
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

33

Learning Very Simple Matrix Grammar

M. Iffath Mubeen
Department of Mathematics
Government Arts College for

Men (Auto)
Chennai-35, Tamil Nadu, India

 J. D. Emerald Princess
Sheela

Department of Mathematics
Queen Mary’s College (Auto)
Chennai-4, Tamil Nadu, India

D. G. Thomas
Department of Mathematics
Madras Christian College

(Auto)
Chennai-59, Tamil Nadu, India

ABSTRACT
A linguistic model to generate matrices (arrays of terminals)

to recognize pictures was introduced by Rani Siromoney [1].

Yokomori introduced very simple grammars and studied the

problem of identifying the class in the limit from positive data

[2]. Here a new grammar called very simple matrix grammar

is introduced and shown that this class is polynomial time

identifiable in the limit from positive data.

General Terms
Matrix grammar and languages, context-free grammar,

Greibach Normal Form, simple deterministic.

Keywords

Very simple matrix grammar and language, a-handle rule,

positive presentation, inference from positive data,

characteristic sample, schema representation.

1. INTRODUCTION
The study of syntactic methods of describing pictures

considered as connected, digitized finite arrays in a two

dimensional plane have been of great interest. Picture

languages generated by array grammars or recognized by

array automata have been advocated since the 1970s for

problems arising in the frame work of pattern recognition and

image processing.

A digitized picture is a finite rectangular array of points or

elements each of which is associated with it one of a discrete

finite set of values. Thus a picture can be represented as a

m x n matrix in which each entry aij 1≤ i≤ m, 1≤ j≤ n has one

of the values, say v1,v2,,..vk [3].

A linguistic model for the generation of matrices (rectangular

arrays of terminals) by the substitution of regular sets into

well known families of formal languages has been proposed

in [4]. Some interesting classes of pictures including certain

letters of the alphabet, kolam, (traditional picture patterns

used to decorate the floor in south Indian homes) and wall

paper designs (repetitive patterns) can be generated by certain

grammars

In this paper, we define very simple matrix languages and

study how they are consistent with positive data by

identifying a ground interpretation for them and show how

they are polynomial time identifiable in the limit just as the

class of very simple grammars which includes only context

free languages. Simple deterministic languages have been

defined with respect to Automata for regular languages and

learning has been done [5]. Here we are considering context-

free matrix grammar and languages. And we introduce a very

simple matrix grammar and language; study its properties and

learning.

2. BASIC DEFINITIONS

Let ∑ be a finite alphabet and ∑* be the set of all finite length

strings over ∑. Further, let ∑+ = ∑* - {}, where  is the null

string. By len (u) we denote the length of the string u. A

language over ∑ is a subset of ∑*. For a string w in ∑*,

 alph (w) denotes the set of terminal symbols appearing in w.

For a language L, alph(L) = 
Lw

alph(w).

Definition 2.1 Let ∑ be an alphabet set-a finite non empty set

of symbols. A matrix (or an image) over ∑ is an mxn

rectangular array of symbols from ∑ where m, n ≥0. The set

of all matrices over ∑ (including ʌ) is denoted by ∑** and

∑++=∑**-{ʌ}, where ʌ is the empty image.

Definition 2.2 R (M) and C (M) respectively denote the

number of rows and columns of a given matrix M.

Definition 2.3 Let ∑*denote the set of horizontal sequences of

letters from ∑ and ∑+=∑*-{ε}, where ε is the identity element

(of length zero). ∑* denotes the set of all vertical sequences of

letters over ∑, and ∑+=∑*-{ε}. Length of the

given string s is denoted by |s|. Precisely, if s ∑+ then

 |s| =C(s) and if s ∑+ then |s| =R(s).

Definition 2.4 We use the operators  for row concatenation

and ɸ for column concatenation for arrays. If

 a11 . . . a1n b11 . . . b1n’

X= …………. and Y= …………

 am1 . . . am n bm’1 . . . bm’n’

 X Y is defined only when at least one of them is ʌ or n=n’

and is given by

 a11 . . . a1n

X Y= ………….

 am1 . . . am n

 b11 . . . b1n’

 ………….

 bm’1 . . . bm’n

X ɸ Y is defined only when at least one of them is ʌ or m=m’

and is given by

 a11 . . . a1n b11 . . . b1n’

 ………..

X ɸ Y= …………. …………

 am1…...am n bm’1 . . . bmn’

Definition 2.5 Let x be a matrix (or an image) defined over ∑

then (x)i+1 = (x)i ɸ x and (x)i+1 = (x)i  x, i≥1.

Definition 2.6 Let us define a mapping χ as follows: ∑+→∑+

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

34

For any string s= a1 a2 . . . an ∑+

 a1

 a2

 .

 χ (s) = .

 .

 an

 i.e. χ (s) = a1 Θ a2 Θ …. Θ an

 Definition 2.7 A matrix (or an image) is defined as follows:

Let c1, c2, …, cn Σ+ be strings of same length.

We write I = c1 Θ c2 Θ …. Θ cn is the matrix (or an image)

represented by the image

 χ(c1) Φ χ(c2) Φ χ(c3)…. Φ χ(cn)

Example 2.1

 If c1= abc, c2= efg, c3= ijk then

I = c1 Θ c2 Θ c3= χ(c1) Φ χ(c2) Φ χ(c3) is the image

 a e i

 b f j

 c g k

We now recall the notions of matrix grammar [1] and very

simple grammar [2]

Definition 2.8 Let G = (VN, ∑, P, S) be a context-free

grammar (CFG) in Greibach Normal Form (GNF), i.e., each

rule of P is of the form A → aα, where A  VN, a ∑,

αVN
*.

 For each terminal symbol a ∑, a rule whose

right hand side is of the form aα, (where α VN
*) is called

an a-handle rule.

 Then G is said to be Very Simple iff for each a in ∑,

there exists exactly one a-handle rule in P.

 A language L is said to be Very Simple iff there

exists a Very Simple CFG G such that L = L(G) holds. (Note

that since every simple grammar is  - free, so is every simple

language).

Example 2.2 Let Σ = {a, b, c, d}. Consider a CFG

G = ({S, A, B}, Σ, P, S), where P consists of the following:

 S → aAB, A → aA, B → bB, A → c, B → d. The grammar

G is Very Simple and L (G) = {amc bnd / m, n ≥ 0}.

Definition 2.9 (Matrix Grammars) A Phrase Structure

Matrix Grammar(PSMG), Context Sensitive Matrix

Grammar(CSMG), Context Free Matrix Grammar(CFMG),

Right Linear Matrix Grammar(RLMG) is a two tuple

G=(G,G´), where G=(V, I, P, S) is a Phrase Structure

Grammar(PSG), Context Sensitive Grammar(CSG), Context

Free Grammar(CFG), Right Linear Grammar(RLS), with

V= finite set of horizontal non-terminals , I= a finite set of

intermediates=(S1,S2,…Sk), P= a finite set of PSG(CSG, CFG,

RLG) production rules called horizontal production rules and

S is the start symbol. SV, and V I = ϕ.

Gi´= k
i iG1

'


where Gi´ =(Vi, Ti, Pi, Si), i=1, 2…k are Right

Linear Grammars with Ti= a finite set of terminals, Vi= finite

set of vertical non-terminals, Si the start symbol and Pi finite

set of right linear production rules, Vi∩Vj = ϕ if i≠ j.

Derivations are defined as follows: First a string S1S2...Sn  I

is generated horizontally using the horizontal production rules

P in G i.e. S S1S2...Sn I and then vertical derivations

proceed using the rules Pi of Gi´ in G´

Definition 2.10 (Matrix Language) The set of all matrices

generated by M is defined to be L(M) = {m x n arrays [aij],

i=1…, m, j=1…, n, m, n ≥ 1/ S1 . . . Sn

*

 [aij]}

 L(M) is called a Phrase-Structure Matrix

Language (PSML) (Context-Sensitive Matrix Language

(CSML), Context-Free Matrix Language (CFML),

Regular Matrix Language (RML)) if G is a (PSMG,

CSMG, CFMG, RLMG).

 Derivation trees for CFML and RML can be defined

similar to derivation trees for a context -free language.

Chomskian hierarchy can be extended to matrices and it can

be established that the family of RML

 the family of CFML


 the family of CSML


 the family of PSML

3. VERY SIMPLE CONTEXT-FREE

MATRIX GRAMMAR
Definition 3.1 A matrix grammar M= (G, G´) is said to be a

context-free matrix grammar i.e. (CF: CF) matrix grammar

if G is a context-free grammar G= (V, I, P, S) where

I= {S1, S2,,…Sn} and each G´ = (G1´, G2´,… Gk´) where each

Gi´= {Vi, Ti, Pi, Si} are length equivalent context- free

grammars if there exists strings α1α2…αk such that

αi L(Gi´), then |α1 |=|α2 |=…=|αk|, 1≤i≤k

 Let I = c1 Θ c2 Θ …. Θ cn be an image defined over

Σ. IM(G) iff there exists S1 ,S2… Sn L (G) such that cj 
L(Gj), 1≤j≤n. The string S1S2… Sn is said to be an

intermediate string deriving I with respect to M. Note that

there can be more than one intermediate string deriving I. The

family of languages generated by (X:Y) MG is denoted as

(X:Y) ML where X,Y{CF,R}.

Definition 3.2 A context-free matrix grammar M= (G, G´) is

said to be a very simple matrix grammar if it satisfies the

following properties

i) The context free grammars G and Gi´s in G´ are all in

Greibach Normal Form in the strict sense, that is each rule

in P and Pi’s are of the form A→ aα where A I or Vi,

a I or Ti and α V* or Vi* and no right hand side of the

rules contains the starting non-terminal.

ii) For each intermediate symbol Si in G there exists exactly

one Si-handle rule in G.

iii) For each ai Ti in Gi´, there exists exactly one ai - handle

rule in Pi.

 iv) For each Si → aiαi or Ai→ aαi in each Gi’ where

 Si, Ai Vi, a Ti and αi  Vi *, all αi’s are of same length.

That is if A1 → a1α1, α1 in G1´, A2 →a2α2, α2 in G2´, and

A3 →a3α3, α3 in G3´ then |α1 |=|α2 |=|α3|

Example 3.1 Consider a very simple matrix grammar

M= (G, G’) where

G=

   

























S

SBBSD

BDSBBSS
SSSSDBS ,

4,3

,2,1
,4,3,2,1,,,

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

35

G´= G1´ G2´ G3´ G4’where

Gi´= (Vi, Ti, Pi, Si) where

Vi= iGiFiEiDiCiBiS ,,,,,, , Ti=

 igifieidicibia ,,,,,, Pi=











































igiG

iGifiC

iCieiE

idiD

iDiciC

ibiB

iCiBiaiS

for i =1, 2, 3, 4

Then S →S1B==>* S1 S2 S4 S3S4

 

 a1 a2 a4 a3 a4

 B1B2 B4 B3 B4

 C1 C2 C4 C3 C4

 

 a1 a2 a4 a3 a4

 b1 b2 b4 b3 b4

 G1G2G4G3G4

 

 a1 a2 a4 a3 a4

 b1 b2 b4 b3 b4

 c1 c2 c4 c3 c4

 d1 d2 d4 d3 d4

 e1 e2 e4 e3 e4

 f1 f2 f4 f3 f4

 g1 g2 g4 g3 g4

In the above example the set of all Matrices generated by M is

L(M)={S1[S2
n(S4S3)

m]kS4 /n,k≥0 and 0≤m≤n+1}

Definition 3.3 A positive presentation of a language L is an

infinite sequence of strings M1, M2,… such that

{M│M=Mi for some i} =L

Definition 3.4 A class of languages L= {L1, L2…} is said to

be inferable from positive data if there exists an Identification

Algorithm IA such that M on input σ converges to L with

Lj = Li for any index i and any positive presentation σ on Li

Lemma 3.1 Let L be a very simple matrix language. Then for

each matrix [aij] in L i=1, 2..m,j=1,2..n, n ≥2 the symbols of

first and last columns must be different.

 Example 3.2 i) For the rule in P: S→S1 AB, A→S2S2,

B→S1, we get {S1S2S2S1} as it is not a very simple matrix

language.

ii) {S1
n} is not a very simple matrix language as S → S1S,

S→S1 gives no unique S1-handle rule

iii) {S1
nS2 S1

m/ m,n≥0} is not a very simple matrix language

as S→S1 SA, S→S2, A→S1S1 gives no unique S1-handle rule

Closure properties
Theorem 3.1 The class of very simple matrix languages is

closed under none of the following: union, concatenation,

intersection, complement, kleene closure (+,*), (λ-free)

homomorphism, inverse homomorphism or reversal.

Proof (Union) Consider the very simple matrix languages

 L1 =

























21

21

21

21

21

21

21

gg

ff

ee

dd

cc

bb

aa

 and L2 =

























1

1

1

1

1

1

1

g

f

e

d

c

b

a

 then

L1 L2 =













































































1

1

1

1

1

1

1

,

21

21

21

21

21

21

21

g

f

e

d

c

b

a

gg

ff

ee

dd

cc

bb

aa

is not a very simple matrix

language as S →S1 S2 , S → S1 implies S1 –handle rule is not

unique

Concatenation Consider a very simple matrix language

L3=



























12

12

12

12

12

12

12

gg

ff

ee

dd

cc

bb

aa

 then L1L3 is not a very simple matrix

language as the rules which generate L1L3

i.e., S →S1Y S2 X, X → S1, Y →S2 implies that the

S1 –handle rule is not unique

Intersection Let L4=



























































 0,/

7654321

7654321

7654321

7654321

7654321

7654321

7654321

nm

g
n

gg
n

gg
m

gg

f
n

ff
n

ff
m

ff

e
n

ee
n

ee
m

ee

d
n

dd
n

dd
m

dd

c
n

cc
n

cc
m

cc

b
n

bb
n

bb
m

bb

a
n

aa
n

aa
m

aa

 and

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

36

L5=



























































 0,/

7654321

7654321

7654321

7654321

7654321

7654321

7654321

nm

g
m

gg
m

gg
n

gg

f
m

ff
m

ff
n

ff

e
m

ee
m

ee
n

ee

d
m

dd
m

dd
n

dd

c
m

cc
m

cc
n

cc

b
m

bb
m

bb
n

bb

a
m

aa
m

aa
n

aa

then

L4 L5=





































































 0/

7654321

7654321

7654321

7654321

7654321

7654321

7654321

m

gmggmggmgg

fmffmffmff

emeemeemee

dmddmddmdd

cmccmccmcc

bmbbmbbmbb

amaamaamaa

is not-context free.

Complement Let L6 =

























2

2

2

2

2

2

2

g

f

e

d

c

b

a

 a very simple matrix language

over Σ, while its complement L6
c =Σ*- L6 is not a very simple

matrix language as the rules i.e., S → S1 S , S → S1 which

generates L6
c implies S1 –handle rule is not unique

Kleene Closure Consider again L6, then L6
*
(or L6

+
) is not a

very simple matrix language as the rules S → S1 S , S → S1

which generate L6
*

implies S1 –handle rule is not unique

Homomorphism Consider a very simple matrix language

 L7 =



























































 0/

21

21

21

21

21

21

21

n

g
n

g

f
n

f

e
n

e

d
n

d

c
n

c

b
n

b

a
n

a

and a homomorphism defined

by h1



















































1

1

1

1

1

1

1

g

f

e

d

c

b

a

=



























1

1

1

1

1

1

1

g

f

e

d

c

b

a

and h1



















































2

2

2

2

2

2

2

g

f

e

d

c

b

a

= ʌ

Then h1(L7) =



























































 0/

1

1

1

1

1

1

1

n

n
g

n
f

n
e

n
d

n
c

n
b

n
a

 is not a very simple matrix

language as S →S1S, S → S1 implies S1 –handle rule is not

unique

Inverse Homomorphism For a very simple matrix language

L6 =

























2

2

2

2

2

2

2

g

f

e

d

c

b

a

, consider a homomorphism h defined by

h



















































1

1

1

1

1

1

1

g

f

e

d

c

b

a

=

























2

2

2

2

2

2

2

g

f

e

d

c

b

a

 and h



















































3

3

3

3

3

3

3

g

f

e

d

c

b

a

= ʌ.

Then h-1(L6) =



























































 0,/

313

313

313

313

313

313

313

nm

n
gg

m
g

n
ff

m
f

n
ee

m
e

n
dd

m
d

n
cc

m
c

n
bb

m
b

n
aa

m
a

is not very simple matrix language as

S → X , X → S3 X, X →S1, X→S1Y, Y→S3 implies

 S1 –handle rule is not unique

Reversal Consider a very simple matrix language L7 then its

reversal L7
R is not a very simple matrix language as the

rules S → S2 X , X → S1 X , X →S1 which generates L7
R

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

37

implies that S1 –handle rule is not unique

4. LEARNING VERY SIMPLE MATRIX

GRAMMAR AND LANGUAGE

We extend the algorithm given in [1] and use the schema

representation method to learn the class of very simple matrix

language. For the purpose of learning, we consider the

following string representation of each column of the matrix

using a mapping χ.

Definition 4.1 Let x be a matrix (or an image) defined over Σ,

then (x)i+1=(x)i Φ x and (x)i+1 = (x)i Θ x, i ≥ 1

 A mapping χ is defined as follows:

 χ: Σ+ →Σ+ such that for any string s = a1a2….an Σ+

Let I = c1 Θ c2 Θ …. Θ cn be the image defined over Σ+ I 
L(M) if and only if there exists S1S2…Sn L(G) such that cj

L(Gi’), 1≤i≤n. The string S1S2…Sn is said to be an

intermediate string deriving I with respect to M. Note that

there can be more than one intermediate string deriving I.

In this section, we consider the following problem for very

simple matrix grammars. Suppose that we are given a finite set

of M arrays [aij] i=1…m,j=1…n from an unknown very

simple matrix language L(M) for some very simple matrix

grammar M=(G,G’), the algorithm identifies a ground

interpretation I such that I(G) is consistent with M.

Identification algorithm for very simple matrix grammars

Algorithm VSMG

Input: A positive presentation of very simple matrix language

L(M)= G G’

Output: A sequence of a set of context -free grammars for the

horizontal grammar G over intermediate symbols and

the grammar G´ for the vertical columns.

Procedure

Initialize grammar G= ({p0}, Φ, Φ, p0,Φ)

Initialize the set H =Φ

Initialize the sets T1, T2,…Tk = Φ

/* Each positive presentation

Mi  M= c1 Θ c2 Θ …. Θ cn (1≤n≤k)

 =χ(c1)Φχ(c2)Φχ(c3)….Φχ(cn)

Where c1, c2, …. cn  Σ
+ */

Step 1 For the first matrix of the sample i.e., M1 do

1a. Assign a non terminal Sj (1≤j≤k) to each different χ(cn)

(1≤n≤k) and store the string of the sequence of Sj’s corresponding

to the sequence χ(c1) χ(c2) χ(c3)…. χ(cn) in a set H.

1b. If Sj(1≤j≤k) is the non terminal associated to a column

χ(cn) (1≤n≤k), put the string cn(1≤n≤k) in the set Tj (1≤j≤k)

Step 2 For the other matrices of the sample i.e.,

 Mi = c1 Θ c2 Θ …. Θ cn (1≤n≤k)

i ≥ 2, do

If the string c1 corresponding to χ (c1) has a common

 prefix and a common suffix with a string cn (1≤n≤k) in some

Tj (1≤j≤k), include the string c1 in Tj ie Tj = Tj {c1} and non

terminal Sj (1≤j≤k) to χ (c1). Repeat the same for c2, c3, …, cn

and include the string of the sequence of Sj’s corresponding to

χ(c1) χ(c2) χ(c3)…. χ(cn) in the set H.

Step 3 Using the identification algorithm IA given below obtain

the grammar G for the input set H, which accepts the

context - free matrix grammar G

Step 4 Using the same identification algorithm IA repeatedly

we obtain the grammar G1´,G2´…Gk´ corresponding to

T1, T2, …, Tk .

Lemma 4.1 For a finite subset R of L(G*),

let I= (fn,fp) = Consistent(R) and G =I(G0). Then either

 L (G*) = L (G) or L(G*)-L(G) ≠ ϕ

Lemma 4.2 Let GRO,GR1…,GRI,…be the intermediate

(horizontal) sequence of conjectured grammars produced by

IA, where GRI=I1(G0). Then there exists r≥ 0 such that for all

i≥0, produced by IA, where GRr =Ii(G0,Σ). Then there exists

r ≥0 such that for all i ≥0, GRr= GRr+1 and L(GRr) = L(G*) and

similarly let GR0´, GR1´,…GRi´… be the vertical sequence of

conjectured grammars produced by IA, where GRr´=Ii(G 0,Σ).

Then there exists r ≥0 su ch that for all I ≥0, GRr ´= GRr+1´ and

L(GRr´) = L(G*) where G0,Σ = ({S}VN,Σ,Σ,PΣ,S) where

VN,Σ ={ Xa /aΣ} and PΣ = {Xa → axa /a Σ}

Proof From the property of IA, in particular, of the procedure

consistent(R), there is an upper bound B (depending on the size

of G*) for which each i≥1, the number of candidate interpretations

Ii (=consistent (Ri)) for the i-th conjecture GRi is no more than B.

(Note that for each i≥1, and interpretation I* for G* is potentially

included in the set of those candidate interpretations Ii). Thus

there exists r ≥ 0 such that for all i≥0, GRr = GRr+1. Suppose that

L(G*) ≠L(GRr), then by the preceding lemma there exists a

string w ϵ L(G*) – L(GRr) such that w is not yet provided as a

positive example. This implies that IA produces a conjecture

distinct from GRr, a contradiction

 Thus we have the following

Theorem 4.1 The class of very simple grammars is identifiable

in the limit from positive data.

Identification Algorithm IA
Input: A positive presentation of a very simple matrix

language L (G*)

Output: A sequence of very simple grammars GR0, GR1……

Procedure

 Initialize R0 =Ǿ;

 Initialize the grammar schema G0, Ǿ;

 Let GR0 = ({S}, Ǿ, Ǿ, S);

 Let i=1;

 Repeat (forever)
 Read the next positive example wi;

 Let Ri = Ri-1  {wi}

 Let alph(R1) = alph (Ri-1) {alph(wi)};

 If wi L (GRi-1), then let GRi = GRi-1;

 Output GRi;

 Else

 Augment G0,Σ using Σ = alph (Ri);

 Let Ii = Consistent (Ri);

 Output GRi = Ii (G0, Σ);

Lemma 4.3 Given any very simple matrix grammar G*, the

algorithm IA identifies in the limit a very simple matrix

grammar GR such that L(G*) = L(GR), where R is the set of

positive data provided

 Thus we have the following

Theorem 4.2 The class of very simple matrix grammar is

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

38

identifiable in the limit from positive data.

Constructing a characteristic sample

 Let L be a very simple matrix language. A finite subset SM of

L is called a characteristic sample of L if and only if

L is the smallest very simple matrix language containing SM

such that no rule can be applied more than twice.

Time complexity analysis

 Time for updating a conjecture:

Let N=ΣWRlen(Wj) and l be the maximum length of positive

data in R. The time for updating a conjecture is obviously

dominated by the time for the procedure consistent (R) where

I =(fn, fp) = consistent(R).

 In performing consistent(R) determining fn requires

atmost O(N) times. It takes atmost O(N) times to construct

Lg(R). Solving Lg(R) requires atmost O(|Σ|3) time, because it

is reduced to the computation of an inverse matrix with atmost

|Σ| dimension. We have for any

 a Σ, -1≤na≤B(a,w) (where B(a,w) = len(w)/#a(w) and w is a

string of minimum length in Ra). we see that the value of na is

bounded by l, the number of all solution vectors of Lg(R) is

bounded by l|Σ|. Hence while loops are repeatedly performed

atmost l|Σ| times. Each while loop requires O (N) times

atmost. Thus the time for updating a conjecture is bounded by

 O(|Σ|3) +O(l|Σ|) *N ≤ O(Max{N|Σ|+1.|Σ|3})

 The above is repeated for each column. Therefore

repeat n times if there are n columns

O (|Σ|3) +O(l|Σ|) *N ≤ O(Max{N|Σ|+1.|Σ|3})n

Example Run

Consider the very simple matrix grammar given in Example

3.1.

Step1 Let M1 =

























43421

43421

43421

43421

43421

43421

43421

ggggg

fffff

eeeee

ddddd

ccccc

bbbbb

aaaaa

a. χ(c1) = a1 b1 c1 d1 e1 f1 g1 – S1

χ(c2) = a2 b2 c2 d2 e2 f2 g2 – S2

χ(c3) = a3 b3 c3 d3 e3 f3 g3 – S3

χ(c4) = a4 b4 c4 d4 e4 f4 g4 – S4

H = {S1 S2 S4S3 S4}

b. T1 = {a1 b1 c1 d1 e1 f1 g1}

T2 = {a2 b2 c2 d2 e2 f2 g2}

T3 = {a3 b3 c3 d3 e3 f3 g3}

T4 = {a4 b4 c4 d4 e4 f4 g4}

Step 2 M2 =



















41

41

41

41

gg

ff

bb

aa

Now H = {S1S2 S4S3S4, S1 S4}

T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1f1 g1}

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2f2 g2}

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3}

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4}

M3 =

























434221

434221

434221

434221

434221

434221

434221

gggggg

ffffff

eeeeee

dddddd

cccccc

bbbbbb

aaaaaa

H = {S1 S2 S4 S3 S4, S1S4, S1S2S2S4S3S4}

T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1f1 g1}

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2f2 g2}

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3}

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4}

M4 =

































43421

43421

43421

43421

43421

43421

43421

43421

43421

43421

ggggg

fffff

eeeee

ddddd

ccccc

eeeee

ddddd

ccccc

bbbbb

aaaaa

Again H = {S1S2S4S3S4, S1S4, S1S2S2S4 S3 S4}

T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1 f1 g1, a1 b1 c1 d1 e1 c1 d1 e1 f1 g1}

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2 f2 g2, a2 b2 c2 d2 e2 c2 d2 e2f2 g2}

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3, a3 b3 c3 d3 e3 c3 d3 e3 f3 g3}

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4, a4 b4 c4 d4 e4 c4 d4 e4 f4 g4}

 M5 =

























43434221

43434221

43434221

43434221

43434221

43434221

43434221

gggggggg

ffffffff

eeeeeeee

dddddddd

cccccccc

bbbbbbbb

aaaaaaaa

Again

H = {S1S2S4S3S4, S1S4, S1S2S2S4S3S4, S1S2S2S4S3S4S3S4}

T1 = {a1b1c1d1e1f1g1, a1b1f1g1, a1b1c1d1e1 c1d1e1f1g1}

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2 f2 g2, a2 b2 c2 d2 e2 c2 d2 e2f2 g2}

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3, a3 b3 c3 d3 e3 c3 d3 e3 f3 g3}

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4, a4 b4 c4 d4 e4 c4 d4 e4 f4 g4}

M6 =



























43423434221

43423434221

43423434221

43423434221

43423434221

43423434221

43423434221

ggggggggggg

fffffffffff

eeeeeeeeeee

ddddddddddd

ccccccccccc

bbbbbbbbbbb

aaaaaaaaaaa

Again

H= {S1S2 S4 S3 S4, S1 S4 , S1 S2 S2 S4 S3 S4 , S1 S2 S2 S4 S3 S4 S3 S4,

 S1 S2 S2 S4 S3 S4 S3 S2 S4 S3 S4}

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

39

T1 = {a1 b1 c1 d1 e1 f1 g1, a1 b1 f1 g1 , a1 b1 c1 d1 e1 c1 d1 e1 f1 g1}

T2 = {a2 b2 c2 d2 e2 f2 g2, a2 b2 f2 g2, a2 b2 c2 d2 e2 c2 d2 e2f2 g2}

T3 = {a3 b3 c3 d3 e3 f3 g3, a3 b3 f3 g3, a3 b3 c3 d3 e3 c3 d3 e3 f3 g3}

T4 = {a4 b4 c4 d4 e4 f4 g4, a4 b4 f4 g4, a4 b4 c4 d4 e4 c4 d4 e4 f4 g4}

Identification of G:

The computation of fp and fn:

1. Let w1 = {S1S4} be the first word from H and H1 = {w1},

alph (H1) = {S1, S4}. Since S4 is final S4 handle rule is

XS4 → S4 and fp (XS4) = λ (nS1≥0) fn (XS1) = S and

fp (XS1) ≠λ

The length equation for w1 is nS1 + nS4 = -1….. (l. w1)

nS1 = 0 ….. (l. w1)´

Lg (H1) = {(l. w1)}

Lg (H1´) = {(l. w1)´}

From the structure graph of H we get

fn(XS1) = S and fn(X) = X for every other X

χ1 = (0) (=nS1)

CR (χ1) is

S → S1 ZS1, 1 and XS4 → S4

Simulating the derivation for w1, via these rules we get

 ZS1,1 = XS4 . As a result we see that CR (χ1) is good and a

ground interpretation. I1 = (fn, fp) admissible to

H1 is obtained where

fn (XS1) = S fp (XS1) = XS4

fn (X)=X otherwise fp (XS4) = λ

The conjectured grammar GH1 = I1(G 0,Σ) is

({S, XS4}, {XS1, XS4}, P1,S) where P1 is

S → S1 XS4, XS4→ S4

2. Let w2 = {S1 S2 S4 S3 S4} be the second word from H and

alph(w2) = {S1,S2 ,S3, S4}. Then H2 = {w1, w2}
Since S4 is final S4 handle rule is XS4 → S4 and

fp (XS4) = λ (nS1≥0)

From the structure graph of H we get

fn (XS1) = S and

fn (X)=X for every other X

fp (XS1) ≠ λ

and Lg(H2)= {(l.w1), (l.w2)} where

The Length equation for w2 is

nS1 + nS2 + nS3 +2n S4= -1….. (l. w2)

nS1 + nS2 + nS3 = 0 ….. (l.w2)´

Using the set H, we construct a directed graph called the

structure graph of H as follows

 S1

 S2 S4

 S2 S2

 S4 S4

 S3

 S3

 S4

 S2 S2 S3

 S4

 S4

 S4

S3

 S4

 Fig.1 Prefix Tree Automaton AR

 S1

 S2

S2

 S4

 S3

 S4

Fig.2 Structured graph H

To solve Lg(H2’)={(l.w1)´,(l.w2)´}, we construct an associated

matrix MH2 and a matrix equation MH2 = 







0

0

111

001

The matrix computation is done as follows



















0

0

110

001*

0

0

111

001

& solution of Lg (H2) = (nS1=0)  (nS2 + nS3 = 0)  nS1 = 0

and we may choose a solution vector

χ2= (0, 2, -1) (=(nS1, nS3, nS))

Hence the set of candidate rules

 CR (χ2){ S → S1 ZS1,1,XS2 → S2 ZS2,1 ZS2,2 ZS2,3 , XS3 → S3} is

obtained.

Simulating the derivation for w2 via these rules we get

ZS1,1 = XS2 = XS4 , ZS2,1 = XS4, ZS2,2 = XS3 , ZS2,3 = XS4

 XS4 → S4

We see that CR (χ2) is good and a ground interpretation.

I2 = (fn, fp) obtained where

fn (XS1) = S fp(XS1) = XS2 XS4

fn (XS4) = XS2 fp(XS2) = XS3 XS4

fn (X) = X otherwise fp(XS3) = λ

 fp(XS4) = λ

Thus the conjectured grammar GH2 =I2 (G0,Σ) is

 ({S, S2, S3},{ S1 ,S2 ,S3,S4}, P2,S) where P2 is

S → S1 ZS1,1 → S1XS4 → S1 S4

S → S1 ZS1,1 → S1XS2 → S1 S2 ZS2,1 ZS2,2

ZS2,3 → S1 S2 XS4 XS3 XS4

S→ S1 S2 S4 S3 S4
S → S1 XS2 XS2→ S2 XS4 XS3 XS4, XS3 → S3 XS4 → S4

S2

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.22, February 2018

40

3. Let w3 = {S1 S2S2S4S3S4 S3S4} be the third word from H

and H3= {w1, w2, w3} and alph (H3) = {S1, S2, S3, S4}.
From the structure graph shown above we have fn (XS1) = S

and fp (XS1) ≠λ

Since S4 is final, the S4 handle rule is XS4 → S4 and

 fp (XS4) = λ (nS1≥0)

 The IA computes a length equation for w3

and constructs

 Lg(H3´) = {(l.w1)´,(l.w2)’,(l.w3)´} where

nS1 + 2nS2 + 2nS3 +3 nS4= -1….. (l. w3)

nS1 + 2nS2+2 nS3 = 2 ….. (l. w3)´

and the associated matrix MH3 is






























1

0

0

110

000

001
*

2

1

0

221

111

001

Thus the Sol (Lg(H3´))=(nS1 = 0)  (nS2 + nS3 = 1) is

obtained from which we may choose a solution vector

χ3 = (0,2,-1)(= (nS1, nS2, nS3))

Hence the set of candidate rules CR (χ3) is
S → S1 ZS1,1 , XS2 → S2 ZS2,1 ZS2,2 ZS2,3
XS3 → S3 XS4 → S4
 Simulating the derivation for W3, via these rules we

get ZS1,1 = XS2 = XS4, ZS2,1 = XS2 = XS4, ZS2,2 = XS3,

ZS2,3 = XS2= XS4

We see that CR (χ3) is good and a ground interpretation.

I3 = (fn, fp) is obtained where

fn (XS1) = S fp (XS1) = XS2 XS4

fn (XS4) = XS2 fp (XS2) = XS2XS3 XS4

fn (X) = X otherwise fp (XS3) = λ

 fp (XS4) = λ

Thus the conjectured grammar GH3 =I3 (G 0,Σ) is

 ({S, S2, S3, S4},{ S1 ,S2 ,S3 ,S4}, P3,S) where P3 is

S → S1 XS2 XS2 → S2 XS4 XS3 XS4

XS3 → S3 XS4 → S4

4. Let w4 = {S1 S2S2S4S3S4S3S2S4S3S4} be the fourth word

from H and H4= {w1, w2, w3, w4} and
alph (H4) = {S1, S2, S3 ,S4}.

 From the structure graph shown above we have fn (XS1) = S

and fp (XS1) ≠λ

 Since S4 is final, the S4 handle rule is XS4 → S4 and

fp (XS4) = λ (nS1≥0)

 The IA computes a length equation for w4 and

constructs Lg(H4’) = {(l.w1)´,(l.w2)´,(l.w3)´, (l.w4)´} where

nS1 + 3nS2 + 3nS3 +4nS4= -1….. (l. w4)

nS1 + 3nS2+3 nS3 = 3 ….. (l. w4)´

 and the associated matrix MH4 is



































0

0

1

0

000

000

110

001

*

3

2

1

0

331

221

111

001

Thus the Sol(Lg(H4´))=(nS1 = 0)  (nS2 + nS3 = 1) is

obtained from which we may choose a solution vector

χ4 = (0,2,-1)(= (nS1, nS2, nS3))

The set of candidate rules CR (χ4) is
S → S1 ZS1,1 , XS2 → S2 ZS2,1 ZS2,2 ZS2,3
XS3 → S3 XS4 → S4
Simulating the derivation for W4, Via these rules we get

ZS1,1 = XS2 = XS4 , ZS2,1 = XS2 = XS4 , ZS2,2 = XS3 ,

ZS2,3 = XS2= XS4 We see that CR (χ4) is good and a ground

interpretation. I3 = (fn, fp) is obtained where

fn (XS1) = S fp (XS1) = XS2 XS4

fn (XS4) = XS2 fp (XS2) = XS2XS3 XS4

fn (X) = X otherwise fp (XS3) =λ

 fp (XS4) = λ

Thus the conjectured grammar is

G= GH4 =({S, S2 , S3 ,S4},{S1, S2, S3, S4}, P4,S)

where P4 is

S → S1 XS2 XS2 → S2 XS4 XS3 XS4

XS3 → S3 XS4 → S4
The conjectured GH4 is equivalent to G*. Hence GH4 is always

an output as a conjecture for all input data afterwards.

Identification of Gi’ using Ti:
The above procedure can be adapted to the sets T1, T2, T3 and

T4 to conjecture the grammars G1´, G2´, G3´ and G4´ of G´

5. CONCLUSION

In this paper we have extended the notion of learning very

simple grammars of Yokomori[1] to matrix grammars and

adopted a modification of the algorithm to learn very simple

matrix grammars which in turn can be used to study digitized

pictures. The very simple matrix grammar considered here is

(CF:CF) matrix grammar. Hence for further study,

applications of these grammars to other domains can be

considered.

6. REFERENCES
[1] Rani Siromoney: On equal matrix languages. Information

and control. 14(2)(1969) 135–151

 [2] Yokomori T. On polynomial - time identification of

very simple grammars from positive data. Theoretical

computer science 298 (2003)179-206

[3] A.Rosenfeld and J.L.Pfaltyz. Sequential operations in

digital picture processing. J.Assoc.Comput.Mach.13,

1966, pp. 471-494.

[4] Gift Siromoney et al. Abstract families of matrices and

picture languages. Computer graphics and image

processing (1972) I, (284-307)

[5] Yokomori, T., On polynomial-time learnability in the limit

of strictly deterministic automata. Machine learning

19(1995), 153-179.

IJCATM : www.ijcaonline.org

