimensional construct. However, [12] assert that the

various potential dimensions have to be examined more

methodically since no consensus on the related dimensions of

this multidimensional construct has been reached.

3. REQUIREMENT FOR WEB SERVICES

MODEL
The service providers of Web services extend their service
descriptions with logical statements about quality oriented
services (QoS) associated with the entire interfaces or individual
components. Fig. 3.3 gives the sequence of events and
communication between the entities involved in quality oriented
Web services.

The service requestor requests the binding information with
the QoS. Depending on the QoS requirements, the broker
searches the UDDI for the listed services available, and while

performing the QoS negotiation by comparing the required and
offered QoS, the broker finally determines a QoS that is
acceptable to both parties. In this method, the binding is built,
and the communication between the service provider and service
requestor eventually starts. To support QoS, the developers

should be willing to incorporate significant design changes to
the system, because individual QoS attributes cannot be utilized
independently of the existing components.

The other requirements of the web services model are
Reliability, Scalability, Integrity, Availability, Accessibility, and
interoperability is well defined in.

4. EXEPERIMENTAL SETUP
The ASP Dot net Mobile Store Sample Application [MSSA] was
developed within the ASP BluePrints Program [MSSA] at
Visual Studio 2016, Inc. It demonstrates how to use the
capabilities of the Dot net platform to create robust, scalable and
portable e-business applications. It comes with full source code
and documentation, allowing application developers to
experiment with dot net technologies and learn how to use them
effectively to build their own enterprise solutions. Mobile Store
also includes Web Service interfaces to some of its services. The
goal is to showcase the use of Web Services within the Dot Net
platform. Following is a brief description of Mobile Store based.

The Web site presents an online interface to the store, through
which customers can shop and place orders. When a customer
finishes a request, the latter is sent to the order fulfillment center
for processing. Hence the Website functional unit can be thought
of as the front end of the enterprise. The fulfillment center, on
the other hand, has an order fulfillment component and a
supplier component. The fulfillment center processes orders
based on the enterprise’s business rules manage financial
transactions and arranges for products to ship to customers.
Because not all products are in stock at any given moment, order
processing may occur over a period. Managers and other
suppliers may relate through the fulfillment center. This portion
of the business is discussed to as the back end. Although the
supplier component is part of the sample application, it could
just as easily be a service external to the application.

The new sample application comprises four separate sub-
applications, each of which is an ASP Dot Net application:

1. Mobile Store E-Commerce Web Site: A Web application
that shoppers use to purchase merchandise through a Web
browser.

2. Mobile Store Administration Application: A Web
application that enterprise administrators use to view sales
statistics and manually accept or reject orders. While being a
Web application, it features a rich client that uses XML
messaging by adding to a plain HTML interface.

3. Order Processing Center (shortened "OPC"): A process-
oriented application that manages order fulfillment by providing
the following services to other enterprise participants:

• Receives and processes orders placed through the Mobile
Store Web Site. Orders are received as XML documents.

• Provides the MobilestoreAdmin application with order data
using XML messages over HTTP.

• Sends an email to customers acknowledging orders using
WebLogic JMS Mail.

• Sends purchase orders (described as XML documents) to
suppliers via JMS.

• Maintains purchase order database.

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.18, February 2018

3

4. Supplier Application (shortened "Supplier"): A process-
oriented application that manages shipping products to
customers by providing the following services:

• Receives purchase orders (in the form of XML documents)
from the OPC via JMS.

• Sends products to clients.

• Provides handbook inventory management through a Web-
based interface.

• Maintains inventory database.

Figure 3.4 depicts the most important Mobile Store sub-
applications and shows the mechanisms and protocols used for
communication between them.

Figure 3.4: Main Mobile Store Sub-Applications

Mobile Store’s Asynchronous, Document-Oriented Architecture:
The Order Processing Center defines the business process for
handling purchase orders placed at the Web site. The business
method consists of a workflow, which is a sequence of steps
with transitions between them. Transitions between phases are
handled by individual classes called transition delegates, which
allows for flexibility if the type of communication between
levels is to change. Mobile Store uses a document-oriented
business process to coordinate its internal workflow and to
communicate with its supplier application. Transition delegates
pass XML documents between workflow steps by placing JMS
messages in message queues (or topics). The JMS queues are the
transition points between steps. Messages arriving in the queues
are processed asynchronously by Message-Driven Beans
(MDBs). The asynchronous architecture allows components to
call each other without having to block and wait for a response.

Figure 3.5 depicts the flow of messages upon reception of a
purchase order at the OPC. The OPC receives the order through
its purchase order queue, validates it and passes it to the order
approval queue. The order approval MDB confirms if funds are
available for the order. Once the order is accepted, it is sent to
the supplier. The latter receives the order through its supplier
order queue, validates it and ships products to the customer. It
also creates an invoice and returns it to the OPC by sending a
JMS message to the invoice topic. Two MDBs, invoice and mail
invoice, both listen to the invoice topic and process they arrived
invoice. The invoice MDB triggers the OPC’s invoice
processing workflow. The mail invoice MDB sends a message to
the mailer queue to notify the customer by email that his order is
completed.

Figure 3.5: Message Flow in the OPC and Supplier

In particular, Web Service interfaces to the supplier application
are provided, allowing for the communication with it to take
place through Web Services.

Figure 3.6 shows the new message flow leveraging Web
Services for the communication with the supplier. Instead of
sending orders openly to the supplier through JMS, the OPC
now sends them to a Web Service endpoint in the supplier using
a modified transition delegate. The supplier, Web Service
endpoint, receives orders as XML forms and authorizes them
against a public XML schema. It then places them on the
supplier order line, which triggers the usual order processing
workflow. Likewise, instead of sending invoices directly to the
OPC through JMS, the supplier now sends them to a Web
Service endpoint in the OPC. The latter receives incoming
invoices, validates them against a public XML schema, and
places them in the invoice topic, triggering the usual invoice

processing workflow.

Figure 3.6: Message Flow when using Web Services

The new Mobile Store code can be compiled in two variants. In
the first one (JMS variant), no Web Services are used, and
communication with the supplier is done by directly sending
messages to JMS targets. In the second one (Web Service
variant), Web Services are used as explained above.

Deployment Environment
We deployed Mobile Store in the deployment environment using
WebLogic JMS .NET as a Dot Net container and Oracle 11g as a
database server. The database server is used for persisting
application data and JMS messages. The client machine is used
to create the load (using the Gatling tool) and control the
progression of the experiments. In addition, the client machine is
running a mail server, used by the application server for sending
Mobile Store’s email notifications to customers about the
progress of their orders.

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.18, February 2018

4

5. RESULT ANALYSIS
In order to measure system performance under the considered
workload, dissimilar measurements were taken during the
experimentations. For this purpose, Mobile Store was
instrumented to log timestamps at various points during the
execution (measuring points), and performance metrics were
calculated based on differences between timestamps. The first
measurement determines the start of an order’s processing and is
done on Mobile Store’s front end right after the reception of a
request before it is forwarded to the OPC. The second
measurement determines the end of an order’s dealing out and is
done in the Mailer MDB at the point an email is sent to the client
to confirm order completion. The difference between timestamps
taken at these points gives us the total order processing time,
also referred to as the response time. Dividing the number of
orders processed during an experiment by the time elapsed
between its start and end, we obtain the throughput. To further
monitor the performance of the back end, three other dimensions
were done. The first one determines the time at which the OPC
calls the supplier to submit a new order, i.e., the beginning of the
calling operation. When running in JMS mode, this is the time of
sending a JMS message to the supplier order queue. When
running in Web Service mode, it is the time of calling the
supplier Web Service endpoint. The second dimension
determines the time at which the Web Service call (or the
sending of the new order, respectively) completes. The
difference between timestamps taken at these points gives us the
time to which the OPC has blocked when calling the provider.
We mention to this time as the call time. The last measurement
is done in the supplier order MDB and determines the time of
arrival of order as an XML document and the start of its
processing. The time elapsed between the beginnings of a call to
submit an order to the provider and the start of its processing
will be mentioned too as the latency.

A. Performance Analysis
To gather the measurements for our analysis, we performed
three series of experiments. Each series consists of six
experiments characterized by the number of client threads used
for simulating concurrent clients (15, 25, 40, 60, and 100 client
threads, respectively). The first series signifies the base case and
uses the modified JMS mode (referred to as "JMS" in the
following figures). Send processes at the OPC/supplier interface
in this mode are not part of the workflow transactions. The
second series covers the Web Service variant of Mobile Store
("Web Service"). Finally, the third series uses the original JMS
variant of Mobile Store as published by the Blueprints program,
i.e., the JMS send operations at the OPC/supplier interface are
part of their respective workflow transactions. These
measurements represent the typical operational behavior of the
Mobile Store, but cannot be used for comparison with the Web
Service variant. They are accessible to highlight the performance
differences of our base case system (JMS) with respect to the
fully transactional, original JMS mode system. The CPU
utilization on the client machine and database server machine
were monitored during all the experiment runs and stayed below
10 and 35 percent, respectively, over the range of all simulated

load levels.

B. Throughput

Figure 3.8 demonstrations the throughput effects (as the number
of completed orders per minute) for each experimentation in
JMS and Web Service mode. The unique JMS mode is not
represented as it exhibitions equal throughput characteristics as

the improved JMS mode (less than 1 percent eccentricity) over
the full load range. The JMS mode reaches the highest
throughput of 163 orders per minute with 80 concurrent client
threads. Under the same load, the Web Service variant reaches
an about 5 percent lower value of 155 orders per minute. Under
light to a moderate load of up to 40 customer threads, both

variations scale linearly and exhibit almost identical
performance. The modifications remain below 1 percent in this
load range; then we observe about 10 percent higher CPU time
demand for the Web Service variant. This difference in resource
consumption has no impact on throughput, as enough CPU time
is readily available at that point. In the load range beyond 40
client threads towards system saturation, the higher CPU
consumption begins to have an impact on throughput. The point
of system saturation where no additional increase in throughput
can be accomplished is reached at a load of 80 client threads in
the JMS case. Due to the higher CPU time claim of the Web
Service variant, it reaches that point already at a load close to 70
threads and thus lags behind in maximum throughput.

Figure 3.8: Throughput Measurements

C. Latency
While throughput characterizes the speed of order processing as
a whole, the latency is directly related to the OPC/supplier
communication, and it is significantly affected by the
introduction of Web Service interfaces. Figures 3.9 shows the
latency measurement results of the modified and original JMS
variants. Considering the latency of the modified JMS variant, it
strikes that messages sent, arrive at their destinations (latency —
Figure 3.9) prior to the sending entities having completed.

Figure 3.9: Latency Measurements

The reasons for this become clear from looking at Figures 3.10,
which shows the sequence of actions performed when sending

JMS messages to the supplier.

International Journal of Computer Applications (0975 – 8887)
Volume 180 – No.18, February 2018

5

Figure 3.10: JMS Call in the Original JMS Variant

The non-transacted send procedure can only return to the caller
after the messaging system can guarantee that the message will
be sent at some point. The configuration at hand persists the
message in a database to provide this guarantee without waiting
for an actual effective reception to complete.

Should a fault occur through the activities of the receiving dealer
order MDB causing the operation to roll back, the messaging
system can always redeliver the message since it can be re-
claimed from persistent storage. The call time for the improved
JMS variant starts at 11 ms under light load and increases slowly
until it stabilizes at values around 100 ms under high load. These
appearances are related to the additional database activity for
persisting messages due to increasing throughput as well as the
increased time wanted to in serialize the message for persistence
due to growing CPU operation. The first sending of the message
to the supplier order MDB does not, however, have to wait for
the achievement of the operations to persist the message but can
start directly. This allows the improved JMS variant to bear a
very low latency of 2 to 4 ms over the whole load spectrum. This
low latency of the OPC/supplier interface has a substantial
impact on the overall response time of the modified JMS variant,
as it regulates the time the next treating step can begin and as
such is part of the time-critical path. Paralleling these results to
the original JMS variant reveals very different latency behavior
for the latter. While the sent message has to be persisted before
the send method call can return in the modified JMS variant, the
send process being part of a transaction in the original JMS
variant can defer persistence to the later commit task. This
reasons the call time to halt very low at 2-3 ms throughout the
full load range. On the other hand, the ease of use of the sent
message to the receiving end of the supplier application is
delayed until after the completion of the transaction in the
commit operation. This prolongs the latency not only by the time
required to persist the message (as measured by the call time
readings for the non-transacted send in the modified JMS
variant) but also by the interval needed to commit the work of all
other actions taken in the business logic of this processing step.
This prolonging effect of measured call time in the modified
JMS variant on latency in a transacted option should be kept in
mind when considering the measurements of the following
comparisons to the Web Service variant.

6. CONCLUSION
We calculated the effects on performance when part of the ASP
Dot Net Mobile Store application is implemented using Web
Service interfaces. The reference implementations were the
original Mobile Store application with transactional messaging
and a modified version of Mobile Store with non-transactional,
but still reliable messaging. The latter modification was needed
for a fair comparison since today’s Web Services Platforms do
not provide support for transactional calls. The measurement
results of our experiments show that the system throughput
penalty from using Web Services in the ASP Dot Net Mobile

Store is only marginal. Under light to moderate load, the
throughput decreases by less than 1% and falls behind the
modified JMS variant by at most 5% under high and extreme
pressure. The throughput difference stems from the Web Service
variant reaching the threshold of CPU capacity under slightly
lighter load due to this variant’s higher CPU consumption. In
adding to the already mentioned higher CPU consumption, the
typical 20% increase results from the more senior latency of the
transition between the sub-applications across the Web Service
interface.

7. REFERENCES
[1] David Booth, Michael Champion, Chris Ferris, Francis

McCabe, Eric Newcomer, and David Orchard and. ―Web

services architecture‖, 2003. W3C Working Draft 14 May

2003

[2] Patrick Cauldwell, Rajesh Chawla, Vivek Chopra, Gary

Damschen, Chris Dix, Tony Hong and Francis Norton,

Uche Ogbuji, Glenn Olander, Mark A Richman, Kristy

Saunders, and Zoran Zaev. Professional XML Web

Services. Wrox Press, 2001

[3] Kai S. Juse. ―Performance of J2EE-based Web Services‖.

Master thesis, Darmstadt University of Technology, June

2003. In German

[4] Georgios Meditskos and Nick Bassiliades, ―Structural and

Role-Oriented Web Service Discovery with Taxonomies in

OWL-S‖, Member, IEEE Transactions On Knowledge And

Data Engineering, Vol. 22, NO. 2, February 2010

[5] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng,

―Semantic Web Services‖, Stanford University, IEEE

Intelligent Systems 2001

[6] Guo Wen-Yue, Qu Hai-cheng, Chen Hong, ―Semantic web

service discovery algorithm and its application on the

intelligent automotive manufacturing system‖, International

Conference on Information Management and Engineering,

IEEE Xplore, 2010.

[7] Bachlechner, D., Siorpaes, K., Fensel, D. and Toma, I. ―

Discovery of Web Services- A Reality Check‖, 2006, DERI

– Digital Enterprise Research Institute

[8] Bo Zhou, Tinglei Huan, Jie Liu, Meizhou Shen, ―Using

Inverted Indexing to Semantic Web Service Discovery

Search Model‖, 5th International Conference on Wireless

Communications, Networking and Mobile Computing,

IEEE Xplore, 2009

[9] Pavlou, P. and Gefen D. ―Building Effective Online

Marketplaces with Institution-Based Trust,‖ 2004,

Information Systems Research, Vol. 15, No. 1, March, pp.

37–59.

[10] Maximilien M.E and Munindar P. Singh, ―Conceptual

model of Web service reputation‖, 2002 ACM SIGMOD

Record, v.31 n.4 ―New to SOA and Web services‖

Developer Works Retrieved August 8, 2009,

[11] ―Web services Glossary‖ W3C Working Group Note 11

February 2004, Retrieved January 7, 2009, from W3C

Official Site < http://www.w3.org/TR/2004/NOTE-ws-

gloss-20040211/ >.

[12] Zeithaml, A., Parasuraman, A. and Malhotra, A. ―Service

Quality: Definition, Dimensions, and Conceptual Model,‖

2000, working paper, Marketing Science Institute,

Cambridge, MA.

IJCATM : www.ijcaonline.org

