Convex Hull of γ_{vct}-sets in Graphs

International Journal of Computer Applications

Foundation of Computer Science (FCS), NY, USA

Volume 180

Number 23

Year of Publication: 2018

Authors:

R.Vasanthis, K.Subramanian

10.5120/ijca2018915932

Abstract

Let $G = (V, E)$ be an undirected, simple and connected graph. A set $C \subseteq V$ of vertices in G is called a convex set if $I(C) = C$ where $I(C)$ is the set of all vertices in the u-v geodesic path of G for all $u, v \in C$. For any set $C \subseteq V$, the convex hull of C denoted by $[C]$ is defined as the smallest convex subset of $V(G)$ containing C. Let S be a minimum vertex covering transversal dominating set viz. a γ_{vct}-set. Then the convex hull of S is defined as the smallest convex set containing S. We define the convex hull number of G with respect to γ_{vct} sets, denoted by $\text{CH}_{\gamma_{vct}}(G)$ as

$\text{CH}_{\gamma_{vct}}(G)$
Convex Hull of γ_vct-sets in Graphs

\[\gamma(G) = \min\{|C| : C = [S] \text{ is the convex hull of } \gamma \text{-set } S \} \]

where the minimum is taken over all the vct-sets of \(G \). If \([S] = S \), then \(S \) is called a convex \(\gamma \)-set. If \([S] = V(G) \), then \(S \) is called a hull \(\gamma \)-set. In this paper, the convex hull of \(\gamma \)-sets and the convex hull number with respect to \(\gamma \)-sets in various graphs are analysed.

References

5. ISMAIL SAHUL HAMID, Independent Transversal Domination in Graphs, Discussiones Mathematicae Graph Theory 32(1) (2012) (5-17)

Index Terms

Computer Science

| Applied Mathematics |

Keywords

minimum vertex covering transversal dominating set, convex hull number of G with respect to vct-sets, convex vct-set, hull vct- set