Let $G = (V, E)$ be an undirected, simple and connected graph. A set $C \subseteq V$ of vertices in G is called a convex set if $I(C) = C$ where $I(C)$ is the set of all vertices in the u-v geodesic path of G for all $u, v \in C$. For any set $C \subseteq V$, the convex hull of C denoted by $[C]$ is defined as the smallest convex subset of $V(G)$ containing C. Let S be a minimum vertex covering transversal dominating set viz. a γ_{vct}-set. Then the convex hull of S is defined as the smallest convex set containing S. We define the convex hull number of G with respect to γ_{vct} sets, denoted by $CH_{\gamma_{vct}}(G)$ as $\frac{1}{2}$.
Convex Hull of γ vct-sets in Graphs

\(\gamma \)

\[(G) := \min \{|C|: C = [S]\text{ is the convex hull of } \gamma \text{ vct-set } S\} \]

- set \([S]\) where the minimum is taken over all the vct-sets of \(G\). If \([S]\ = S\), then \(S\) is called a convex \(\gamma\) vct- set.
- set. If \([S] = V(G)\), then \(S\) is called a hull \(\gamma\) vct-set.
- In this paper, the convex hull of \(\gamma\) vct-sets and the convex hull number with respect to \(\gamma\) vct-sets in various graphs are analysed.

References

3. DOUGLAS B. WEST, Introduction to Graph Theory, Prentice-Hall of India Private Limited, New Delhi.
5. ISMAIL SAHUL HAMID, Independent Transversal Domination in Graphs, Discussiones Mathematicae Graph Theory 32(1) (2012) (5-17)

Index Terms

<table>
<thead>
<tr>
<th>Computer Science</th>
<th>Applied Mathematics</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum vertex covering transversal dominating set</td>
<td>convex hull number of G with respect to vct-sets</td>
<td>convex vct-set, hull vct-set</td>
</tr>
</tbody>
</table>