International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

A Proactive Self-Adaptive Framework for
Context-Aware Mobile Applications

Md. Shafiuzzaman

Institute of Information Technology, University of Dhaka

Amit Seal Ami
Institute of Information Technology, University of Dhaka

Rayhanur Rahman
Institute of Information Technology, University of Dhaka

ABSTRACT

Today’s mobile applications are continuously renovating user ex-
periences by processing underlying contextual information of the
hand-held devices. The mobility provided by these devices is en-
couraging users to install and use applications on the move. As
a result, underlying context of these devices keep changing con-
stantly. As the changes in context are beyond control of the appli-
cation, a context-aware application needs to be self-adaptive in the
sense that it can update its services dynamically in runtime to meet
overall user requirements. With the remarkable technological ad-
vances of mobile devices, collecting contextual information is no
longer an issue. However, adapting the contextual changes are still
an open problem as most of the existing self-adaptive frameworks
are not proactive in nature and the existing proactive frameworks
suffer for their computational complexities as they rely on archi-
tectural reconfiguration. As a result, none of those have become ef-
fective enough for mobile applications. In order to tackle the afore-
mentioned challenges, this paper proposes a light-weight proactive
solution that suggests to offer one or more alternative features of
each functionality so that the affected feature can be disabled or
reconfigured with another mutually exclusive feature depending on
the contextual requirements. Several experiments were conducted
to test the achieved context-awareness as well as the imposed over-
head. The tests were conducted over battery consumption as it is
the most common context for most of the mobile applications. The
proposed framework extended the battery life 30.46% than the non-
adaptive application. The activity of stopping and activating fea-
tures had no significant impact on the battery life as only 1.5%
battery was consumed when we deactivated 7 features at once. The
time required to stop and active features increased linearly with the
number of features though it was in the range of milliseconds. It
took 0.6 seconds to resume the application after deactivating 7 fea-
tures simultaneously.

Keywords
Context awareness, self-adaptive system, mobile application,
feature-orientation, model-driven development

1. INTRODUCTION

Mobile software systems are characterized by a high degree of un-
predictability and dynamism as those can be installed and used any-

where and anytime. At the same time, such systems require strict
reliability requirements in the sense they never go out of service.
But the traditional mobile applications fail to provide uninterrupted
service during frequent contextual changes as they are not non-
adaptive in nature. A self-adaptive system is characterized with the
capability of re-configuring a software system at runtime to meet
expected Quality of Service (QoS) [9]. In practice, engineers try to
ensure this capability by explicitly programming alternative behav-
iors and implementing heavy exception handling mechanism [/7].
This is quite unrealistic to ensure exception handling for each com-
bination of different contexts. In addition, using this approach, the
architecture and the code become unmanageable as the alternative
behaviors cannot be kept separated from each other [[7].

In literature, quite a few approaches [61/8,(9,|11] can be found that
target the challenges of self-adaptive systems. Initial approaches
were mostly confined into ensuring adaptivity by updating con-
figuration parameters dynamically at runtime [[11}/12]. These pa-
rameterized adaptation became popular for its simplicity but failed
to support large-scale adaptation [9]]. Other approaches can be di-
vided into two broader domains - (i) Architecture-based adapta-
tion [[68]] and (ii) Feature-oriented adaptation [9}|17]. Architecture-
based adaptation depends on adding or replacing architectural com-
ponents at runtime. On the other hand, feature-oriented adaptation
does not require knowledge about internal structure of the software
system instead it pulls out the affected feature when it goes out of
service and restore the system with an alternative feature simulta-
neously. Both of the approaches failed to fulfill required stuffs of
self-adaptation for mobile applications. Searching for an optimal
configuration at the architectural-level is computationally very ex-
pensive for mobile applications. In fact, many architecture-based
optimization algorithms are shown to be NP-hard [211]22]]. On the
other hand, feature-oriented adaptation suffers from proactive de-
cision making as it lacks of knowledge about the execution flow. A
mobile application becomes unusable if context changes cannot be
adapted before reaching failure state [8].

The proposed approach brings about an innovation for solving the
aforementioned challenges. It extracts analytical model [24] from
software requirements models to estimate the probable execution
flow and assess the context requirements of running application
against the ideal requirements mentioned in requirements model.
According to the assessment result, it updates the feature set avail-
able for the users. The novelty of this approach is to use of require-
ments model in feature-oriented adaptation to provide adaptivity.

Extraction of analytical model from traditional software require-
ments models is formalized in our another contribution [1]] where
we propose a method of modeling and representing context-aware
self-adaptive software systems by extending the Model-Driven
Development’ framework [S]]. This paper extends that approach
to model the overall system as a workflow of some abstract func-
tionalities while each of those can be implemented in one or more
alternative ways. Then, all these alternatives merged into a single
Markov Decision Process (MDP) [[15]] with a finite state automaton
where each state of the automaton represents an alternative feature
of an abstract functionality and the paths represent possible execu-
tion flows denoting the probabilities of execution of those states.
At runtime, the system is treated as a variable so that features can
be enabled and disabled dynamically on availability of contextual
factors. To automate this process, an interpreter navigates the au-
tomaton developed at design phase state by state and offers the best
possible set of features to the users depending on the availability of
the contextual requirements.

The proposed framework is evaluated by identifying the overall us-
ability increased by the framework. Besides, we also test the run-
time overhead imposed by the framework. This is done by varying
number of abstract funcionalities and number of alternative features
suggested by [23].

The remainder of this paper is organised as follows: Section 2 de-
scribes the existing works of this field. Section 3 presents the frame-
work in detail. Section 4 validates the performance of the frame-
work. Finally, section 5 concludes the paper with future work di-
rections.

2. RELATED WORK

Over the past decade, researchers have contributed with different
methodologies, techniques, strategies and frameworks to engineer
the adaptation logic. In this section, we provide most notable and
relevant approaches to our work.

Bennani et. al [11]] propose a parameterized model that reconfigures
system’s behavior at runtime by measuring system characteristics
(e.g., workload). Ryutov et al. [[12f] also use parameterization to
develop adaptive access control and trust negotiation framework.
Though parameterized models were welcomed for their simplicity,
they lack to support large-scale adaptation [9].

There are several noteworthy approaches that stand on structural
changes, such as adding, removing, and replacing software compo-
nents [6]], changing system’s architectural style [[13|] and rebinding
component’s interfaces [[14]. This paradigm of adaptation strategy
is commonly referred as architecture-based adaptation. The most
recent and notable approach of this domain is proposed in [8].
It proposes a three-layer (Goal management, change manage-
ment and component control) reference model to manage struc-
tural changes. Usually, these approaches last from design time to
runtime. At design-time, architectural representation of the system
are used to create analytical models (i.e., Queuing Network mod-
els [[16] and Markov models [15])). Later, the analytical model is
used to verify the adaptation objectives by examining the collected
data. Though these approaches have achieved noteworthy success
in many domains, there are some frailties in this framework. For
instances, internal structure of a software component may not be
completely discovered at design time and searching for an optimal
configuration at architectural level is computationally very expen-
sive [9] and are not be suitable for mobile devices [[10].

Ghezzi et. al [[18] propose an interesting adaptation strategy that
takes advantage of requirements models to ensure QoS for non-
functional requirements (reliability and performance). The method

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

continuously checks if there is any divergence from requirements
models, if any then it alerts for adaptation. This approach limits
its contribution within adaptation alert, though it sets a new era of
research on adaptation frameworks.

Enabling and disabling features at runtime to reconfigure the sys-
tem is also a popular paradigm of self-adaptive software devel-
opment research. This paradigm is commonly called as ’Feature-
Oriented Adaptation’ [[17]]. A recent solution of this paradigm [9]
proposes a learning-based framework for run-time management of
feature selection and deselection. This paradigm is computationally
less expensive than architecture-based approach and also popular
for simplicity, though it has less accuracy on taking adaptation de-
cision as it is not aware of any architectural parameters [7] as well
as it can not determine a potential failure proactively [[18]] .

3. APPROACH OVERVIEW

A software system is built on several user requirements and an user
requirement can be interpreted as several sequential user activities.
Each of those activities can have several different implementations.
Traditionally, while designing an application, software engineers
choose an implementation approach by making a trade-off between
cost and user expectations. Therefore, traditional software systems
provide a static set of features. In contrast, this framework pro-
poses to implement a functionality in several alternative ways so
that a feature can be taken on or off in running application de-
pending on the condition of contextual requirements. As a result,
users may not deal with a similar pool of features each time while
launching the application but they will never face any service in-
terruption until complete shutdown of the device. Users must be
aware of this dynamic behavior of the application through Service
Level Agreement (SLA). To implement this dynamism, we propose
to make use of Model-Driven Development framework [5]]. In this
development framework, software engineers model a feature tar-
geting the requirements and mayp it to a part of the software system.
We make use of those requirements models in our framework by
injecting the contextual factors into them and also keeping them
alive at runtime to assess any QoS violation. For this purpose, the
requirements models are transformed to analytical models using the
transformation approach described in [24] which are used to verify
the running application against the requirements models at runtime.
Using this verification result, the application then adapts itself by
re-configuring the available feature sets.

Injecting self-adaptivity with applications requires efforts in both
design and implementation phase of the development life-cycle.
The design phase modeling is based on generating feature selec-
tion and modeling strategy while runtime adaptation relies on con-
text collection, analysis and execution of dynamic feature selection.
Following sub-sections describe these two phases of the framework
in detail.

3.1 Design time

To employ self-adaptability in a running application software engi-
neers are required to perform some additional task while designing
the application. This starts with modeling the user requirements
with some alternative features. It also modifies the conventional re-
quirements models to make space for integrating contextual factors
within the model. Finally, it outputs an analytical model which will
be used by the running system to make decision about adaptation.
The design phase of the framework consists of following steps:

(1) Feature Modeling
(2) Feature Priority-Adaptability Mapping

(3) Context Injection
(4) Analytical Modeling

3.1.1 Feature Modeling. The input of this feature modeling pro-
cess is a set of abstract functionalities

A:{AhAQ, 7An}

which are identified as a part of requirements engineering pro-
cess. These abstract functionalities are processed through follow-
ing work-flows to model more than one concrete implementations
for each of them.

3.1.1.1 Identification of the Contextual Factors. At design
time, contexts can be captured by analyzing each of the abstract
functionalities separately. For this reason, engineers need to use
their domain knowledge or their past experiences on observed be-
havior of similar functionalities. The set of contextual factors can
be formally notated as C'. We have partitioned this set into two dis-
joint sets:

—Static context, Cg
—Dynamic context, Cp

Cgs captures the set of stable contexts, which will not change later
at runtime. Cg may include the known physical constraints that
regulate certain environmental phenomena. Cg must be considered
while designing the system as some architectural decision may de-
pend on them.

Cp instead captures the contextual factors that are likely to change
over time. Cp must be monitored at runtime to check if they are
available with their minimum requirements.

We exclude Cs from our framework as they are not likely to change
at running application whereas Cp should be considered for their
dynamic characteristics at runtime. Therefore, we inject Cp into
the requirements models. As only the Cp are considered in our
framework, we will describe Cp as C throughout this paper. So,
We may define Cp as

Here, each C; € C,1 < i < n signifies an unique context which
characterises the runtime behavior of each abstract functionality.
The relation between the contexts and the abstract functionalities
can be formally defined as equation[T}

A; € A, u:P(C)— A)]

where 1 < ¢ < n and P(C) denotes the power set of contextual
factors and p represents the combine effect of P(C) on each abstract
functionality. Here, the power set of contextual factors is used as
every context may not affect each of the functionalities.

3.1.1.2 Determination of the Levels of Contextual Factors.
Level is a scale of amount that is usually used to define the cate-
gories of any measurement. Engineers need to determine the levels
of each of the contextual factors as the alternative features will be
modeled targeting each of those levels later on. Here, we propose to
use relative measurement instead of actual values as the real context
values are difficult to measure and also device dependent. On the
other hand, the relative values can be determined easily by compar-
ing the minimum requirements of each of the alternative features.
Furthermore, these relative levels can be updated easily later on by
obtaining real data from the running system.

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

For this reason, the proposed framework defines the levels of the
contextual factors as the subset of Natural Numbers, N. This is for-
mally defined as[2%}

LEN, 1<i<n 2)

So, a level of context lies between 0 < [; < n. Level of a
context becomes 0’ when a context is insensitive to a feature.

Listing 1: Implementations of two alternative features

@Functionality (name = "Al")

@Feature (name = "F1")

@Level (factors = {"Cl1", "C2", "C3"}, values
= {0,1,2})

implemetation_F1 (input) {
// Implementation

1
@Feature (name = "F2")
@Level (factors = {"C1", "C2", "C3"}, values

= {1,2,3})
implemetation_F2 (input) {
// Implementation

3.1.1.3 Modeling Alternative Features. In this step, engi-
neers need to design one or more alternative features for each of
the abstract functionalities targeting the different levels of the con-
textual factors. Therefore, engineers need to model a feature for
each y defined in equation [T] The relation between contextual fac-
tors, abstract functionalities and their alternative features can be
formalized using equation[3} Here, F' denotes the set of features of
an abstract functionality,

such that each of the members of this set implements the abstract
functionality targeting each .

F.CEA €A 3)

That is, a F' ensures satisfaction of an abstract functionality A; € A
in the context of C.

To visualise the abstract view of a feature, we prepare a template for
expressing the alternative features. For this purpose, we use the ad-
hoc annotation @ Functionality to express the functionality, @ Fea-
ture to define each of the features of that functionality and @ Level
to express the levels of the contexts. An example template of ex-
pressing the feature modeling is illustrated in Listing|[T]

3.1.2 Feature Priority-Adaptability Mapping. Frequent updates
of available feature sets at runtime may create extra overhead on
context information acquisition and processing for decision mak-
ing. To tackle this issue, the framework presents a trade-off that up-
dates the feature sets considering their priority and importance. For
this reason, it proposes to make use of Feature Prioritization Pol-
icy [25]). Prioritization relies on giving more weight to most impor-
tant features. Following requirements engineering approach [25],
we have defined a list of priority types, such as:

—Critical Features, Fo
—Important Features, F;

—Useful Features, Fy

Additionally, we propose to annotate all features in F' either re-
quired (Fg) or optional (Fp) feature group. The priority type and
the feature group can be formally defined using following enumer-
ation:

Priority List = <F¢, Fy, Fy>

Feature Group = <Fg, Fo>

F¢ always lies in Fg feature group as service of those features can
only be degraded in critical situation but shouldn’t be unavailable
until a complete shutdown of the device. On the other hand, F; is
under control of designer’s justification as it can be programmed as
running with degraded service as well as making features unavail-
able as a last resort to adapt to context changes. For this reason
F; can stay in both of the feature groups Fr and Fp. Fp features
are not subjected to feature degradation, those will be unavailable
in critical situations. As Fy is nice to have features, they are in Fp
feature group. They are not subjected to feature degradation instead
either the context allows their activation or make them unavailable.
Formally defined, priority-adaptability mapping takes priority type
and feature group of each of the features and maps them to the
possible adaptability that needs to perform. Table [T] identifies the
mapping we are suggesting where the critical feature can only
be adapted by degrading their service. Important ‘required’ fea-
tures should be degraded at first but they can be made unavailable
in worst cases. Important *optional’ features and useful features
should not be programmed to provide degraded services instead
they should be taken off if needed.

3.1.3 Context Injection. In this phase, requirements models are
updated to fit the features modeled in Feature Modeling phase.
This phase uses the Feature Priority-Adaptability Mapping as an
input so that the requirements models can be updated using this
mapping. Now-a-days, varieties of requirements models used in re-
quirements engineering phase depending on the nature of the ap-
plications. Here, we examined our framework using UML activity
diagrams as it is the most common requirement model used in dif-
ferent software projects, though other models can fit here easily.
As UML activity diagrams organize the functionalities provided by
an application in workflows, the context can be easily inserted into
the decision states of the activity diagrams. The proposed frame-
work insist software engineers to follow following steps to inject
contexts in requirements models:

(1) Atfirst, engineers design separate activity diagrams for each of
the features

(2) Then, each of the alternative features of an abstract functional-
ity is merged into a single activity diagram

(3) In overall activity diagram, different functionalities are enu-
merated using 1, 2, ... while each of the alternative features are
annoted using A, B, C....

A prototype of this extended activity diagram is illustrated in Fig.
[I] The illustrated activity diagram models three abstract function-
alities (1, 2 and 3) and 7 features (1A, 1B, 2A, 2B, 2C, 3A and
3B). First functionality is implemented using two alternative fea-
tures, whereas second one has three alternative features and third
one comprises two alternative features.

3.1.4 Analytical Modeling. In [1], we use Markov Decision Pro-
cess (MDP) as the analytical model. There are several reasons
behind our choice to refer MDP. MDPs are simply conventional
state-transition systems with annotations on transitions and soft-
ware engineers use state-transition systems very frequently in prac-
tice while designing and analysing the software systems. In addi-

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

Table 1. : Feature Priority-Adaptability Mapping

Input (Feature Prioritization) Output (Adaptability Mapping)
Priority Type | Feature Group | Unavailabilty Degradation
Fo Fr Yes
F, Fr Yes Yes
Fo Yes

Fy Fo Yes

Fig. 1: Extended Activity Diagram

tion, the initial model of MDP can be expressed as an activity dia-
gram or any other control-flow model of the application and there
are several approaches available in literature to support automatic
model-to-model transformation from activity diagrams to MDP. An
example is the ATOP [19] tool.

The transformation process comprises three sequential steps.

(1) It first translates activity diagrams of each abstract functional-
ity into simple MDP with an initial state, a final state and as
many as intermediate states as the number of alternative fea-
tures associated with the abstract functionality.

(2) Next, it adds non-deterministic transition from the initial state
to each intermediate state, in turn connected with the final state
(illustrated in Figure 2). These non-deterministic transitions
are labeled with contextual requirements.

(3) Finally, the resulting MDPs are merged into a single MDP that
represents the transition of the overall Activity Diagram.

© ® ©
©

®

Fig. 2: MDP Translation Process

3.2 Runtime

The overall MDP generated at design time is used to verify the
the runtime condition of the system against the minimum context
requirements. This verification process is done using a stochastic
model checker [|20]] which can check runtime contextual properties
against the minimum requirements and generates an alert if it finds
any divergence from the ideal requirements. This helps to deter-
mine the adaptation decision proactively as the verification process
is being performed continuously and alert comes before execution
of the feature. For implementing this task properly, we present an
adaptation manager which is composed of three modules: Observer,
Interpreter and Executor.

3.2.1 Observer. Observer is programmed to collect data regard-
ing to operational contexts. It relies on the hand-held device op-
erating system to collect those information. All popular operating
systems for smart phones and tablets offer a set of public APIs for
developers to collect sensed information and make use of them.
This module should be programmed to run continuously as it can
use the APIs offered by the device operating system and collect
context information continuously.

3.2.2 Interpreter. Interpreter is responsible for execution of ana-
lytical model using stochastic model checker. It continuously nav-
igates through the each state of the analytical model and checks
each of the contextual factor against the collected context data. In-
terpreter executes following calculation and generates an alert if
necessary:

—For single-valued contexts, it simply executes a conditional state-
ments that returns true if the context is available and returns false
if the context is unavailable.

—For threshold-based contexts, at first it calculates the summation

of minimum values of each context that is required to reach the
final state. Then, it checks the summation against the available

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

Table 2. :

Alternative Features

Functionality

Contextual Factor:
Min Requirements

Features

Network: Strong
Battery: Full

Real time video

Contact with doctors

Network: Average
Battery: Medium

Real time voice

Network: Poor
Battery: Low

Real time chat

Locate Nearest Emergency

Network: Average

Battery: Medium Display Map
Location: GPS

Network:

Battery: Low Display Text
Location:

Receive Prescription

Network: Medium

Download Detail

Network: Poor

Show Summary

context. Finally, it returns true if available context is greater than
the summation of minimum values, otherwise returns false.

Returning a false by interpreter signifies an alert should be gener-
ated for the corresponding feature.

3.2.3 Executor. This module is responsible for executing the fea-
ture unavailability or degradation mechanism. It switches the sta-
tus of the features depending on the contextual criteria. For this
purpose, we use Bundle Manager Algorithm of [10]. Bundle Man-
ager Algorithm uses threads to manage different states depending
on contextual criteria. If 'Bundle Manager’ receives any alert from
the interpreter, it starts a new thread with updated ’available feature
set’ and destroys the running thread. To ensure uninterrupted ser-
vice, it locks the running thread if it finds any feature running. That
means, deactivation of an operational feature will be postponed un-
til the operation is completed. By doing this, it maintains the run-
time consistency.

modeled by generat-

Next, each of the features
i concrete implementations.

ing a template for their

Listing 2: Feature modeling of Locate nearest hospitals

@Functionality (name =
LocateNearestHospitals")

@Feature (name = "LocateNearestHospitalByMap

@Level (metrics = {"Network", "Battery", "
GPS"}, values = {2,2,1})

public String automaticLocationldentifier (
String position) {
// invoke GPS service

}

public String displayMap () {
// invoke Map service
}

"

@Feature (name =
LocateNearestHospitalByText")
@Level (metrics = {"Network", "Battery",
GPS"}, values = {0,1,0})
public String mannualLocationldentifier () {
// ask user to insert his/her current
location

"

}

public String displayText (String location)
{

// show address querying database

Select an emergency option
Contact help

center's doctor Option 1

offline

Option 1 .

Option 3

Establish an
audio call

User input on current
location

Find an available
video camera

é Yas
No

Show Summary

Fig. 3: Overall Activity Diagram of e-health Care

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

Degraded _ f Pegaced
Y2 la 2

Fig. 4: Overall MDP of e-health Care

4. EXPERIMENT

We design a mobile distributed emergency response system that is
intended to aid during medical emergencies. We named it "e-Health
Care’. Though this application may offer more services in practical,
for simplicity we limit those to following ones:

(1) Contact with the help center doctors
(2) Receive Prescription
(3) Locate nearest hospitals

We implemented e-health Care application using two different ap-
proach. The first approach follows traditional application develop-
ment methodology which offers a static set of features. We named
it as Non-Adaptive application. In this application all the features
were available throughout the life span of the application. The
second approach followed the proposed framework which updates
available feature set dynamically at runtime depending on contex-
tual factors. The identified alternative feature sets are illustrated in
Table 2] An example of the alternative implementations is shown
in 2} The overall activity diagram of e-health Care is illustrated
in Fig. 3] Using the activity diagrams, the corresponding MDPs
are generated. Firsts, we generated three states for three function-
alities annotating F1, F2 and F3. Here, F1 signifies Contact with
doctors functionality, F2 is Locate nearest hospitals functionality
and F3 signifies Receive prescription functionality. Then, we gen-
erated different states for each of the features and augmented an
automaton by creating paths from the states of their correspond-
ing abstract functionalities. Each of the path is annotated with the
minimum context requirements needed to execute the feature. The
overall MDP of e-health Care is illustrated in Fig. []

During our experiments, the test have been conducted using LG G2
mobile device with Android version 5.1.1.

4.1 Context-Awareness Testing

To evaluate the usability increased by our framework, we examined
the battery saving increased by our framework. First, we ran the
non-adaptive version of the application. In this case, we attempted
to use all the features of the application repeatedly until the com-
plete shutdown of the device. We repeated the test several times
starting at different battery level each time.

On the second phase, we ran the adaptive version of the applica-
tion. The test was done by running the test application under same

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

Battery consumption from feature activation and stopping.

conditions that were used in non-adaptive version. In this case, if 0.5
the service of the feature is available, we use the feature, otherwise
we move to next feature, and so on. The adaptive application has
increased on an average 30.46% battery life than non-adaptive ap- 03
plication. The result is illustrated in Figure[5}
0.1 015
0.1 ol1 0.11 0.12 0.12
0.1
100 Wieo 7
.t
= 0
3 F a3 01
80
-0.3
60
© @ Adaptive 0.5
=]
E‘ £ 1 2 3 4 5 6 7
£ G2
3 e 40 Number of features
2 B Non-Adaptix.
Fig. 6: Battery Consumption from Feature Activation and Stopping
20
Time to stop and active features
0 1
01 2 3 4 5 6 7 8 9 10 11 12 13
Time (Hour)
0.8
Fig. 5: Battery Saving Provided by the Proposed Framework
0.6
0.6 054
Figure5]shows the proposed framework extends the lifetime of the) U_V
battery more than 3 hours. In other words, user can get a consid- 2 g U_V
erable additional time while using any application that implements =% 04 0 V
the proposed framework. A point to be noted here that, until 70% 0 V
of battery, the adaptive and non-adaptive applications will have the -
same battery consumption. However, things will change when bat- 02
tery reaches 70% as the adaptive application will move to change ’
its configuration biased towards energy saving.
4.2 Runtime Overhead Testing 0
1 2 3 4 5 6 7

Since the framework requires additional runtime computation, we
verified the overhead imposed by the framework. First, we measure
the battery usage to enable and disable threads. The experiment
result is shown in Fig. [6] From Fig.[6] we can see that activity of
stopping and activating features had no significant impact on the
battery, only 1.5% battery was consumed when we deactivated 7
features at once. In real world, it is a very rare case that 7 features
are affected by context changes simultaneously.

We also measure the time to enable and disable the features. The
result is illustrated in Fig. [7} Fig. [7] shows that the time needed
to activate and stop bundles is in the range of milliseconds and it
grows linearly with the number of features. The more features stop
and activate at once, the more time needed to achieve this task.
Having said that, activating and deactivating 7 features at a time
will need an average of 0.6s, which is very insignificant according
to user experience.

Number of features

Fig. 7: Time to Stop and Active Feature

5. CONCLUSION

This paper identifies the necessity of a light-weight and proac-
tive adaptive framework for mobile applications and proposes an
approach that supports design, development and runtime manage-
ment of the self-adaptation mechanism in mobile applications. It
uses the requirements models of the model-driven software devel-
opment framework to make the adaptation decision proactively. To
minimize the complexity of the adaptation strategy, it uses dynamic
selection of mutually exclusive features instead of architectural re-
configuration. The outcome of this adaptive framework is really

significant while the overhead imposed by the framework is negli-
gible according to user experience.

6. REFERENCES

[1] M. Shafiuzzaman, N. Nahar, R. Rahman, "A Proactive
Approach for Context-Aware Self-Adaptive Mobile
Applications to Ensure Quality of Service" in International

Conference on Computer and Information Technology
(ICCIT), Dhaka, Bangladesh, 2015.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S.
Peterson, "Feature-Oriented Domain Analysis (FODA)
Feasibility Study," Software Engineering Institute, 1990.

[3] B. Schilit, N. Adams, R. Want, "Context-Aware Computing
Applications," Proceedings of the International Workshop
Mobile Computing Systems and Applications, 1994.

[4] G.D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P.
Steggles, "Towards a Better Understanding of Context and
Context-Awareness," Proceedings of the 1st International
Symposium on Handheld and Ubiquitous Computing, 1999.

[5] J. Bezivin., "Model driven engineering: An emerging
technical space in Generative and Transformational
Techniques," Software Engineering (GTTSE), volume 4143 of
LNCS, pages 36-64. Springer, 2006.

[6] J. Kramer, J. Magee, "Self-Managed Systems: an
Architectural Challenge," International Conference on
Software Engineering, Minneapolis, Minnesota, 2007.

[7] C.Ghezzi, L.S.Pinto, P.Spoletini, G.Tamburrelli, "Managing
non-functional uncertainty via model-driven adaptivity,"
International Conference on SoftwareEngineering,2013.

[8] D. Cooray, E. Kouroshfar, S. Malek, R. Roshandel, "Proactive
Self-Adaptation for Improving the Reliability of
Mission-Critical, Embedded, and Mobile Software," IEEE
Transactions on Software Engineering, 2013.

[9] N. Esfahani, A. Elkhodary, S Malek, "A Learning-Based
Framework for Engineering Feature-Oriented Self-Adaptive
Software Systems," IEEE Transactions on Software
Engineering, 2013.

[10] R. Mizouni, M. A. Matar, Z. A. Mahmoud, S. Alzahmi, A.
Salah, "A framework for context-aware self-adaptive mobile
applications SPL," Expert Systems with Applications, Volume
41 Issue 16, November, 2014. Pages 7549-7564 2013.

[11] M. N. Bennani, D. A. Menasce, "Assessing the Robustness
of Self-Managing Computer Systems under Highly Variable
Workloads," Int’l Conf. on Autonomic Computing, New York,
2004, pp. 62-69.

[12] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, K. E. Seamons,
"Adaptive trust negotiation and access control," ACM Symp.
on Access control models and technologies, Stockholm,
Sweden, 2005, pp. 139-146.

[13] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice, Wiley, 2009.

[14] D.E. Perry, A. L. Wolf, "Foundations for the study of
software architecture,” Softw. Eng. Notes, vol. 17, no. 4, pp.
40aAS52, Oct. 1992,

[15] L. R. Rabiner, "A tutorial on hidden Markov models and
selected applications in speech recognition," Proceedings of
the IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1989.

[16] D. Gross and C. M. Harris, Fundamentals of queueing theory
(2nd ed.). John Wiley and Sons, Inc., 1985.

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.20, February 2018

[17] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid,
"Dynamic software product lines," IEEE Computer, vol. 41,
no. 4, pp. 93- 95, 2008.

[18] A. Filieri, C. Ghezzi, G. Tamburrelli, "A Formal Approach to
Adaptive Software: Continuous Assurance of Non-Functional
Requirements," Formal Aspects of Computing, 2012.

[19] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli,
"Quality prediction of service compositions through
probabilistic model checking" Proc. of the 4th International
Conference on the Quality of Software Architectures,
Karlsruhe, Germany, 2008.

[20] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker,
"Prism: A tool for automatic verification of probabilistic
systems," Proc. 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
2006.

[21] D. A. Menasce, J. M. Ewing, H. Gomaa, S. Malek, and J. P.
Sousa, "A framework for utility-based service oriented design
in SASSY," Joint WOSP/SIPEW IntaAZI Conf. on
Performance engineering, San Jose, California, 2010, pp.
27-36.

[22] S. Malek, N. E. Beckman, M. Mikic-Rakic, and N.
Medyvidovic, "A Framework for Ensuring and Improving
Dependability in Highly Distributed Systems," Wrkshp. on

Architecting Dependable Systems, Florence, Italy, 2004, pp.
173-193.

[23] R. Rahman, A. S. Ami and K. Sakib, "MobileMonkey - A
Contextual Stress Testing Framework for Android
Application," International Journal of Computer
Applications, 172(9):1-7, August 2017

[24] B. Regnell, L. Karlsson, and M. Host, "An analytical model
for requirements selection quality evaluation in product
software development." In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 254-263, 2003.

[25] E Bagheri, M Asadi, D Gasevic, S Soltani, "Stratified
analytic hierarchy process: Prioritization and selection of
software features," Software Product Lines: Going Beyond,
2010 - Springer.

	Introduction
	RELATED WORK
	Approach Overview
	Design time
	Feature Modeling
	Feature Priority-Adaptability Mapping
	Context Injection
	Analytical Modeling

	Runtime
	Observer
	Interpreter
	Executor

	Experiment
	Context-Awareness Testing
	Runtime Overhead Testing

	Conclusion
	References

