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ABSTRACT 
A linguistic model to generate matrices (arrays of terminals) 

to recognize pictures was introduced by Rani Siromoney [1]. 

Yokomori introduced very simple grammars and studied the 

problem of identifying the class in the limit from positive data 

[2]. Here a new grammar called very simple matrix grammar 

is introduced and shown that this class is polynomial time 

identifiable in the limit from positive data. 

General Terms 
Matrix   grammar and   languages, context-free   grammar, 

Greibach  Normal   Form, simple deterministic.  

Keywords 

Very  simple   matrix   grammar and language, a-handle rule, 

positive presentation, inference from positive data, 
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1. INTRODUCTION 
The study of syntactic  methods of describing pictures 

considered as connected, digitized finite arrays in a two 

dimensional plane have been of great interest. Picture 

languages generated by array grammars or recognized by 

array automata have been advocated since the 1970s for 

problems arising in the frame work of pattern recognition and 

image processing.  

A digitized picture is a finite rectangular array of points or 

elements each of which is associated with it one of a discrete 

finite set of values. Thus a picture can be represented as a  

m x n matrix in which each entry aij 1≤ i≤ m, 1≤ j≤ n has one 

of the values, say v1,v2,,..vk [3].  

A linguistic model for the generation of matrices (rectangular 

arrays of terminals) by the substitution of regular sets into 

well known families of formal languages has been proposed 

in [4]. Some interesting classes of pictures including certain 

letters of the alphabet, kolam, (traditional picture patterns 

used to decorate the floor in south Indian homes) and wall 

paper designs (repetitive patterns) can be generated by certain 

grammars 

In this paper, we define very simple matrix languages and 

study how they are consistent with positive data by 

identifying a ground interpretation for them and show how 

they are polynomial time identifiable in the limit just as the 

class of very simple grammars which includes only context 

free languages. Simple deterministic languages have been 

defined with respect to Automata for regular languages and 

learning has been done [5]. Here we are considering context-

free matrix grammar and languages. And we introduce a very 

simple matrix grammar and language; study its properties and 

learning.  

 

   

2. BASIC DEFINITIONS 

Let ∑ be a finite alphabet and ∑* be the set of all finite length 

strings over ∑. Further, let ∑+ = ∑* - {}, where  is the null 

string. By len (u) we denote the length of the string u. A 

language over ∑ is a subset of ∑*. For a   string w in ∑*, 

 alph (w) denotes the set of terminal symbols appearing in w. 

For a language L, alph(L) = 
Lw

alph(w).  

Definition 2.1 Let ∑ be an alphabet set-a finite non empty set 

of symbols. A matrix (or an image) over ∑ is an mxn 

rectangular array of symbols from ∑ where m, n ≥0. The set 

of all matrices over ∑ (including ʌ) is denoted by ∑** and 

∑++=∑**-{ʌ}, where ʌ is the empty image. 

 

Definition 2.2 R (M) and C (M) respectively denote the 

number of rows and columns of a given matrix M. 

 

Definition 2.3 Let ∑*denote the set of horizontal sequences of 

letters from ∑ and ∑+=∑*-{ε}, where ε is the identity element 

(of length zero). ∑* denotes the set of all vertical sequences of 

letters over ∑, and ∑+=∑*-{ε}. Length of the  

given string s is denoted by |s|. Precisely, if s ∑+ then 

 |s| =C(s) and if s ∑+ then |s| =R(s). 

 

Definition 2.4 We use the operators  for row concatenation 

and ɸ for column concatenation for arrays. If  

 a11 . . . a1n            b11 . . . b1n’ 

  . . . . . . . .        . . . . . . . . 

X= ………….     and  Y=   ………… 

               am1 . . . am n       bm’1 . . . bm’n’ 

 X Y is defined only when at least one of them is ʌ or n=n’ 

and is given by  

           

 a11 . . . a1n 

  . . . . . . . . 

X Y= …………. 

  am1 . . . am n 

 b11 . . . b1n’ 

 . . . . . . . . 

 …………. 

 bm’1 . . . bm’n 

 

X ɸ Y  is defined only when at least one of them is ʌ or m=m’ 

and is given by 

 a11 . . . a1n    b11 . . . b1n’ 

 . . . . . . . .    ……….. 

X ɸ Y= ………….   ………… 

 am1…...am n  bm’1 . . . bmn’ 

Definition 2.5 Let x be a matrix (or an image) defined over ∑ 

then (x)i+1 = (x)i ɸ x and  (x)i+1 = (x)i  x, i≥1. 

 

Definition 2.6 Let us define a mapping χ as follows: ∑+→∑+ 
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For any string s= a1 a2 . . . an ∑+ 

        a1 

            a2 

         . 

 χ (s) =          . 

           . 

          an 

   i.e.   χ (s) = a1 Θ a2 Θ …. Θ an 

 Definition 2.7 A matrix (or an image) is defined as follows: 

Let c1, c2, …, cn Σ+  be strings of same length. 

We write I = c1 Θ c2 Θ …. Θ cn is the matrix (or an image) 

represented by the image    

   χ(c1) Φ χ(c2) Φ χ(c3)…. Φ χ(cn) 

Example 2.1 

           If c1= abc, c2= efg, c3= ijk then  

I = c1 Θ c2 Θ c3=   χ(c1) Φ χ(c2) Φ χ(c3) is the image 

   a e i 

   b f j 

   c g k 

 

We now recall the notions of matrix grammar [1] and very 

simple grammar [2] 

 

Definition 2.8 Let G = (VN, ∑, P, S) be a context-free 

grammar (CFG) in Greibach Normal Form (GNF), i.e., each  

rule of P is of the form A →  aα,  where A   VN,   a  ∑, 

αVN
*.   

 For each terminal symbol a ∑, a rule   whose   

right   hand side is of   the form aα, (where α VN
*) is called 

an a-handle rule.  

 Then G is said to be Very Simple iff for each a in ∑, 

there exists exactly one a-handle rule in P.  

 A language L is said to be Very Simple iff there 

exists a Very Simple CFG G such that L = L(G) holds. (Note 

that since every simple grammar is  - free, so is every simple 

language).  

 

Example 2.2 Let    Σ = {a, b, c, d}.   Consider   a     CFG  

G = ({S, A, B}, Σ, P, S), where P consists of the following: 

 S → aAB, A → aA, B → bB, A → c, B → d. The grammar 

G is Very Simple and L (G) = {amc bnd / m, n ≥ 0}. 

 

Definition 2.9 (Matrix Grammars) A Phrase Structure 

Matrix Grammar(PSMG), Context Sensitive Matrix 

Grammar(CSMG), Context Free Matrix Grammar(CFMG), 

Right Linear Matrix Grammar(RLMG) is a two tuple 

G=(G,G´), where G=(V, I, P, S) is a Phrase Structure 

Grammar(PSG), Context Sensitive Grammar(CSG), Context 

Free Grammar(CFG), Right Linear Grammar(RLS), with 

V= finite set of horizontal non-terminals , I= a finite set of 

intermediates=(S1,S2,…Sk), P= a finite set of PSG(CSG, CFG, 

RLG) production rules called horizontal production rules   and  

S is  the   start   symbol. SV, and V I = ϕ.  

Gi´= k
i iG1

'


where  Gi´ =(Vi, Ti, Pi, Si), i=1, 2…k are Right 

Linear Grammars with Ti= a finite set of terminals, Vi= finite 

set of vertical non-terminals, Si the start symbol and Pi finite 

set of right linear production rules, Vi∩Vj = ϕ if i≠ j.   

 

Derivations are defined as follows: First a string S1S2...Sn  I 

is generated horizontally using the horizontal production rules 

P in G i.e. S S1S2...Sn I and then vertical derivations 

proceed using the rules Pi of Gi´ in G´ 

 

Definition 2.10 (Matrix Language) The set of all matrices 

generated by M is defined to be L(M) = {m x n arrays [aij], 

i=1…, m, j=1…, n, m, n ≥ 1/ S1 . . . Sn 

*

  [aij]} 

 L(M) is called a Phrase-Structure Matrix 

Language (PSML) (Context-Sensitive Matrix Language 

(CSML), Context-Free Matrix Language (CFML), 

Regular Matrix Language (RML)) if G is a (PSMG, 

CSMG, CFMG, RLMG). 

 

 Derivation trees for CFML and RML can be defined 

similar to derivation trees for a context -free language.  

Chomskian hierarchy can be extended to matrices and it can 

be established that the family of RML 

 the family of CFML


  the family of CSML 


  the family of PSML 

3. VERY SIMPLE CONTEXT-FREE 

MATRIX GRAMMAR 
Definition 3.1 A matrix grammar M= (G, G´) is said to be a 

context-free matrix grammar i.e. (CF: CF) matrix grammar   

if G is a context-free grammar G= (V, I, P, S)    where  

I= {S1, S2,,…Sn} and each G´ = (G1´, G2´,… Gk´) where each 

Gi´= {Vi, Ti, Pi, Si} are length equivalent context- free 

grammars if there exists strings α1α2…αk such that  

αi L(Gi´),  then |α1 |=|α2 |=…=|αk|, 1≤i≤k 

 Let I = c1 Θ c2 Θ …. Θ cn be an image defined over 

Σ. IM(G) iff there exists S1 ,S2… Sn L (G) such that cj 
L(Gj), 1≤j≤n. The string S1S2… Sn is said to be an 

intermediate string deriving I with respect to M. Note that 

there can be more than one intermediate string deriving I. The 

family of languages generated by (X:Y) MG is denoted as 

(X:Y) ML where X,Y{CF,R}. 

 

Definition 3.2 A context-free matrix   grammar M= (G, G´) is 

said to be a very simple matrix grammar if it satisfies the 

following properties 

 

i) The context free grammars G and Gi´s in G´ are all in 

Greibach Normal Form   in the strict  sense, that is each rule 

in   P  and  Pi’s  are  of  the  form  A→ aα   where A I or Vi, 

a I or Ti  and α V* or Vi* and no right hand side of the 

rules contains the starting non-terminal.  

 

ii) For each intermediate symbol Si in G  there  exists exactly 

one Si-handle rule in G.  

 

iii) For each ai Ti in Gi´,  there exists exactly  one ai - handle 

rule in Pi. 

 

 iv) For each Si → aiαi  or   Ai→ aαi  in each Gi’ where 

 Si, Ai Vi, a Ti and αi   Vi *, all αi’s are of same length. 

That is if A1 → a1α1, α1 in G1´, A2 →a2α2, α2 in G2´, and  

A3 →a3α3, α3 in G3´ then |α1 |=|α2 |=|α3| 

 

Example 3.1 Consider a very simple matrix grammar  

M= (G, G’) where 

G=

   

























S

SBBSD

BDSBBSS
SSSSDBS ,

4,3

,2,1
,4,3,2,1,,,
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G´= G1´ G2´ G3´  G4’where 

Gi´= (Vi, Ti, Pi, Si) where 

Vi= iGiFiEiDiCiBiS ,,,,,, , Ti=

 igifieidicibia ,,,,,, Pi= 











































igiG

iGifiC

iCieiE

idiD

iDiciC

ibiB

iCiBiaiS

  

for i =1, 2, 3, 4 

 

Then S →S1B==>*       S1 S2 S4 S3S4  

          

                 

        a1  a2  a4  a3  a4 

         B1B2 B4 B3 B4 

        C1 C2  C4  C3 C4 

 

                        

         a1 a2 a4 a3 a4 

             b1 b2 b4 b3 b4 

           .. .   .    .  .    

           .   .    .  .   . 

           .   .    .  .   .             

         G1G2G4G3G4 

 

                  

       a1 a2 a4 a3 a4 

       b1 b2 b4 b3 b4 

       c1 c2 c4 c3 c4 

       d1 d2 d4 d3 d4 

       e1 e2 e4 e3 e4 

       f1 f2 f4 f3 f4 

       g1 g2 g4 g3 g4 

 

 

In the above example the set of all Matrices generated by M is  

L(M)={S1[S2
n(S4S3)

m]kS4 /n,k≥0 and 0≤m≤n+1} 

Definition 3.3 A positive presentation of a language L is an 

infinite sequence of strings M1, M2,… such that  

{M│M=Mi for some i} =L 

Definition 3.4 A class of languages L= {L1, L2…} is said to 

be inferable from positive data if there exists an Identification 

Algorithm IA such that M on input σ converges to L with 

Lj = Li for any index i and any positive presentation σ on Li       

Lemma 3.1 Let L be a very simple matrix language. Then for 

each matrix [aij] in L i=1, 2..m,j=1,2..n, n ≥2 the symbols of 

first and last columns must be different. 

 Example 3.2   i) For the rule in P: S→S1 AB, A→S2S2,  

B→S1,  we get {S1S2S2S1} as it is not a very simple matrix 

language. 

ii) {S1
n} is not a very simple matrix language as S → S1S, 

S→S1 gives no unique S1-handle rule 

iii) {S1
nS2 S1

m/ m,n≥0} is not a very simple matrix language  

as S→S1 SA, S→S2,  A→S1S1 gives no unique S1-handle rule  

Closure properties 
Theorem 3.1 The class of very simple matrix languages is 

closed under none of the following: union, concatenation, 

intersection, complement, kleene closure (+,*), (λ-free) 

homomorphism, inverse homomorphism or reversal.           

 

Proof (Union) Consider the very simple matrix languages 

 L1 = 

























21

21

21

21

21

21

21

gg

ff

ee

dd

cc

bb

aa

 and L2 = 

























1

1

1

1

1

1

1

g

f

e

d

c

b

a

 then 

L1 L2 = 













































































1

1

1

1

1

1

1

,

21

21

21

21

21

21

21

g

f

e

d

c

b

a

gg

ff

ee

dd

cc

bb

aa

is not a very simple matrix 

language as S →S1 S2 ,  S → S1  implies  S1 –handle  rule is not 

unique 

 

Concatenation Consider a very simple matrix language  

L3= 



























12

12

12

12

12

12

12

gg

ff

ee

dd

cc

bb

aa

 then L1L3 is not a very simple matrix 

language as the rules which generate L1L3   

i.e., S →S1Y S2 X, X → S1, Y →S2 implies that the  

S1 –handle rule is not unique  

Intersection Let L4=



























































 0,/

7654321

7654321

7654321

7654321

7654321

7654321

7654321

nm

g
n

gg
n

gg
m

gg

f
n

ff
n

ff
m

ff

e
n

ee
n

ee
m

ee

d
n

dd
n

dd
m

dd

c
n

cc
n

cc
m

cc

b
n

bb
n

bb
m

bb

a
n

aa
n

aa
m

aa

   and 
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L5= 



























































 0,/

7654321

7654321

7654321

7654321

7654321

7654321

7654321

nm

g
m

gg
m

gg
n

gg

f
m

ff
m

ff
n

ff

e
m

ee
m

ee
n

ee

d
m

dd
m

dd
n

dd

c
m

cc
m

cc
n

cc

b
m

bb
m

bb
n

bb

a
m

aa
m

aa
n

aa

then 

 

L4 L5= 





































































 0/

7654321

7654321

7654321

7654321

7654321

7654321

7654321

m

gmggmggmgg

fmffmffmff

emeemeemee

dmddmddmdd

cmccmccmcc

bmbbmbbmbb

amaamaamaa

 

 

is not-context free. 

 

Complement Let L6 = 

























2

2

2

2

2

2

2

g

f

e

d

c

b

a

 a very simple matrix language 

over Σ, while its complement   L6
c =Σ*- L6 is not a very simple 

matrix language as the rules i.e., S → S1 S ,  S → S1 which 

generates  L6
c implies  S1 –handle rule is not unique 

 

Kleene Closure Consider again L6, then L6
*
(or L6

+
) is not a 

very simple matrix language as the rules S → S1 S ,  S → S1 

which generate  L6
*  

implies  S1 –handle rule is not unique 

 

 

Homomorphism Consider a very simple matrix language 

 L7 = 



























































 0/

21

21

21

21

21

21

21

n

g
n

g

f
n

f

e
n

e

d
n

d

c
n

c

b
n

b

a
n

a

and a homomorphism defined  

 

by h1



















































1

1

1

1

1

1

1

g

f

e

d

c

b

a

= 



























1

1

1

1

1

1

1

g

f

e

d

c

b

a

and h1



















































2

2

2

2

2

2

2

g

f

e

d

c

b

a

= ʌ 

 

Then h1(L7) = 



























































 0/

1

1

1

1

1

1

1

n

n
g

n
f

n
e

n
d

n
c

n
b

n
a

 is not a very simple matrix 

language as S →S1S,  S → S1 implies  S1 –handle rule is not 

unique 

 

Inverse Homomorphism For a very simple matrix language 

L6 =

























2

2

2

2

2

2

2

g

f

e

d

c

b

a

, consider a homomorphism h defined by  

 

h



















































1

1

1

1

1

1

1

g

f

e

d

c

b

a

=

























2

2

2

2

2

2

2

g

f

e

d

c

b

a

 and h



















































3

3

3

3

3

3

3

g

f

e

d

c

b

a

= ʌ. 

Then h-1(L6) = 



























































 0,/

313

313

313

313

313

313

313

nm

n
gg

m
g

n
ff

m
f

n
ee

m
e

n
dd

m
d

n
cc

m
c

n
bb

m
b

n
aa

m
a

 

is not very simple matrix language as  

S → X ,  X → S3 X,  X →S1, X→S1Y, Y→S3 implies  

 S1 –handle rule is not unique 

 

Reversal Consider a very simple matrix language L7 then its 

reversal  L7
R  is not a very simple matrix language   as the 

rules S → S2 X ,   X → S1 X ,   X →S1 which generates L7
R  
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implies  that S1 –handle rule is not unique 

4. LEARNING VERY SIMPLE MATRIX 

GRAMMAR AND LANGUAGE 

We extend the algorithm given in [1] and use the schema 

representation method to learn the class of very simple matrix 

language. For the purpose of learning, we consider the 

following string representation of each column of the matrix 

using a mapping χ. 

Definition 4.1 Let x be a matrix (or an image) defined over Σ, 

then (x)i+1=(x)i   Φ x and (x)i+1 = (x)i Θ x, i ≥ 1 

 A mapping χ is defined as follows: 

 χ: Σ+ →Σ+ such that for any string s = a1a2….an Σ+ 

Let I = c1 Θ c2 Θ …. Θ cn be the image defined over Σ+ I 
L(M) if and only  if there exists S1S2…Sn L(G) such that cj 

L(Gi’), 1≤i≤n. The string S1S2…Sn is said to be an 

intermediate string deriving I with respect to M. Note that 

there can be more than one intermediate string deriving I.  

In this section, we consider the following problem for very 

simple matrix grammars. Suppose that we are given a finite set 

of  M arrays [aij] i=1…m,j=1…n  from an unknown very 

simple matrix language L(M) for some very simple matrix 

grammar  M=(G,G’), the algorithm identifies a ground 

interpretation I such that I(G) is consistent with M.  

 

Identification algorithm for very simple matrix grammars 

Algorithm VSMG 

Input: A positive presentation of very simple matrix language 

L(M)= G G’ 

Output: A sequence of a set of context -free grammars for the 

horizontal   grammar   G   over   intermediate   symbols  and 

the grammar G´ for the vertical columns. 

Procedure 

Initialize grammar G= ({p0}, Φ, Φ, p0,Φ) 

Initialize the set H =Φ 

Initialize the sets T1, T2,…Tk = Φ 

/*   Each positive presentation  

Mi   M= c1 Θ c2 Θ …. Θ cn (1≤n≤k)  

             =χ(c1)Φχ(c2)Φχ(c3)….Φχ(cn) 

Where  c1,  c2, …. cn   Σ
+ */ 

 

Step 1 For the first matrix of the sample i.e., M1 do  

 

1a. Assign a non terminal Sj (1≤j≤k) to each different χ(cn) 

(1≤n≤k)  and store the string of the sequence of Sj’s corresponding 

to the sequence χ(c1) χ(c2) χ(c3)…. χ(cn) in a set  H. 

 

1b. If Sj(1≤j≤k) is the non terminal associated to a column  

χ(cn) (1≤n≤k), put the string cn(1≤n≤k) in the set Tj (1≤j≤k) 

 

Step 2 For the other matrices of the sample i.e.,  

 Mi = c1 Θ c2 Θ …. Θ cn (1≤n≤k) 

i ≥ 2, do 

If the string c1 corresponding to χ (c1) has a common 

 prefix and a common suffix with a string cn  (1≤n≤k) in  some  

Tj (1≤j≤k), include the string c1 in Tj ie Tj = Tj  {c1} and non  

terminal   Sj (1≤j≤k)  to χ (c1). Repeat the same for c2, c3, …, cn 

and include the string of the sequence of Sj’s corresponding to  

χ(c1) χ(c2) χ(c3)…. χ(cn) in the set H. 

 

Step 3 Using the identification algorithm IA given below obtain  

the    grammar    G   for   the   input  set  H, which  accepts the 

context - free matrix grammar G  

 

Step 4 Using the same identification algorithm IA repeatedly 

we   obtain   the   grammar   G1´,G2´…Gk´ corresponding to  

T1, T2, …, Tk . 

 

Lemma 4.1   For   a    finite     subset      R    of      L(G*),  

let   I= (fn,fp) =  Consistent(R)  and  G =I(G0). Then   either 

 L (G*) = L (G) or L(G*)-L(G) ≠ ϕ 

 

Lemma 4.2 Let GRO,GR1…,GRI,…be the intermediate  

(horizontal) sequence of conjectured grammars produced by 

IA, where GRI=I1(G0). Then there exists r≥ 0 such that for all 

i≥0, produced by IA, where GRr =Ii(G0,Σ). Then there exists  

r ≥0 such that for all i ≥0, GRr= GRr+1 and  L(GRr) = L(G*) and 

similarly let   GR0´, GR1´,…GRi´…  be   the vertical   sequence of  

conjectured    grammars   produced  by  IA,  where  GRr´=Ii(G 0,Σ).  

Then   there   exists r ≥0 su ch that for all I ≥0,  GRr ´= GRr+1´ and   

L(GRr´) = L(G*)     where    G0,Σ  = ({S}VN,Σ,Σ,PΣ,S)     where  

VN,Σ ={ Xa /aΣ} and PΣ = {Xa → axa /a Σ} 

 

Proof   From the property of   IA, in particular, of the procedure  

consistent(R), there is an upper bound B (depending on the size  

of G* ) for which each i≥1, the number of candidate interpretations  

Ii (=consistent (Ri)) for the i-th conjecture GRi is no more than B.  

(Note that for each i≥1, and interpretation I* for G* is potentially 

included in the set of those candidate interpretations Ii). Thus  

there exists r ≥ 0 such that for all i≥0, GRr = GRr+1. Suppose that 

L(G*) ≠L(GRr),  then by  the preceding   lemma  there exists  a  

string w ϵ L(G*) – L(GRr) such  that  w is not yet  provided as a  

positive   example. This implies that IA produces a conjecture  

distinct from GRr, a contradiction 

 Thus we have the following  

 

Theorem 4.1 The class of very simple grammars is identifiable 

in the limit from positive data.  

 

Identification Algorithm IA 
Input: A positive presentation of a very simple matrix 

language L (G*) 

Output: A sequence of very simple grammars GR0, GR1…… 

Procedure 

 Initialize R0 =Ǿ; 

 Initialize the grammar schema G0, Ǿ; 

 Let GR0 = ({S}, Ǿ, Ǿ, S); 

 Let i=1; 

 Repeat (forever) 
  Read the next positive example wi; 

  Let Ri = Ri-1   {wi} 

  Let alph(R1) = alph (Ri-1) {alph(wi)}; 

  If wi L (GRi-1), then let GRi = GRi-1; 

  Output GRi; 

  Else 

             Augment G0,Σ using Σ = alph (Ri); 

             Let Ii = Consistent (Ri); 

             Output GRi = Ii (G0, Σ); 

 

Lemma 4.3 Given any very simple matrix grammar G*, the 

algorithm IA identifies in the limit a very simple matrix 

grammar GR such that L(G*) = L(GR), where R is the set of 

positive data provided 

 Thus we have the following 

 

Theorem 4.2 The class of very simple matrix grammar is 
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identifiable in the limit from positive data. 

  

Constructing a characteristic sample 

 Let L be a very simple matrix language. A finite subset SM of 

L   is   called   a   characteristic   sample   of   L   if and only if 

L is the smallest very simple matrix language containing SM 

such that no rule can be applied more than twice.  

 

Time complexity analysis 

           Time for updating a conjecture: 

Let N=ΣWRlen(Wj) and l be the maximum length of positive 

data in R. The time for updating a conjecture is obviously 

dominated by the time for the procedure consistent (R) where 

I =(fn, fp) = consistent(R). 

 In performing consistent(R) determining fn requires 

atmost O(N) times. It takes atmost O(N) times to construct 

Lg(R). Solving Lg(R) requires atmost O( |Σ|3) time, because it 

is reduced to the computation of an inverse matrix with atmost 

|Σ| dimension. We have for any 

 a Σ, -1≤na≤B(a,w) ( where B(a,w) = len(w)/#a(w) and w is a 

string of minimum length in Ra). we see that the value of na is 

bounded by l, the number of all solution vectors of Lg(R) is 

bounded by l|Σ|. Hence while loops are repeatedly performed 

atmost  l|Σ|   times. Each while loop requires O (N) times 

atmost. Thus the time for updating a conjecture is bounded by 

 O(|Σ|3) +O(l|Σ|) *N ≤ O(Max{N|Σ|+1.|Σ|3}) 

 The above is repeated for each column. Therefore 

repeat n times if there are n columns 

O (|Σ|3) +O(l|Σ|) *N ≤ O(Max{N|Σ|+1.|Σ|3})n 

 

Example Run 

Consider the very simple matrix grammar given in Example 

3.1. 

Step1 Let M1 = 

























43421

43421

43421

43421

43421

43421

43421

ggggg

fffff

eeeee

ddddd

ccccc

bbbbb

aaaaa

 

 

a. χ(c1) = a1 b1 c1 d1 e1 f1 g1 – S1 

χ(c2) = a2 b2 c2 d2 e2 f2 g2 – S2 

χ(c3) = a3 b3 c3 d3 e3 f3 g3 – S3 

χ(c4) = a4 b4 c4 d4 e4 f4 g4 – S4 

H = {S1 S2 S4S3 S4} 

b. T1 = {a1 b1 c1 d1 e1 f1 g1} 

T2 = {a2 b2 c2 d2 e2 f2 g2}  

T3 = {a3 b3 c3 d3 e3 f3 g3} 

T4 = {a4 b4 c4 d4 e4 f4 g4} 

Step 2 M2 =



















41

41

41

41

gg

ff

bb

aa

  

Now H = {S1S2 S4S3S4, S1 S4} 

T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1f1 g1} 

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2f2 g2}  

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3} 

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4} 

M3 =

























434221

434221

434221

434221

434221

434221

434221

gggggg

ffffff

eeeeee

dddddd

cccccc

bbbbbb

aaaaaa

 

H = {S1 S2 S4 S3 S4, S1S4, S1S2S2S4S3S4} 

T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1f1 g1} 

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2f2 g2} 

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3} 

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4} 

M4 = 

































43421

43421

43421

43421

43421

43421

43421

43421

43421

43421

ggggg

fffff

eeeee

ddddd

ccccc

eeeee

ddddd

ccccc

bbbbb

aaaaa

 

Again H = {S1S2S4S3S4, S1S4, S1S2S2S4 S3 S4} 

T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1 f1 g1, a1 b1 c1 d1 e1 c1 d1 e1 f1 g1} 

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2 f2 g2, a2 b2 c2 d2 e2 c2 d2 e2f2 g2} 

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3, a3 b3 c3 d3 e3 c3 d3 e3 f3 g3} 

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4, a4 b4 c4 d4 e4 c4 d4 e4 f4 g4} 

 M5 = 

























43434221

43434221

43434221

43434221

43434221

43434221

43434221

gggggggg

ffffffff

eeeeeeee

dddddddd

cccccccc

bbbbbbbb

aaaaaaaa

 

Again 

H = {S1S2S4S3S4, S1S4, S1S2S2S4S3S4, S1S2S2S4S3S4S3S4} 

T1 = {a1b1c1d1e1f1g1, a1b1f1g1, a1b1c1d1e1 c1d1e1f1g1} 

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2 f2 g2, a2 b2 c2 d2 e2 c2 d2 e2f2 g2} 

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3, a3 b3 c3 d3 e3 c3 d3 e3 f3 g3} 

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4, a4 b4 c4 d4 e4 c4 d4 e4 f4 g4} 

 

M6 = 



























43423434221

43423434221

43423434221

43423434221

43423434221

43423434221

43423434221

ggggggggggg

fffffffffff

eeeeeeeeeee

ddddddddddd

ccccccccccc

bbbbbbbbbbb

aaaaaaaaaaa

 

Again  

H= {S1S2 S4 S3 S4, S1 S4 , S1 S2 S2 S4 S3 S4 , S1 S2 S2 S4 S3 S4 S3 S4,   

                  S1 S2 S2 S4 S3 S4 S3 S2 S4 S3 S4} 
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T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1 f1 g1 , a1 b1 c1 d1 e1  c1 d1 e1 f1 g1} 

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2 f2 g2, a2 b2 c2 d2 e2 c2 d2 e2f2 g2} 

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3, a3 b3 c3 d3 e3 c3 d3 e3 f3 g3} 

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4, a4 b4 c4 d4 e4 c4 d4 e4 f4 g4} 

 

Identification of G: 

The computation of fp and fn: 

1. Let w1 = {S1S4} be the first word from H and H1 = {w1}, 

alph (H1) = {S1, S4}. Since S4 is final S4 handle rule is   

XS4 → S4 and fp (XS4) = λ (nS1≥0) fn (XS1) = S and 

fp (XS1) ≠λ 

The length equation for w1 is nS1 + nS4 = -1….. (l. w1) 

nS1 = 0 ….. (l. w1)´ 

Lg (H1) = {(l. w1)} 

Lg (H1´) = {(l. w1)´} 

From the structure graph of H we get 

fn(XS1) = S and fn(X) = X for every other X 

χ1 = (0) (=nS1) 

CR (χ1) is 

S → S1 ZS1, 1      and XS4 → S4 

Simulating the derivation for w1, via these rules we get 

 ZS1,1  =  XS4 . As a result we see that CR (χ1) is good and a 

ground interpretation. I1 = (fn, fp) admissible to 

H1 is obtained where 

fn (XS1) = S                        fp (XS1) = XS4 

fn (X)=X  otherwise          fp (XS4)  = λ 

 

The conjectured grammar GH1 = I1(G 0,Σ) is  

({S, XS4}, {XS1, XS4}, P1,S) where P1 is 

S → S1 XS4, XS4→ S4 

 

2. Let w2 =  {S1 S2 S4 S3 S4} be the second  word from H  and 

alph(w2) = {S1,S2 ,S3, S4}. Then H2 = {w1, w2}  
Since S4 is final S4 handle rule is XS4 → S4 and  

fp (XS4 ) = λ (nS1≥0)  

From the structure graph of H we get 

fn (XS1) = S and 

fn (X)=X for every other X 

fp (XS1) ≠ λ 

and Lg(H2)= {(l.w1), (l.w2)} where  

 

The Length equation for w2 is 

nS1 + nS2 + nS3 +2n S4= -1….. (l. w2) 

nS1 + nS2 + nS3 = 0 ….. (l.w2)´  

Using the set H, we construct a directed graph called the 

structure graph of H as follows 

 

                                               S1  

   S2  S4 

          

   

                         

 S2        S2          

      

         

                                       

 S4     S4      

      

  

        S3 

 S3                       

                  S4    

 

       S2   S2                     S3                       

    

 S4     

           S4  

 S4 

S3    

    

                

         S4   

  

 Fig.1 Prefix Tree Automaton AR  

 

 

  S1 

      

 

 

 S2 

  

 

S2 

 S4 

 

 

 

  S3 

 

 

 

 S4 

 

 

 

Fig.2   Structured graph H 

 

To solve Lg(H2’)={(l.w1)´,(l.w2)´}, we construct an associated 

matrix MH2 and a  matrix equation  MH2 = 







0

0

111

001
  

The matrix computation is done as follows 



















0

0

110

001*

0

0

111

001
 

& solution of   Lg (H2) = (nS1=0)  (nS2 + nS3 = 0)  nS1 = 0 

and we may choose a solution vector 

χ2= (0, 2, -1) (=(nS1, nS3, nS)) 

Hence the set of candidate rules  

 CR (χ2){ S → S1 ZS1,1,XS2 → S2 ZS2,1 ZS2,2 ZS2,3 , XS3 → S3} is 

obtained. 

Simulating the derivation for w2 via these rules we get 

ZS1,1 = XS2 = XS4 , ZS2,1 = XS4, ZS2,2 = XS3 , ZS2,3 = XS4    

 XS4 → S4          

We see that CR (χ2) is good and a ground interpretation.  

I2 = (fn, fp) obtained where 

fn (XS1) = S         fp(XS1) = XS2 XS4             

fn (XS4) = XS2           fp(XS2) = XS3 XS4 

fn (X) = X otherwise    fp(XS3) = λ 

         fp(XS4) = λ 

Thus the conjectured   grammar GH2 =I2 (G0,Σ) is 

 ({S, S2, S3},{ S1 ,S2 ,S3,S4}, P2,S)  where P2 is 

S → S1 ZS1,1 → S1XS4 → S1 S4  

S → S1 ZS1,1 → S1XS2 → S1 S2 ZS2,1 ZS2,2    

ZS2,3  → S1 S2  XS4  XS3 XS4 

S→ S1 S2 S4 S3 S4  
S → S1 XS2   XS2→ S2 XS4 XS3 XS4,   XS3 → S3   XS4 → S4   

 

 

 

 

 

S2
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3. Let w3 = {S1 S2S2S4S3S4 S3S4} be the third word from H 

and H3= {w1, w2, w3} and alph (H3) = {S1, S2, S3, S4}. 
From the structure graph shown above we have fn (XS1) = S 

and fp (XS1) ≠λ 

Since S4 is final, the S4 handle rule is XS4 → S4 and 

 fp (XS4 ) = λ (nS1≥0)  

 The IA computes a length equation for w3   

and constructs  

 Lg(H3´) = {(l.w1)´,(l.w2)’,(l.w3)´} where 

nS1 + 2nS2 + 2nS3 +3 nS4= -1….. (l. w3) 

nS1 + 2nS2+2 nS3 = 2 ….. (l. w3)´ 

and   the associated matrix MH3 is  

 






























1

0

0

110

000

001
*

2

1

0

221

111

001

 

Thus the Sol (Lg(H3´))=(nS1 = 0 )   (nS2 + nS3 = 1) is 

obtained from which we may choose a solution vector  

χ3  = (0,2,-1)(= (nS1, nS2, nS3)) 

Hence the set of candidate rules   CR (χ3) is  
S → S1 ZS1,1 ,  XS2 → S2 ZS2,1 ZS2,2 ZS2,3   
XS3 → S3         XS4 → S4  
   Simulating the derivation for W3, via these rules we 

get ZS1,1 = XS2 = XS4, ZS2,1 = XS2 = XS4, ZS2,2 = XS3, 

ZS2,3 = XS2= XS4        

We see that CR (χ3) is good and a ground interpretation. 

I3 = (fn, fp) is obtained where 

fn (XS1) = S     fp (XS1)  = XS2 XS4 

fn (XS4) = XS2    fp (XS2)  = XS2XS3 XS4 

fn (X) = X  otherwise   fp (XS3)  = λ  

     fp (XS4)  = λ 

Thus the conjectured grammar GH3 =I3 (G 0,Σ) is  

 ({S, S2, S3, S4},{ S1 ,S2 ,S3 ,S4}, P3,S)    where P3 is 

S → S1 XS2      XS2 → S2 XS4 XS3 XS4  

XS3 → S3        XS4 → S4 

 

4. Let w4 = {S1 S2S2S4S3S4S3S2S4S3S4} be the fourth word 

from H and H4= {w1, w2, w3, w4} and  
alph (H4) = {S1, S2, S3 ,S4}. 

 From the structure graph shown above we have fn (XS1) = S 

and fp (XS1) ≠λ 

 Since S4 is final, the S4 handle rule is XS4 → S4 and 

fp (XS4) = λ (nS1≥0)  

 The IA computes a length equation for w4 and 

constructs Lg(H4’) = {(l.w1)´,(l.w2)´,(l.w3)´, (l.w4)´} where 

nS1 + 3nS2 + 3nS3 +4nS4= -1….. (l. w4) 

nS1 + 3nS2+3 nS3 = 3 ….. (l. w4)´ 

 and the associated matrix MH4 is  



































0

0

1

0

000

000

110

001

*

3

2

1

0

331

221

111

001

 

Thus the Sol(Lg(H4´))=(nS1 = 0 )   (nS2 + nS3 = 1) is 

obtained from which we may choose a solution vector   

χ4  = (0,2,-1)(= (nS1, nS2, nS3)) 

The set of candidate rules   CR (χ4) is  
S → S1 ZS1,1 ,  XS2 → S2 ZS2,1 ZS2,2 ZS2,3   
XS3 → S3         XS4 → S4  
Simulating the derivation for W4, Via these rules we get 

ZS1,1 = XS2 = XS4 ,  ZS2,1 = XS2 = XS4 , ZS2,2 = XS3 ,  

ZS2,3 = XS2= XS4     We see that CR (χ4) is good and a ground 

interpretation. I3 = (fn, fp)  is obtained where 

fn (XS1) = S         fp (XS1)  = XS2 XS4 

fn (XS4) = XS2        fp (XS2)  = XS2XS3 XS4 

fn (X) = X  otherwise   fp (XS3)  =λ   

         fp (XS4)  = λ 

Thus the conjectured grammar is 

G= GH4 =({S, S2 , S3 ,S4},{S1, S2, S3, S4}, P4,S)    

where P4 is 

S → S1 XS2      XS2 → S2 XS4 XS3 XS4  

XS3 → S3         XS4 → S4   
The conjectured GH4 is equivalent to G*. Hence GH4 is always 

an output as a conjecture for all input data afterwards. 

Identification of Gi’ using Ti: 
The above procedure can be adapted to the sets T1, T2, T3 and 

T4 to conjecture the grammars G1´, G2´, G3´ and G4´ of   G´ 

5. CONCLUSION   

In this paper we have extended the notion of learning very 

simple grammars of Yokomori[1] to matrix grammars and 

adopted a modification of the algorithm to learn very simple 

matrix grammars which in turn can be used to study digitized 

pictures. The very simple   matrix grammar considered here is 

(CF:CF) matrix grammar. Hence for further study, 

applications of these grammars to other domains can be 

considered. 

6. REFERENCES 
[1] Rani Siromoney: On equal matrix languages.  Information 

and  control. 14(2)(1969) 135–151 

 [2] Yokomori T.  On   polynomial - time   identification of 

very simple   grammars   from   positive data. Theoretical 

computer science 298 (2003)179-206 

[3] A.Rosenfeld and J.L.Pfaltyz. Sequential operations  in 

digital   picture   processing. J.Assoc.Comput.Mach.13, 

1966, pp. 471-494.  

[4] Gift Siromoney et al. Abstract families of matrices and 

picture languages. Computer graphics and image 

processing (1972) I, (284-307) 

[5] Yokomori, T., On polynomial-time learnability in the limit 

of strictly deterministic automata. Machine learning  

19(1995), 153-179. 

  

IJCATM : www.ijcaonline.org 


