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ABSTRACT

A linguistic model to generate matrices (arrays of terminals)
to recognize pictures was introduced by Rani Siromoney [1].
Yokomori introduced very simple grammars and studied the
problem of identifying the class in the limit from positive data
[2]. Here a new grammar called very simple matrix grammar
is introduced and shown that this class is polynomial time
identifiable in the limit from positive data.
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1. INTRODUCTION

The study of syntactic methods of describing pictures
considered as connected, digitized finite arrays in a two
dimensional plane have been of great interest. Picture
languages generated by array grammars or recognized by
array automata have been advocated since the 1970s for
problems arising in the frame work of pattern recognition and
image processing.

A digitized picture is a finite rectangular array of points or
elements each of which is associated with it one of a discrete
finite set of values. Thus a picture can be represented as a

m x n matrix in which each entry a;; 1< i< m, 1< j<n has one
of the values, say vi,Vy,,..Vk [3]-

A linguistic model for the generation of matrices (rectangular
arrays of terminals) by the substitution of regular sets into
well known families of formal languages has been proposed
in [4]. Some interesting classes of pictures including certain
letters of the alphabet, kolam, (traditional picture patterns
used to decorate the floor in south Indian homes) and wall
paper designs (repetitive patterns) can be generated by certain
grammars

In this paper, we define very simple matrix languages and
study how they are consistent with positive data by
identifying a ground interpretation for them and show how
they are polynomial time identifiable in the limit just as the
class of very simple grammars which includes only context
free languages. Simple deterministic languages have been
defined with respect to Automata for regular languages and
learning has been done [5]. Here we are considering context-
free matrix grammar and languages. And we introduce a very
simple matrix grammar and language; study its properties and
learning.
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2. BASIC DEFINITIONS

Let Y be a finite alphabet and 3" be the set of all finite length
strings over Y. Further, let " = 3" - {A}, where A is the null
string. By len (u) we denote the length of the string u. A
language over Y is a subset of Y. Fora string win Y,

alph (w) denotes the set of terminal symbols appearing in w.

For a language L, alph(L) = U alph(w).

wel
Definition 2.1 Let Y be an alphabet set-a finite non empty set
of symbols. A matrix (or an image) over Y is an mxn
rectangular array of symbols from Y where m, n >0. The set
of all matrices over ¥ (including ) is denoted by ¥ and
SH=Y""-{o}, where a is the empty image.

Definition 2.2 R (M) and C (M) respectively denote the
number of rows and columns of a given matrix M.

Definition 2.3 Let Y. "denote the set of horizontal sequences of
letters from Y and Y *=Y"-{e}, where ¢ is the identity element
(of length zero). Y« denotes the set of all vertical sequences of
letters over ), and Y ,=) «-{€}. Length of the

given string s is denoted by |s|. Precisely, if s € Y then

|s| =C(s) and if s € Y. then |s| =R(S).

Definition 2.4 We use the operators ® for row concatenation
and ¢ for column concatenation for arrays. If
agp ... din Di1... by

Ami ... 8mn
X O Y is defined only when at least one of them is  or n=n’
and is given by

ajp ... a1
XOvY= ...
amy - Amn
bll - bln
bm 1 . bm’u

X ¢ Y is defined only when at least one of them is A or m=m’
and is given by
g1 ...81 big... by

ami...-8mn Bmr ... Do
Definition 2.5 Let x be a matrix (or an image) defined over Y,
then ()" = (x)' ¢ x and (X)ir1 = (x); O x, i>1.

Definition 2.6 Let us define a mapping x as follows: 3" —Y",
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Forany strings=a;a,...a, €Y'
ap
az

x(s) =

ay
ie. x(S)=a;02,0....0a,
Definition 2.7 A matrix (or an image) is defined as follows:
Letcy, Cy, ..., C, €X' be strings of same length.

We write | =¢; ® ¢, O .... ® ¢, is the matrix (or an image)
represented by the image

x(cr) D x(c) D x(cs).... D x(cn)
Example 2.1
If ;= abc, c,= efg, c3= ijk then
1=c10¢,0c= yx(cy) Dy(cy) O x(cs) is the image

a e i
b f j
c g k

We now recall the notions of matrix grammar [1] and very
simple grammar [2]

Definition 2.8 Let G = (Vy, X, P, S) be a context-free
grammar (CFG) in Greibach Normal Form (GNF), i.e., each
rule of P is of the form A — aa, where A € Vy, a€ Y,
oe VN*-

For each terminal symbol a €3, a rule whose
right hand side is of the form aa, (where a € V") is called
an a-handle rule.

Then G is said to be Very Simple iff for each ain Y,
there exists exactly one a-handle rule in P.

A language L is said to be Very Simple iff there
exists a Very Simple CFG G such that L = L(G) holds. (Note
that since every simple grammar is A - free, so is every simple
language).

Example 2.2 Let X={a, b, c,d}. Consider a CFG

G =({S, A, B}, %, P, S), where P consists of the following:

S — aAB, A — aA, B — bB, A — ¢, B — d. The grammar
G is Very Simple and L (G) = {a™c b"d/m, n>0}.

Definition 2.9 (Matrix Grammars) A Phrase Structure
Matrix Grammar(PSMG), Context Sensitive Matrix
Grammar(CSMG), Context Free Matrix Grammar(CFMG),
Right Linear Matrix Grammar(RLMG) is a two tuple
G=(G,G"), where G=(V, I, P, S) is a Phrase Structure
Grammar(PSG), Context Sensitive Grammar(CSG), Context
Free Grammar(CFG), Right Linear Grammar(RLS), with
V= finite set of horizontal non-terminals , I= a finite set of
intermediates=(S;,S,,...Sk), P= a finite set of PSG(CSG, CFG,
RLG) production rules called horizontal production rules and

Sis the start symbol. S€V, and VI = ¢.
G'= UK, Gj where G/ =(V,, T, P, S)), i=1, 2...k arc Right

Linear Grammars with T;= a finite set of terminals, V;= finite
set of vertical non-terminals, S; the start symbol and P; finite
set of right linear production rules, ViNV;= ¢ if i#].

Derivations are defined as follows: First a string S;S,...S,, €1
is generated horizontally using the horizontal production rules
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P in G i.e. S— S;S,...S, €1 and then vertical derivations
proceed using the rules P; of G;" in G’

Definition 2.10 (Matrix Language) The set of all matrices
generated by M is defined to be L(M) = {m x n arrays [a;],

i=l.,mj=l..nmn>1/8;...5 ¥ [a}

L(M) is called a Phrase-Structure Matrix
Language (PSML) (Context-Sensitive Matrix Language
(CSML), Context-Free Matrix Language (CFML),
Regular Matrix Language (RML)) if G is a (PSMG,
CSMG, CFMG, RLMG).

Derivation trees for CFML and RML can be defined
similar to derivation trees for a context -free language.
Chomskian hierarchy can be extended to matrices and it can

be established that the family of RML C the family of CFML
#*

C the family of CSML C the family of PSML
* *

3. VERY SIMPLE CONTEXT-FREE
MATRIX GRAMMAR

Definition 3.1 A matrix grammar M= (G, G") is said to be a
context-free matrix grammar i.e. (CF: CF) matrix grammar
if G is a context-free grammar G= (V, I, P, S) where
I={S;, S, ...Sp} and each G” = (G;", G;',... Gi”) where each
Gi'= {Vi, Ti, Pi, Si} are length equivalent context- free
grammars if there exists strings aa5...0y such that
a; € L(Gy"), then |og [Hoz |=...=|oy], 1<i<k

Letl=¢c;®c¢,; @ .... O ¢, be an image defined over
Z. 1€ M(G) iff there exists S; ,S,... S, € L (G) such that ¢; €
L(Gj), 1<j<n. The string S;S,... S, is said to be an
intermediate string deriving | with respect to M. Note that
there can be more than one intermediate string deriving I. The
family of languages generated by (X:Y) MG is denoted as
(X:Y) ML where X,Y € {CF,R}.

Definition 3.2 A context-free matrix grammar M= (G, G) is
said to be a very simple matrix grammar if it satisfies the
following properties

i) The context free grammars G and G;’s in G™ are all in
Greibach Normal Form in the strict sense, that is each rule
in P and Pi’s are of the form A— ao. where A €lorV;,
a €lorT; and a €V* or V;* and no right hand side of the
rules contains the starting non-terminal.

ii) For each intermediate symbol S; in G there exists exactly
one Si-handle rule in G.

iii) For each a; € T in G;’, there exists exactly one a; - handle
rule in P;

iv) For each S; — aj; or Aj— ao; in each G;” where

S, Ai €Vj,a €T;and o; € V;*, all g;’s are of same length.
That is if A; — ajay, ag in G;1', Ay —as0,, 0, iIN G, and

A3 —az0g, O3 in G3' then |U,1 |:‘(12 ‘:|(13|

Example 3.1 Consider a very simple matrix grammar
M= (G, G’) where
G=

S > SlB, B — SZBD,

{s,B,D},{SlrSZ’SS’S“'}’ D—>S3B,B—>S, *
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=6, UG, Gy Guwhere
Gi'= (Vi, Ty, Py, Si) where
V= Si‘ Bi’(:i’[)i’Ei’ Fivcai}l Ti=
Si - ai Bici
Bi - bi
i Ci Di
{ai by ci. i e, .0 P

— d;

i ~ fiGi

C
D
Ej — ¢Cj
C
G

i 9
fori=1,23,4

Then S —»S$;B==>" | $,S,5,5:S,

U

d; d a4 a3 A
B.B, B, B; B,
C,C, C4 C3Cy

U

a; 8, 84 83 44

by bybsbs by

G1G,G4G3Gy

U

@ a ag a
by by by bs by
L G Cs C3 Cs
d d; ds d; ds
e, €, €4 €3 €4
£, f, f, f,
9 O 04 03 04

In the above example the set of all Matrices generated by M is
L(M)={S1[S,"(S4S3)™S4 /n,k>0 and O<m<n-+1}

Definition 3.3 A positive presentation of a language L is an
infinite sequence of strings My, M,,... such that

{M | M=M; for some i} =L

Definition 3.4 A class of languages L= {L;, L,...} is said to
be inferable from positive data if there exists an ldentification
Algorithm 1A such that M on input ¢ converges to L with

L;j = L; for any index i and any positive presentation ¢ on L;
Lemma 3.1 Let L be a very simple matrix language. Then for

each matrix [a;] in L i=1, 2..m,j=1,2..n, n >2 the symbols of
first and last columns must be different.

Example 3.2 i) For the rule in P: S—S; AB, A—S;S;
B—S;, we get {S;S,S,S:} as it is not a very simple matrix
language.

ii) {S,"} is not a very simple matrix language as S — S;S,
S—S; gives no unique S;-handle rule

International Journal of Computer Applications (0975 — 8887)
Volume 180 — No.22, February 2018

i) {S1"S; S, m,n>0} is not a very simple matrix language
as S—S; SA, S—8,, A—S;S; gives no unique S;-handle rule

Closure properties

Theorem 3.1 The class of very simple matrix languages is
closed under none of the following: union, concatenation,
intersection, complement, kleene closure (+,*), (A-free)
homomaorphism, inverse homomorphism or reversal.

Proof (Union) Consider the very simple matrix languages

ap 4 a1
by by by
) cq
L= d1 d2 and L, = dl then
&1 €2 €
fi T fi
191 92 ] 1 91 |
_al az | _al_
by by || by
¢ © (|4
LiUL, = q|dy dy || dq [pis nota very simple matrix
&1 &2 |4
fi T2l f
192 92 ([ 9]

language as S —S; S, S — S; implies S; —handle rule is not
unique

Concatenation Consider a very simple matrix language

a2 Y]
by by
€2 9

Ls= d2 dl then L;L3 is not a very simple matrix
€2 &
f 0
L92 91

language as the rules which generate L;L 3
i.e., S —S;Y S; X, X — S, Y —S, implies that the
S;—handle rule is not unique

Intersection Let L,=

m n n 7
ag a, ag a, ag ag ay
m n n
by by, by by, by bg by
m n n
¢ €2 €3 ¢4 C5 Cg C7
m n n
d1 d2 d3 d4 d5 d6 d7 /mn>0p and
m n n

e €y €3 €, € eg ey
m n n

fip fo f3 f, fg fg 1y
m n n

1917 92 93 94 95 9 97 ]
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_ n m -
Y] a% ag a?1n ag a?n az
bj by by by by bg by
n m m
Ls= d; d, dg dy dg dg d; |/mn=0
n m m
n m m
917 92 93 94 95 95 97 |
then
[ m m m 1
3 a, a a8, a a; a
m m m
b1 b2 b3 b4 b5 b6 b7
m m m
¢ ¢ ¢ ¢ & Cp
|—4ﬂ Ls= m m m /m=>0
d1 d2 d3 d4 d5 d6 d7
m m m
& e & e e & &
m m m
fl f2 f3 f4 f5 f6 f7
m m m
_gl 9, 93 9, 9 Y 97_
is not-context free.
az
by
€2
Complement Let Ls = | do | a very simple matrix language
€2
f2
192 |

over X, while its complement Lg° =%"- L is not a very simple
matrix language as the rules i.e., S — S; S S — S; which
generates L¢” implies S;—handle rule is not unique

Kleene Closure Consider again Lg, then Lg (or Lg") is not a

very simple matrix language as the rules S — S; S S — S;
which generate Lg implies S;—handle rule is not unique

Homomaorphism Consider a very simple matrix language

ap 4
n

by by
n

€ C2

L, = df dy /'n >0 ¢ and a homomorphism defined

n

eln )

i1 12
n

91 92
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by hl dl = dl and hl d2 =A

Then hy(L7) = 41 dy |/n=0¢ isnota very simple matrix

91

language as S —S;S, S — S; implies S; —handle rule is not
unique

Inverse Homomorphism For a very simple matrix language

42
by
€2
Le=| do |, consider a homomorphism h defined by
€2
fa
192 ]
3y az ag
by by b3
Cy €2 c3
h dl = d2 and h d3 = A.
e €2 €3
fy f2 f3
191 | 192 | 193 |
_ oG
Thenh™(Lg)= 4| d3 d; dg |[/mn=>0
m n
f3' T f%
193 91 93

is not very simple matrix language as
S —>X, X— S3X, X —>S;, X—S,Y, Y—>S; implies
S;—handle rule is not unique

Reversal Consider a very simple matrix language L; then its

reversal L;® is not a very simple matrix language as the
rules S — S, X, X — $; X, X —S; which generates L;*
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implies that S; —handle rule is not unique

4. LEARNING VERY SIMPLE MATRIX
GRAMMAR AND LANGUAGE

We extend the algorithm given in [1] and use the schema
representation method to learn the class of very simple matrix
language. For the purpose of learning, we consider the
following string representation of each column of the matrix
using a mapping y.

Definition 4.1 Let x be a matrix (or an image) defined over X,
then (x)"™=(x)" @ x and (x)is1 = (X); O x,i>1

A mapping y is defined as follows:

x: ZF —X, such that for any string s = a;a,....a, € X"

Letl =c; ®c,; O .... O ¢, be the image defined over X, | €
L(M) if and only if there exists S;S,...S, € L(G) such that c;
€L(Gy), 1<i<n. The string S;S,...S, is said to be an
intermediate string deriving | with respect to M. Note that
there can be more than one intermediate string deriving .

In this section, we consider the following problem for very
simple matrix grammars. Suppose that we are given a finite set
of M arrays [a;] i=1...mj=1...n from an unknown very
simple matrix language L(M) for some very simple matrix
grammar  M=(G,G’), the algorithm identifies a ground
interpretation | such that 1(G) is consistent with M.

Identification algorithm for very simple matrix grammars
Algorithm VSMG

Input: A positive presentation of very simple matrix language
LM=GlJ G

Output: A sequence of a set of context -free grammars for the

horizontal grammar G over intermediate symbols and
the grammar G for the vertical columns.

Procedure
Initialize grammar G= ({po}, @, @, po,D)
Initialize the set H =®

Initialize the sets Ty, Ty,... Ty =@
/* Each positive presentation
M € M=¢;0¢,; 0 .... O ¢, (1=n<k)

=x(c)Py(c2)Px(cs). ... Dx(cn)
Where ¢;, C; ....c, € 7%/
Step 1 For the first matrix of the sample i.e., M; do

la. Assign a non terminal S; (1<j<k) to each different y(c,)

(1=n<k) and store the string of the sequence of S;’s corresponding

to the sequence y(c1) x(c2) x(ca).... x(cy) inaset H.

1b. If Sj(1<j<k) is the non terminal associated to a column
x(cn) (1=n=k), put the string c,(1<n<k) in the set T; (1<j<k)

Step 2 For the other matrices of the sample i.e.,
Mi=c;0c¢c0 .... O cp (1<n=k)
i>2,do

If the string c; corresponding to y (c;) has a common
prefix and a common suffix with a string ¢, (1<n<k) in some
Tj (1<j<k), include the string ¢, in Tjie Tj = T; lJ {c,} and non

terminal S; (1<j<k) to y (c,). Repeat the same for ¢, 3, ..., Cy
and include the string of the sequence of Sj’s corresponding to
x(c1) x(c2) x(ca). ... x(cy) in the set H.
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Step 3 Using the identification algorithm IA given below obtain
the grammar G for the input set H, which accepts the
context - free matrix grammar G

Step 4 Using the same identification algorithm IA repeatedly
we obtain the grammar G,’,G,"...G\ corresponding to
Ty, Ty oo, Tk

Lemma4.l For a finite subset R of L(G*),
let 1= (fn,fp) = Consistent(R) and G =I(Gp). Then either
L (G*) =L (G) or L(G*)-L(G) # ¢

Lemma 4.2 Let Ggro,Gg;...,Gry,...be the intermediate
(horizontal) sequence of conjectured grammars produced by

IA, where Gg=11(Gp). Then there exists r> 0 such that for all

>0, produced by IA, where Gg, =li(G,x). Then there exists

r >0 such that for all i >0, Gg,= Ggy+1 and L(Gg,) = L(G~) and
similarly let Ggro’, Gr1',...Ggi"... be the vertical sequence of
conjectured grammars produced by IA, where Gg, =1i(G ¢x).
Then there exists r >0 su ch that for all I >0, Gg, "= Gg+1 and
L(Gr’) =L(G+) where Gps = ({S}U VN5.2,Ps,S) where
Vys={ Xa/a€ X} and Py = {X; — ax,/a €X}

Proof From the property of IA, in particular, of the procedure
consistent(R), there is an upper bound B (depending on the size
of G*) for which each i>1, the number of candidate interpretations
li (=consistent (Ri)) for the i-th conjecture Gg; is no more than B.
(Note that for each i>1, and interpretation I* for G* is potentially
included in the set of those candidate interpretations Ii). Thus
there exists r > 0 such that for all >0, G, = Ggy+1. Suppose that
L(G*) #L(Gg,), then by the preceding lemma there exists a
string w € L(G*) — L(Gg,) such that w is not yet provided as a
positive example. This implies that IA produces a conjecture
distinct from Gg,, a contradiction

Thus we have the following

Theorem 4.1 The class of very simple grammars is identifiable
in the limit from positive data.

Identification Algorithm 1A
Input: A positive presentation of a very simple matrix
language L (G«)
Output: A sequence of very simple grammars Ggy, Gg;......
Procedure

Initialize Ry =0;

Initialize the grammar schema G_g;

Let Gro = ({S}, 9, 9, S);

Leti=1;

Repeat (forever)

Read the next positive example w;;

LetRi=Ri; U {w}

Let alph(Ry) = alph (Ri) U {alph(w)};
|fWi eL (GRi-l)n then let Ggi = Ggi.1;
Output Gg;;
Else
Augment G,z using X = alph (R;);
Let I; = Consistent (Ri);
Output Gg; = I; (G, 5);

Lemma 4.3 Given any very simple matrix grammar G-, the
algorithm 1A identifies in the limit a very simple matrix
grammar Gg such that L(G+«) = L(Gg), where R is the set of
positive data provided

Thus we have the following

Theorem 4.2 The class of very simple matrix grammar is
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identifiable in the limit from positive data.

Constructing a characteristic sample

Let L be a very simple matrix language. A finite subset Sy, of
L is called a characteristic sample of L ifandonly if
L is the smallest very simple matrix language containing Sy
such that no rule can be applied more than twice.

Time complexity analysis

Time for updating a conjecture:
Let N=X € glen(W;) and | be the maximum length of positive
data in R. The time for updating a conjecture is obviously
dominated by the time for the procedure consistent (R) where
I =(f,, fy) = consistent(R).

In performing consistent(R) determining f, requires
atmost O(N) times. It takes atmost O(N) times to construct
Lg(R). Solving Lg(R) requires atmost O( |Z|°) time, because it
is reduced to the computation of an inverse matrix with atmost
|Z| dimension. We have for any
a X, -1<n,<B(a,w) ( where B(a,w) = len(w)/#,(w) and w is a
string of minimum length in R,). we see that the value of n, is
bounded by |, the number of all solution vectors of Lg(R) is
bounded by I*. Hence while loops are repeatedly performed
atmost I*  times. Each while loop requires O (N) times
atmost. Thus the time for updating a conjecture is bounded by
O(=[*) +O(I*) *N < O(Max {N**! |2}

The above is repeated for each column. Therefore
repeat n times if there are n columns
O () +O(I™) *N < O(Max {N*"|£[})"

Example Run
Consider the very simple matrix grammar given in Example
3.1

SteplLetM;=|d; d, d, dg dy
el 6‘2 6‘4 6‘3 6‘4
fi fp fu f3 14

191 92 94 93 94

a. x(c)=aib;cidie;fi:-S;
x(C2) = a;b,¢dze,1,09, - S
x(Cs) = aghscz dzesf303 - S;
x(Cs) = asbscadsesfi9s— S,
H = {S,5,5,S;S4}

b. Ti={a;bicidie;figi}
To={aybycydr e, 1,90}
Ts={azbscs d3esf30s}
Ts={asbscs dsesf04}

b, b
Step2 M, = 1 74

fi 1y

91 94

Now H = {5182 545384, Sl 84}

Ti={aib;c, d;e;f05, a1 bafy 01}
T,={a, by ¢, dy €5, 92, @ 05F, 92}
Ts={asbscs d3e;f30s, azhs f3 93}
Ts={asbscy dsesfs0s, ashsf404}
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al 32 a2 34 33 a4
bl b2 b2 b4 b3 b4
Ci Cy Cy C4 C3 Cy
€1 €2 € &4 €3 &y
fi T fp T4 f3 14
191 92 92 94 93 94 |
H = {S1 S5 S4 S3S4, S1S4, $1525,54S354}
T,={ayb;c;de;,fy 05 8, by 01}
Tz = {az bz Cy dz ey fz 0o, Ay bzfz gz}
Ts={asbscs d3esf303 a3bsf3gs}
Ty= {514 bsCsdsesfygs, asbstfy 94}_
al a2 a4 a3 3.4
bl b2 b4 b3 b4

Cl C2 C4 C3 C4
dl d 2 d 4 d 3 d 4
e e e e e

M, = 1 2 4 3 4
Cl C2 C4 C3 C4
dl d 2 d 4 d 3 d 4
81 62 64 63 64
fl f2 f4 f3 f4
191 92 94 93 94|
Again H = {S;S,S,S3S4, S1S4, S1S,S,S4 S3S4}

T,={a;b;c;dre; f0; a1 by 95,806, dyeg ¢y dy ey 100}
T,={ayb,c,dye,f,0,, ab, 1,0, @b, C, dye5C, dr €5F5 02}
T3={azbscs dze3f303,a3b3f303, asbscs3 dzez c3 dzezf30s}
Ts= {ait bscsdsesfsds asbsfsgs asbscsdsescyds 114 404}

al 6.2 3.2 34 a3 6.4 6.3 a4
bj b, b, b, by b, by by,
Cl 02 C2 C4 C3 C4 C3 C4
Ms=|d; d, d, d, dg d, dg dy,
el 62 62 64 83 64 63 94
] f, fy B, fg3 f, fg3 f4
91 92 92 94 93 94 93 9g |

Again
H = {S15,54S354, S1S4, $1525,54S354, S1525,5453554S3S4}
T1={ab1C101€1f1091, a101f19s a1bscy0s€ C1d1€4F194}
To={a20,C2dz€, 1202, 8202292, a2 02 €, dy €5 C2 dz €5F> 92}
T3={ashscsdsesfz303 a3b3f393 asbsCs dses c3 dzesfzgs}
Ts={asbsCsdses7404, 8204F404 84 04Ca dsesCqdsesfyga}

MGZ

al 82 8.2 8.4 a3 8.4 8.3 a2 a4 3.3 8.4

191 92 92 94 93 94 93 92 9g 93 9y |
Again

H={S15,54 5354, S1S4, S152S2 S4S5S4,515, S5 S4 S3S4 S3S4,
S152S, 54535455 S; S4S3S4}
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Ti={aib;cidiesfig; abifigr aibicidies cydiesfrga}
To={aybyCydre,f, s, a2 b, T, 92, 80, €5 Ay €5 C, dr €5f5 9o}
Ts={asbscs dze3 303 8303393, a3b3C3 d3e3 C3 dzesfzgs}
Ta={asbsCsdsesfs04, a404F40s a304C4 dseyCqdsesfygs}

ldentification of G:
The computation of f, and f,,.

1. Let w; = {S;S4} be the first word from H and H; = {w},
alph (H,) = {S;, S4}. Since S, is final Sy handle rule is

Xs4 — Sy and f, (Xsq) = % (n5:20) f, (Xs1) = Sand
fo (Ksp) #4

The length equation for wy is gy + Ngg = -1..... (1. wy)

Ng1 = 0..... (1 Wl),

Lg (Hy) ={(I. wy)}

Lg (Hy) ={(. wy)'}

From the structure graph of H we get

fo(Xs1) = S and f,(X) = X for every other X

x = (0) (=ns1)

CR (po) is

S — Sl ZSl, 1 and Xs4 i S4

Simulating the derivation for w, via these rules we get

Zs;1 = Xgq . As a result we see that CR (y;) is good and a
ground interpretation. I, = (f,, f;) admissible to

H, is obtained where
fa(Xs1) =8

fn (X)=X otherwise

fo (Xs1) = Xs4
fo(Xsa) =2

The conjectured grammar Gy = 11(G o) is
({S, Xsa}, {Xs1, Xsa}, P1,S) where Py is
S — S1 Xsa, Xsa— S4

2. Letw, = {S;S,S, Sz S4} be the second word from H and
alph(wy) = {S1Sz Ss, S4}. Then Hy = {wy, wo}

Since S, is final S, handle rule is Xg4 — S, and

fy (Xs4 ) = A (ns>0)

From the structure graph of H we get

fn (XSI) =Sand

f, (X)=X for every other X

fo Xs1) #4

and Lg(H,)= {(I.wy), (I.wy)} where

The Length equation for w, is
Ngy + Ngy + Ng3 2N g4=-1..... (1. Wz)
Ng; + Ngp+ Ng3 =0 ..... (l.Wz)'

Using the set H, we construct a directed graph called the
structure graph of H as follows

- % - @
S,

4

Sz

S,

Ss

00O
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«— —
Sg Sz SB Q
S4
Sy
S4
Ss
Ss

Fig.1 Prefix Tree Automaton Ag

Fig.2 Structured graph H
To solve Lg(Hy")={(I.wy1)",(I.w;)"}, we construct an associated

1 0 00
0

111

matrix My, and a  matrix equation My, :(

The matrix computation is done as follows

1 0 0f0 (1 0 0}0
=
1 1 10 0 1 1|0

& solution of Lg (H,) = (ng;=0) U (Ngz+ Ng3-0) =>ng; =0
and we may choose a solution vector
x2=(0, 2, -1) (=(nsy, Ns3, Ns))
Hence the set of candidate rules
CR (x2){ S = S1 Zs1,1.Xs0 = S2Zsp1 Zsp2 Zsp,3, Xs3 — Sz} is
obtained.
Simulating the derivation for w, via these rules we get
Zs1,1= X2 = Xsa s Zsp1 = Xsay ZS22 = Xs3, Zsz3 = Xsg
Xss — Sy
We see that CR () is good and a ground interpretation.
I, = (f,, f,) obtained where
fa(Xs1) =S fo(Xs1) = X2 Xss
fr (Xs4) = Xs2 fo(Xs2) = Xs3 Xss
o (X) = X otherwise  f(Xs3) = A
fo(Xsa) = A
Thus the conjectured grammar Gy, =1, (G x) is
({S, S2,Ss}{ S1 Sz S3,S4}, P2,S) where P, is
S — 81 Zs1,1 — S1Xs4 — 81 S4
S — 81 Zs1,1 — S1Xsp — 81 S: 72521 Zs22
Zsy3 — S1Sp Xsg Xs3 Xss
S—S:S5,5,S3S,
S — S1 Xsz2 Xsp— Sy Xgg Xs3 Xss, Xsz — Sz Xss — Sy
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3. Let wy = {S; S,5,S,S3S4 S3S4} be the third word from H
and Hs= {w; w, ws} and alph (Hz) = {S;, S, S3, S4}.
From the structure graph shown above we have f, (Xs1) = S
and f, (Xs1) #1
Since S, is final, the S, handle rule is Xgs — S, and
fp (Xsa) = 1 (n51>0)
The IA computes a length equation for w;
and constructs
Lg(Hs") = {(l.wi)",(1.wy)",(1.w3) } where
Ng; + 2n52 + 2n53 +3 Ngg= -1..... (1 W3)
Ng; + 2n52+2 n53:2 e (1 Wg)l
and the associated matrix Mys is

1 0 0|0 . 1 0 00
11 11|= [0 0 00
12 2|2 01 12

Thus the Sol (Lg(H3))=(hs; = 0 ) U (ns; + ng3 = 1) is
obtained from which we may choose a solution vector
13 = (0,2,-1)(= (Nsy, Nsz, Ns3))
Hence the set of candidate rules CR (ys) is
S —81Zs11, Xsa = S2Zs21Z5222523
Xs3— S3 Xss— Sy
Simulating the derivation for W via these rules we
get Zsy,1= X2 = Xsa, Zsp1 = Xsp = Xsay £S5, = Xs,
Zs3= Xsp=Xs4
We see that CR (y3) is good and a ground interpretation.
I3 = (f,, f,) is obtained where
fi(Xs1) =S
o (Xsg) = Xs2
fo (X) = X otherwise

o (Xs1) = Xsz Xss

fo (Xs2) = Xs2Xs3 X4
f, (Xs3) =4

fp (XS4) =i

Thus the conjectured grammar Gz =13(G o3) is

({S, Sz, S3, Sa}.{ S1 .S, ,S3,54}, P3,S)  where Psis
S— 81 Xs2  Ksz — S Xs4 Xsz3 Xsg

Xs3—>S3  Xspg— Sy

4. Let w, = {Sl 32828433848332848334} be the fourth word
from H and H,= {w; w, w3 w,} and
alph (Hg) = {S1, S, S3,S4}-
From the structure graph shown above we have f, (Xs;) = S
and f, (Xs1) #A

Since S, is final, the S, handle rule is Xg4 — S, and
fp (Xsa) = 2 (ns1>0)

The 1A computes a length equation for w, and
constructs Lg(Hs*) = {(1.wy)",(1.wo)",(l.ws)", (I.wg)"} where
Ng; + 3Ngy + 3Ng3 +4ng,=-1..... (1. W4)
Ng; + 3n52+3 n53:3 e (1 W4),
and the associated matrix My, is

1 0 00 1 0 0|0
11 12 =10 1 11
=
1 2 2|2 0 0 00
1 3 3|3 0 0 0|0
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Thus the Sol(Lg(Hs))=(ns1 = 0 ) U (ns; + ngg = 1) is
obtained from which we may choose a solution vector
xa = (0,2,-1)(= (nsy, Nsy, Ns3))
The set of candidate rules CR (yy) is
S—81Zg11, X2 — S Zsz,l Zsz,z Z52,3
Xs3 — S3 Xsa — Sy
Simulating the derivation for W, Via these rules we get
Zs1,1= Xsp = Xy, Zsz1 = Xsp = Xsa, ZSz2 = Xs3 s
Zsp3= Xsp=Xsq  We see that CR (yy) is good and a ground
interpretation. 15 = (f,, f;) is obtained where
f, (Xs1) =S o (Xs1) = Xs2 Xss
fr (Xs4) = Xs2 o (Xs2) = Xs2Xs3 Xss
f, (X) = X otherwise fj, (Xs3) =h
fo Xsg) =4
Thus the conjectured grammar is
G= G =({S, S;, 53 ,34},{51, Sz, S3, Sa}s Pa,S)
where P, is
S—8; Xsz  Xsz — SpXs4 Xs3 X4
Xs3— S3 Xss — S4
The conjectured Gy, is equivalent to G«. Hence Gy, is always
an output as a conjecture for all input data afterwards.

Identification of G;* using T;:
The above procedure can be adapted to the sets Ty, T,, T3 and
T, to conjecture the grammars G;*, G,, G5 and G, of G’

5. CONCLUSION

In this paper we have extended the notion of learning very
simple grammars of Yokomori[1] to matrix grammars and
adopted a modification of the algorithm to learn very simple
matrix grammars which in turn can be used to study digitized
pictures. The very simple matrix grammar considered here is
(CF:.CF) matrix grammar. Hence for further study,
applications of these grammars to other domains can be
considered.
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