
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.20, February 2018

17

The Evaluation of Software Solutions for Reliability

using Modified Musa’s Basic Execution Time Model

Terungwa Simon Yange
Department of Mathematics/Statistics/Computer

Science
University of Agriculture, Makurdi

Onyekware U. Oluoha
Department of Computer Science

University of Nigeria, Nsukka

ABSTRACT
Software systems have gained great significance for most

organizations on an operational as well as a strategic level.

Failures before delivery or more often changes in existing

software systems are stochastic processes and it is important

for programmers (or users) to predict reliability of software

product they are developing (or using) in order to accept that

as business risk. In this paper we have used the Modified

Musa Basic Execution Time Model to show how to evaluate a

healthcare solution called electronic Nursing Care

Management System (eNCMS). We used black box testing to

ascertain that the software achieved it basic functions. Five (5)

patient records collected from Obafemi Awolowo University

Teaching Hospital Complex (OAUTHC) were used during

this evaluation and the outcome shows that the system

achieved 75% reliability.

Keywords
Black box, reliability, healthcare, software reliability testing,

testing.

1. INTRODUCTION
Software evaluation is the process of executing a program or

system with the intent of finding errors. Or, it involves any

activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required

results. Software is not unlike other physical processes where

inputs are received and outputs are produced. Where software

differs is in the manner in which it fails. Most physical

systems fail in a fixed (and reasonably small) set of ways. By

contrast, software can fail in many bizarre ways [1].

Software reliability refers to the probability of failure-free

operation of a system. It is related to many aspects of

software, including the testing process [2]. Directly estimating

software reliability by quantifying its related factors can be

difficult. Testing is an effective sampling method to measure

software reliability. Guided by the operational profile,

software testing can be used to obtain failure data, and an

estimation model can be further used to analyse the data to

estimate the present reliability and predict future reliability

[3]. Therefore, based on the estimation, the developers can

decide whether to release the software, and the users can

decide whether to adopt and use the software. Risk of using

software can also be assessed based on reliability information.

Reliability Testing is very important, as it discover all the

failures of a system and removes them before the system is

deployed. This also determines the failure rate or failure

intensity of a system. Software reliability is the measured in

terms of failure intensity which is the number of failures per

unit time. Reliability testing is related to many aspects of

software in which testing process is included; this testing

process is an effective sampling method to measure software

reliability. Robustness testing and stress testing are the

variances of reliability testing. Robustness refers to how

software component works under stressful environmental

conditions. Robustness testing only watches the robustness

problem such as machine crashes, abnormal terminations etc.

[3].

Software reliability is one of the main factors to measure the

quality of software. Since software errors cause spectacular

failures in some cases, we need to measure the reliability

factor to determine the quality of software product, predict

reliability in the future, and use it for planning resources

needed to fix failures. Software reliability models are

applicable tools to analyze software in order to evaluate the

reliability of software [1]. During the past twenty-five years,

more than fifty different models have been proposed for

estimating software reliability but many of software

practitioners do not know how to utilize these models to

evaluate their products. In this paper we will present a survey

on different models of software reliability and their

characteristics. We will propose taxonomy of different models

and try to aid the comprehension of these models for

practitioners, developers, and users. In the last section we

apply some of these models on two different open source

projects and compare the results.

2. BLACKBOX TESTING
This testing methodology looks at the available inputs for an

application and what the expected outputs should result from

each input. It is not concerned with the inner workings of the

application, the process that the application undertakes to

achieve a particular output or any other internal aspect of the

application that may be involved in the transformation of an

input into an output [4]. Most black-box testing tools employ

either coordinate based interaction with the applications

graphical user interface or image recognition. An example of a

black box system would be a search engine. You enter text

that you want to search for in the search bar, press “Search”

and results are returned to you. In such a case, you do not

know or see the specific process that is being employed to

obtain your search results, you simply see that you provide an

input-a search term-and you receive an output-your search
results.

Black box testing, also called functional testing and

behavioural testing, focuses on determining whether or not a

program does what it is supposed to do based on its functional

requirements [2]. Black box testing attempts to find errors in

the external behaviour of the code in the following categories:

(1) incorrect or missing functionality; (2) interface errors; (3)

errors in data structures used by interfaces; (4) behaviours or

performance errors; and (5) initialization and termination

errors. Through this testing, we can determine if the functions

appear to work according to specifications. However, it is

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.20, February 2018

18

important to note that no amount of testing can unequivocally

demonstrate the absence of errors and defects in a program.

The beauty of black box testing is seen when the tester is not

the programmer of the code and knows nothing about the

structure of the code [5].

3. MUSA’S BASIC EXECUTION TIME

MODEL
The Musa’s Basic Execution Time Model is an example of a

prediction model [3]. Prediction models are used to make

software reliability predictions early in the development phase

that help make software engineering decisions in the design

stage. Musa’s Basic Execution Time Model is important to the

field of software reliability because it was created by John

Musa of AT&T Bell Laboratories who is often credited as the

pioneer of software reliability[2]. Musa’s Basic Execution

Time Model was one of the first software reliability models

used to model reliability based on the execution time of

software components instead of the calendar time components

are in use. Since the time between failures can be expressed

in terms of CPU (central processing unit) time, Musa’s Basic

Execution Time Model can accurately indicate the actual

stress on the software system. Musa’s Basic Execution Time

Model calculates the reliability of a software system using the

Poisson distribution. The model assumes the execution time

between failures has piecewise exponential distribution, the

hazard rate of a single fault is constant, faults are removed

with certainty and reoccurring failures caused by a single fault

are not counted [5]. The data required to implement Musa’s

Basic Execution Time Model include the time elapsed

between software failure and the actual calendar time the

software was in use. Musa’s Basic Execution Time Model is

useful when predicting why a software system might fail

when deployed. Musa’s Basic Execution Time Model has

been used to calculate the reliability of land line telephone

software. Musa’s Basic Execution Time Model is a good

reliability model to use when the model is based on sound

assumptions and a simple model is both desired and

achievable. Because of the above-mentioned reasons, the

simplicity and ease of use, this model is employed in this

research to evaluate the system.

Since in this case, the focus is on reliability testing, both white

box and black box testing techniques were employed, the

white box testing was done by the developer and the result

was evaluated using the extended or modified Musa’s

software reliability model which is discussed in this section.

The black box testing was done by some registered nurses and

the result was also evaluated using extended Musa’s model. In

both cases of the testing, the extent to which the system could

go without failure was determined.

Since the system is made up of different modules or functional

components, testing these different components gives the

most accurate result for the reliability of the system since the

testing leads to the dynamic verification of the behaviour of

each module on a finite set of the test cases which are suitably

selected from the usually infinite executions domain, against

the specified expected behaviour. The testing effort is divided

into test case generation, test execution, test evaluation. To

reduce the cost of testing process, efficient test case

generation technique is required. The reliability of the

functional components of the system was then computed

using the modified Musa’s Basic Execution Time Model [1].

This model was chosen because it is very simple to use and

can determine the maximum errors in the system without

taking much time.

With this model, it is possible to predict the final number of

failures (usually denoted by v0) that will be detected in the

future, after the system delivery. This software reliability

growth models assume that software failures occur as a

random non-homogeneous Poisson process (NHPP) and it is

possible to evaluate Markov models from NHPP models and

predict system’s reliability by solving state equations with

numerical integration [1]. The model used in this section

called modified Musa Basic execution time is is based on the

following basic assumptions where the cumulative number of

failures experienced at time t is N(t) [1]:

i. There are no failures to begin with (for

t=0,N(t)=N(0)=0)

ii. The failures are independent, the number of failures

experienced during the interval (t, t+h) is

independent of the past history, N(t)

iii. The probability that a failure will occur during (t,

t+h) is:

 –
 (0.1)

Where o(h) is negligible when h is small. There are

no simultaneous failures.

iv. The probability that more than one failure will occur

during (t, t+h) is o(h)

 – (0.2)

Failure rate is time dependent. This describes a Non-

Homogeneous Poisson Process where λ is a failure rate and

varies with time. There are different NHPP models connected

with the representation of λ(t) function. The mean value of
failure distribution is:

 (0.3)

Where μ(t) is the expected number of cumulative failures at

time t. In order to derive this model, it is assumed that we can

estimate the expected number of total failures can be

determined. It can be assumed that the initial failure rate

 can be predicted if n is the mean cumulative number of

failures experienced at some point in the testing process, then

the basic failure rate is expressed as:

 (0.4)

Where: = initial failure rate, = average number of failures

experienced at a given point in time = total number of

failures in the program, detected if given infinite time. In this

model, the failure rate is a linear function of the

experienced software failure. The rate of change of can

be determined by taking the derivative:

 (0.5)

If the decrement of the software failure rate per failure is
denoted as:

 - (0.6)

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.20, February 2018

19

Then the failure rate is expressed as:

 (0.7)

Since the mean number of software failures is experienced as
a function of the execution time t, it is:

 (0.8)

Since μ(t) is the time integral of it follows that is

the derivate of μ(t). Then the equation can be rewritten as:

 (0.9)

With solving of the above differential equation for it is

obtained:

 – (0.10)

The failure rate can be obtained by:

 (0.11)

In either case, failure rate function decreases exponentially to
0 and the initial failure rate is evaluated (at t=0) as:

 (0.12)

In addition to the basic execution time model described in this

section, many others have been proposed in the past. One with

the widest distribution among the software reliability models

was deployed by John Musa during his work at AT&T Bell

Laboratories (Musa, 1993). Including the standard

assumptions above, the basic assumptions for Musa’s basic
execution time model are:

i. The cumulative number of failures by time t,

follows a Poisson process with mean value function

μ(t)= (1 – exp [−βt]) , where , β>0. The mean

value function is such that the expected number of

failure occurrences for anytime period is

proportional to the expected number of undetected

faults at that time.
ii. Used model is a finite failure model.

Suppose n observed failures of the software system at

times , ,…, and from the last failure time an

additional time of x (x>=0) elapsed without failure ((
 is therefore the total time the software component has

been observed since the start). Using the model assumptions,

the likelihood function (Musa, 1993) is obtained as:

 (0.13)

The maximum likelihood estimates (MLEs) [1] of and β

are obtained as the solutions to the following pair of

equations:

 (0.14)

 (0.15)

Once the estimates of and β are obtained, it is possible to

use the invariance property of the MLEs to estimate other

reliability measures like reliability function, hazard rate,

failure intensity function etc.. This approach is then use to
evaluate our system.

4. CASE STUDY: THE ELECTRONIC

NURSING CARE MANAGEMENT

SYSTEM

This application is a comprehensive, integrated information

system designed to manage the patient care, administrative,

financial and legal aspects of nursing. The solution can also be

used to monitor staffing levels and achieve more cost-

effective staffing. Nurses could also use it for admission

information, care plan and all relevant nursing notes. All

important data is securely stored and can be retrieved when

required. All these features in this system ultimately lead to a

reduction in planning time and better assessments and

evaluations.

The essence of this section is to evaluate the errors identified

while testing this system. The system has achieved its main

objective; hence evaluation of errors should not be taken as

failure of the system to achieve its objective but a way to

ascertain how reliable the system is. The components of this

system all interact together to produce the care plan. This

system is made up of five (5) components: user management,

NNN linkage [6], patient registration, the nursing process and

nursing history. The User Management Module: Users are

entities that can be authenticated. Each user is assigned a

unique identity within the realm. To make it easier to

administer a large number of users, users can be organized

into named groups. This system uses single-sign-on which

implies that all users must login through a single interface and

are authenticated before authorizing them to access the system

resources. Authorization involves granting an entity

permissions and rights to perform certain actions on a

resource. In role-based authorization, security policies define

the roles that are authorized to access the resource. This

module is responsible for adding new staff and assigning login

credentials (username and password) to them. It also reminds

the staff when they are supposed to implement a care for a

particular patient; and add information relating to the health

facility setting (wards, rooms, etc.). The NNN Linkage

Module: This module handles the adding of NANDA-I

diagnoses [7][8], NOC outcomes [9] and NIC interventions

[10]; and also establish the linkage among these three (3)

languages. This link the NANDA-I diagnoses to NOC

outcomes; these are the linked to the NIC interventions. This

follow the sequence described in [6] in linking NANDA-I,

NOC and NIC. The NANDA-I diagnoses are identified. The

Patient Registration Module: This module is responsible for

adding or updating patients’ information. These include

personal information, next of kin information, educational

information, employment information, etc. It also handles the

admission of patient into the system. During the admission

process, a visit number is generated for the patient which is

used to track everything about the patient for a particular visit.

This visit number increases by one for every visit. The

Nursing Process Module: The nursing process module is

responsible for the implementation of the five (5) phases [11]

of the nursing process-assessment, nursing diagnosing,

planning, implementation and evaluation. Nursing care plan

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.20, February 2018

20

being the blueprint of this process is generated as well. The

assessment phase in this system is based on the Gordon’s

functional health patterns [11]. The Nursing History

Module: This keeps the archive of all the activities that are
carried out on the system.

The NNN Linkage module creates the library for nursing

diagnoses, outcomes and interventions. During the

development of the care plan, reference is made to this

module to get the diagnoses, outcomes and interventions. The

nursing process module enables the nurse to create the nursing

care plan. This module is central to all the other modules. The

history module is the module that keeps track of all the

activities of the nurses during the implementation of the

nursing process. The reliability of these components implies

the reliability of the whole system.

The evaluation of this system was carried out in two phases.

First, the functional components of the system were tested

with some existing care plans to see if the output tallies with

those care plans; any deviation from that result into a failure.

Therefore, failure here is not system failure or error but

deviation from the expected output. The functional

components and their respective functions are shown in table

1. In the second phase, the failure log resulting from the

testing is evaluated using the reliability model described
above and the result is represented on graphs.

Software reliability is therefore centred around software

faults, their effect on the system and the remaining number of

faults, system failures, the way of detecting failures, time

between failures and failure rates (or failure intensities), as

well as the confidence in the performed estimates. Identifying

faults and removing them leads to the decrease of the system

failure rate and the increase of the system reliability with time.

The cumulative number of errors detected and corrected

increases with the passage of time. This makes the software

reliability curve to look like a demand curve. In order to

evaluate this system, the model described in section 3 will be

used. The standard assumptions for this model are:

i. The rate of fault detection is proportional to the

current fault content of software.

ii. The fault detection rate remains constant over the

intervals between fault occurrences

iii. A fault is corrected instantaneously without

introducing new faults into the software

iv. The software is operated in a similar manner as that

in which reliability predictions are to be made

v. Every fault has the same chance of being

encountered within a severity class as any other

fault in that class

vi. The failures, when the faults are detected, are

independent

The system was tested using five (5) patient data

collected from Obafemi Awolowo University Teaching
Hospital Complex (OAUTHC), Ile-Ife, Nigeria.

Table 1. Test Cases for Black box Testing

Module Function Result No of

Runs

User

Management

Create Users Ok 5

 Login Ok 5

 Logout Ok 5

 Check Profile Ok 5

 Change password Ok 5

NNN

Linkage

Create NANDA-I Ok 5

 Create NOC Ok 5

 Create NIC Ok 5

 Link NANDA-I to NOC

to NIC

Ok 5

Patient

Registration

Register patient Ok 5

 Admit patient Ok 5

Nursing

Process

Create assessment using

Gordon’s health

patterns

Ok 5

 Upload and cluster cues Ok 5

 Identify diagnoses and

expected outcomes

Ok 5

 Upload planned

interventions and view

the care plan

Ok 5

 Implement the care plan Ok 5

 Evaluate the care plan

and view the evaluated

care plan

Ok 5

Nursing

History

View History of all the

Activities carried out

Ok 5

Table 2. Failure Log for black box Testing (0.5 hour) for

User Management Module

No of Time New Failure Detected

1 3

2 0

3 1

4 1

5 1

Table 3. Failure Log for black box Testing (0.5 hour) for

Patient Registration Module

No of Time New Failure Detected

1 2

2 1

3 0

4 1

5 1

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.20, February 2018

21

Table 4. Failure Log for black box Testing (3 hours) for

Nursing Process Module

No of Time New Failure Detected

1 10

2 3

3 3

4 1

5 1

Table 5. Failure Log for black box Testing (0.5 hours) for

NNN Linkage Module

No of Time New Failure Detected

1 4

2 0

3 1

4 1

5 1

Table 6. Failure Log for black box Testing (0.5 hours) for

Nursing History Module

No of Time New Failure Detected

1 3

2 1

3 2

4 0

5 0

The Fig. 1, Fig. 2, Fig. 3, Fig. 4 and Fig. 5; derived their

values from Table 2, Table 3, Table 4, Table 5 and Table 6

respectively. Looking at the graphs for the black box testing

of the modules, they all slope downward from left to right just

like a demand curve. This is because as the software is tested,

faults are identified and corrected which reduces the number

of faults present in the system thereby making the curve to

start from a higher frequency and slope down to a lower one.

On the other hand, as these faults are identified and corrected,

new faults are introduced which make curve to move up and

down which makes the curves not to be smooth.

The cumulative number of errors is a function that increases

with time and asymptotically approaches the total number of

errors V0. By systematically detecting failures and removing

faults, it is possible to achieve the required system mean time

to failure (MTTF). The curve for the cumulative failure rate

for the black box testing of the five functional modules of the

system is shown in fig. 6. Here, we arrived at V0 after testing

all the modules several times and its value is 8. This is

because no new failure was detected after this was achieved.

This shows that the software is very reliable.

Fig. 1: Graph for the black box testing of the User

Management Module

Fig. 2: Graph for the black box testing of the Patient

Registration Module

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.20, February 2018

22

Fig. 3: Graph for the black box testing of the Nursing

Process Module

Fig. 4: Graph for the black box testing of the NNN

Linkage Module

Fig. 5: Graph for the black box testing of the Nursing

History Module

Table 7. Failure Log for Black box testing for 5hrs

Time

(hrs)

No. of

Times

Failure Cumulative

Failure

Module

0.5 5 1 1 User

Management

3.5 5 1 2 Nursing
Process

4.0 5 1 3 Patient
Registration

4.5 5 1 4 NNN

Linkage

5.0 5 0 4 Nursing
History

According to Table 7 and equations (0.14) and (0.15), the

maximum likelihood estimates of and β are the solution of

the following equations:

If n=4,

Substituting the values

 (0.16)

 (0.17)

Using power series to expand

If n=4

 (0.18)

Substituting (4.6) into (4.5), we have

Expanding the equation above leads to a quadratic equation as
given below

a=1562.5, b=437.5 and c=75

Using quadratic formula, we have

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.20, February 2018

23

But cannot be negative, therefore, ,

substituting the value of in (0.16), we have

But the total number of failures cannot be a fraction, therefore,

the value of our will be 8 instead of 7.9457.

With these results we can expect final number of the failures

that are caused by errors in software design.

If the values of β and are known then is possible to draw

model graph of cumulative failures with using of equation
(0.10).

 –

Comparison of cumulative failures between model and

measured values is good during validation phase. It is obvious

that the testing time was too short to achieve the predicted

final number of failures. According to the model prediction

for the presented case, three failures could be expected after

this period as the difference between predicted value for

 and the final number of measured failures from Table 7. In

the presented case, it was decided that achieved reliability of

three predicted future failures is good enough for the

developed product. The graph for this is shown in Fig. 6.

Fig. 6: Graph of Cumulative Failures (Comparison

between measured and model)

In evaluating the system using black box testing, a total of six

(6) errors were detected and using the model, two (2) more

errors were uncovered; and because these two (2) errors were

not corrected during the actual testing, we have a reliability of

0.75 (75%). With the result of these two (2) testing methods,

it shows that the software is very reliable.

5. CONCLUSION
In this paper, we used the Musa’s basic execution time model

which was sufficient for reliability modelling of the eNCMS

presented. This model was able to give predictive information

(expected number of future failures) about the system. It is

also possible to apply described model to other problems such

as the optimal software release problem.

6. ACKNOWLEDGEMENTS
We would like to thank all the members of Health Information

System Research Group, Department of Computer Science

and Engineering, Obafemi Awolowo University, Ile-Ife for

their helpful comments on the manuscript and for significant

logistical supporting the design and conduct of the research.

7. REFERENCES
[1] Urem, F. and Mikulic, Z. 2010. Developing operational

profile for ERP software module Reliability Prediction.

2010 Proceedings of the 33rd International Convention,

Department of management, College of Sibenik, Crotia,

409-413.

[2] Pai, G. 2002. A Survey of Software Reliability Models.

Department of ECE University of Virginia, VA,1-12.

[3] Musa, J. D. 1993. Operational Profiles in Software

Reliability Engineering. IEEE Software Magazine, 14-

32.

[4] Koziolek, H. 2005. Operational Profiles for Software

Reliability. Seminar “Dependability Engineering”, 1-17.

[5] Lyu, M. R. 2007. Software Reliability Engineering: A

Roadmap. Future of Software Engineering, 2007. FOSE

’07, 153-170.

[6] Johnson, M. 2006. Linking NANDA-I, NOC, and NIC.

International Journal of Nursing Terminologies &

Classifications, 17(1): 39-40.

[7] NANDA International (Eds.). 2009. Nursing Diagnoses:

Definition & Classification, 2009-2011. Oxford: Wiley-

Blackwell.

[8] NANDA International (Eds.). 2012. Nursing Diagnoses:

Definition & Classification, 2012- 2014. Oxford: Wiley-

Blackwell.

[9] Moorhead, S., Johnson, M., Maas, M., and Swanson, E.

(Eds.). 2008. Nursing outcomes classification (NOC)

(4th ed.). St. Louis, MO: Mosby.

[10] Bulechek, G. M., Butcher, H. and Dochterman, J. M.

(Eds.). 2008. Nursing Interventions Classification (NIC).

(5th ed.). St. Louis, MO: Mosby.

[11] Gordon, M. 1994. Nursing diagnosis, process and

application (3rd ed.). St Louis, MO: Mosby.

IJCATM : www.ijcaonline.org

