Convex Hull of $\gamma_{v c t}$-sets in Graphs

R.Vasanthi
Assistant Professor, Department of Mathematics
Alagappa Chettiar Government College of Engineering and Technology
Karaikudi,
Tamilnadu, India

K.Subramanian
Professor(Retired), Department of Mathematics
Alagappa Government Arts College, Karaikudi, Tamilnadu, India

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected, simple and connnected graph. A set $\mathrm{C} \subseteq \mathrm{V}$ of vertices in G is called a convex set if $\mathrm{I}(\mathrm{C})=\mathrm{C}$ where $\mathrm{I}(\mathrm{C})$ is the set of all vertices in the $u-v$ geodesic path of G for all u, $\mathrm{v} \in \mathrm{C}$. For any set $\mathrm{C} \subseteq \mathrm{V}$, the convex hull of C denoted by [C] is defined as the smallest convex subset of $\mathrm{V}(\mathrm{G})$ containing C . Let S be a minimum vertex covering transversal dominating set viz. a $\gamma_{v c t}$-set. Then the convex hull of S is defined as the smallest convex set containing S . We define the convex hull number of G with respect to $\gamma_{v c t}$-sets, denoted by $C H_{\gamma_{v c t}}(\mathrm{G})$ as $C H_{\gamma_{v c t}}(\mathrm{G})$ $=\min .\left\{|C|: C=[\mathrm{S}]\right.$ is the convex hull of $\gamma_{v c t}$-set S$\}$ where the minimum is taken over all the $\gamma_{v c t}$-sets of G. If [S] $=\mathrm{S}$, then S is called a convex $\gamma_{v c t}$-set. If $[\mathrm{S}]=\mathrm{V}(\mathrm{G})$, then S is called a hull $\gamma_{v c t}$-set. In this paper, the convex hull of $\gamma_{v c t}$-sets and the convex hull number with respect to $\gamma_{v c t}$-sets in various graphs are analysed.

Keywords

minimum vertex covering transversal dominating set, convex hull number of G with respect to $\gamma_{v c t}$-sets, convex $\gamma_{v c t}$-set, hull $\gamma_{v c t}{ }^{-}$ set

1. INTRODUCTION

Independent transversal domination in graphs was introduced by Hamid [5]. Vasanthi and Subramanian [6] introduced vertex covering transversal domination in graphs. The vertex covering transversal domination number of some standard graphs and regular graphs are analysed in [6] and [7]. Further studies on vertex covering transversal domination number and vertex covering transversal dominating sets are carried out in [8]. In this paper, the convex hull of $\gamma_{v c t}$-sets and hence the convex hull number with respect to $\gamma_{v c t}$-sets in various graphs are analysed, based on the concept of convex sets in graphs.
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be any graph and let $\mathrm{S} \subset \mathrm{V}$ be any subset of vertices of G . Then the induced subgraph $\langle S\rangle$ is the graph whose vertex set is S and whose edge set consists of all the edges in E that have both endpoints in S. The degree of a vertex $v \in V$ of G is the number of edges incident to the vertex v in G and is denoted by $\operatorname{deg}_{G}(\mathrm{v})$. The graph G^{k} called the power of G is obtained by taking the same vertex set as G and two vertices u ; v in G^{k} are adjacent if there exists a $u-v$ path of length at most k in G for every positive integer $\mathrm{k} \geq 2$.

A set $\mathrm{I} \subseteq \mathrm{V}$ of vertices in G is called an independent set if no two vertices in I are adjacent. Also I is said to be a maximum independent set if there is no other independent set I^{\prime} such that $\left|I^{\prime}\right|>|I|$. The cardinality of a maximum independent set is called the independence number and is denoted by $\beta_{0}(\mathrm{G})$. A set $\mathrm{C} \subseteq \mathrm{V}$ of vertices in G is called a vertex covering set (or simply covering set) if every edge of G is incident with at least one vertex in C . Also C is said to be a minimum vertex covering set if there is no other vertex covering set C^{\prime} such that $\left|C^{\prime}\right|<|C|$. The cardinality of a minimum vertex covering set is called the vertex covering number and is denoted by $\alpha_{0}(\mathrm{G})$.
A set $\mathrm{D} \subseteq \mathrm{V}$ of vertices in a simple connected graph G is called a dominating set if every vertex in $\mathrm{V}-\mathrm{D}$ is adjacent to a vertex in D . A dominating set which intersects every minimum vertex covering set in G is called a vertex covering transversal dominating set. The minimum cardinality of a vertex covering transversal dominating set is called vertex covering transversal domination number of G and is denoted by $\gamma_{v c t}(\mathrm{G})$.
A dominating set of minimum cardinality is denoted by γ-set and a vertex covering transversal dominating set of minimum cardinality is denoted by $\gamma_{v c t}$-set. Given a connected graph G and u ; v are two vertices of G, the distance between u and v is the length of a shortest path between u and v , we denote it by $d_{G}(\mathrm{u}$; v). A shortest path between u and v is called $a u-v$ geodesic. A set $\mathrm{C} \subseteq \mathrm{V}$ of vertices in G is called a convex set if $\mathrm{I}(\mathrm{C})=\mathrm{C}$ where $\mathrm{I}(\mathrm{C})$ is the set of all vertices in the $u-v$ geodesic path of G for all $u, v \in C$. For any set $\mathrm{C} \subseteq \mathrm{V}$, the convex hull of C denoted by [C] is defined as the smallest convex subset of $\mathrm{V}(\mathrm{G})$ containing C. For other graph theoretic terminologies, refer to [2], [3] and [4].

2. DEFINITIONS WITH ILLUSTRATIONS

Using the concepts of convex sets and the convex hull of a set in graphs, the convex hull of a $\gamma_{v c t}$-set and the convex hull number with respect to $\gamma_{v c t}$-sets in a graph are defined in this section. Convex $\gamma_{v c t}$-sets and hull $\gamma_{v c t}$-sets are also defined accordingly. These concepts are explained with suitable illustrations.

DEFINITION 2.1. Let $G=(V, E)$ be an undirected, simple and connected graph. Let $S \subseteq V$ be a minimum vertex covering transversal dominating set viz. a $\gamma_{v c t}-$ set. Then the convex hull of S is defined as the smallest convex set containing S and is denoted by [S].

DEFINITION 2.2. The convex hull number of G with respect to $\gamma_{v c t}$-sets, denoted by $C H_{\gamma_{v c t}}(G)$ is defined as $C H_{\gamma_{v c t}}(G)=$ min. $\left\{|C|: C=[S]\right.$ is the convex hull of $\gamma_{v c t}$-set $\left.S\right\}$ where the minimum is taken over all the $\gamma_{v c t}$-sets of G.

DEFINITION 2.3. If $[S]=S$, then S is called a convex $\gamma_{v c t}$-set.

DEFINITION 2.4. If $[S]=V(G)$, then S is called a hull $\gamma_{v c t}$-set.

REMARK 2.5. Any singleton set is a convex set in a graph G. So it follows that if G has a singleton set S as its $\gamma_{v c t}$-set, then [S] $=S$ which implies that S is a convex $\gamma_{v c t}$-set and so $C H_{\gamma_{v c t}}(G)=$ 1.

REMARK 2.6. If S is a $\gamma_{v c t}$-set of G, it is obvious that [S] $\supseteq S$ and so $C H_{\gamma_{v c t}}(G) \geq \gamma_{v c t}(G)$.

ILLUSTRATION 2.7. For instance, consider the graph G shown in Figure 1.

As illustrated in [6], $S_{1}=\{\mathrm{b}, \mathrm{e}\}, S_{2}=\{\mathrm{b}, \mathrm{f}\}, S_{3}=\{\mathrm{b}, \mathrm{g}\}$ and $S_{4}=\{\mathrm{a}, \mathrm{e}\}$ are the $\gamma_{v c t}$-sets of G. The geodesic paths connecting the vertices of S_{1} are ($\mathrm{b}, \mathrm{c}, \mathrm{e}$) and (b, d, e). So the convex hull of S_{1} is $\left[S_{1}\right]=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$.

Similarly, the convex hull of S_{2}, S_{3} and S_{4} are $\left[S_{2}\right]=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$, $\left[S_{3}\right]=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}\}$ and $\left[S_{4}\right]=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$. So the convex hull number with respect to the $\gamma_{v c t}$-sets of $\mathrm{G}, C H_{\gamma_{v c t}}(\mathrm{G})=\min .\{4$, $5\}=4$.

ILLUSTRATION 2.8. Consider the graph G shown in Figure 2.

Figure 2
Here $C_{1}=\left\{v_{2}, v_{3}, v_{5}\right\}, C_{2}=\left\{v_{2}, v_{4}, v_{5}\right\}, C_{3}=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $C_{4}=\left\{v_{1}, v_{4}, v_{5}\right\}$ are the α_{0}-sets of G.
Also $S_{1}=\left\{v_{2}, v_{3}\right\}, S_{2}=\left\{v_{2}, v_{5}\right\}, S_{3}=\left\{v_{3}, v_{4}\right\}$ and $S_{4}=\left\{v_{4}, v_{5}\right\}$ are the γ-sets which intersect all the α_{0}-sets of G. Therefore S_{1}, S_{2},
S_{3} and S_{4} are the $\gamma_{v c t}$-sets of G. Then their convex hulls are [S_{1}] $=\left\{v_{2}, v_{3}\right\}=S_{1},\left[S_{2}\right]=\left\{v_{2}, v_{5}\right\}=S_{2},\left[S_{3}\right]=\left\{v_{3}, v_{4}\right\}=S_{3}$ and $\left[S_{4}\right]=\left\{v_{4}, v_{5}\right\}=S_{4}$.
Therefore $C H_{\gamma_{v c t}}(\mathrm{G})=2$.
Also each $\gamma_{v c t}$-set S_{i} is a convex $\gamma_{v c t}$-set as $\left[S_{i}\right]=S_{i}$ for $\mathrm{i}=1,2$, 3, 4 .

3. CONVEX HULL OF $\gamma_{V C T}$-SETS IN SOME STANDARD GRAPHS

In this section, the convex hull of a $\gamma_{v c t}$-sets and the convex hull number of G with respect to $\gamma_{v c t}$-sets are analyzed for some standard graphs. Convex $\gamma_{v c t}$-sets and hull $\gamma_{v c t}$-sets are also examined in those graphs.

EXAMPLE 1. If G is a star as shown in Figure 3, then $C H \gamma_{v c t}(G)=1$.

Star
Figure 3
Obviously $\mathbf{S}=\{\mathbf{u}\}$ is the unique $\gamma_{v c t}$-set of G. Then $[\mathbf{S}]=\mathbf{S}$ and so S is the convex $\gamma_{v c t}$-set of G . Thus $C H_{\gamma_{v c t}}(\mathrm{G})=1$.

EXAMPLE 2. If G is a bistar as shown in Figure 4, then $C H_{\gamma_{v c t}}(G)=2$.

Figure 4
It is obvious that $S=\{u, v\}$ is the unique $\gamma_{v c t}$-set of G. Also [S] = S and so S is the convex $\gamma_{v c t}$-set of G . Thus $C H_{\gamma_{v c t}}(\mathrm{G})=2$.

EXAMPLE 3. If W_{n} is a wheel on $n \geq 5$ vertices as shown in Figure 5, then $C H_{\gamma_{v c t}}\left(W_{n}\right)=1$ since $\{\bar{u}\}$ is the unique $\gamma_{v c t}$-set of W_{n} and is convex also.

Wheel
Figure 5

THEOREM 3.1. Let G be a simple connected graph on n vertices.
(i) If at least one $\gamma_{v c t}$-set of G is convex, then $C H_{\gamma_{v c t}}(G)=$ $\gamma_{v c t}(G)$.
(ii)If all the $\gamma_{v c t}$-sets of G are hull, then $C H_{\gamma_{v c t}}(G)=n$.
(iii) If no $\gamma_{v c t}$-set of G is convex or hull, then $\gamma_{v c t}(G)<C H_{\gamma_{v c t}}(G)$ $<n$.

Proof. (i) Let S be a convex $\gamma_{v c t}$-set of G. Then the convex hull of S is itself. So $C H_{\gamma_{v c t}}(\mathrm{G})=\min .\{|C|: C$ is the convex hull of a $\gamma_{v c t}$-set $\}=|S|=\gamma_{v c t}(\mathrm{G})$.
(ii) Assume that all the $\gamma_{v c t}$-sets of G are hull. Then for any $\gamma_{v c t}{ }^{-}$ set S of G, the convex hull of $S,[\mathrm{~S}]=\mathrm{V}(\mathrm{G})$ as S is a hull $\gamma_{v c t}$-set. Hence $C H_{\gamma_{v c t}}(\mathrm{G})=|V(G)|=\mathrm{n}$.
(iii) It is obvious that $C H_{\gamma_{v c t}}(\mathrm{G}) \geq \gamma_{v c t}(\mathrm{G})$. Since no $\gamma_{v c t}$-set of G is convex, it follows that $C H_{\gamma_{v c t}}(\mathrm{G}) \neq \gamma_{v c t}(\mathrm{G})$. Since no $\gamma_{v c t}{ }^{-}$
 $C H_{\gamma_{v c t}}(\mathrm{G})<\mathrm{n}$.

THEOREM 3.2. Let G be a simple connected graph and let S be a $\gamma_{v c t}$-set of G. If $\langle S\rangle=K_{2}$, then S is a convex $\gamma_{v c t}$-set of G and $C H_{\gamma_{v c t}}(G)=2$.

Proof. Since $\langle S\rangle=K_{2}$, S contains only 2 vertices, say u and v. Also the only geodesic path connecting u and v is (u, v) which is of length 1 . For, if P is any other path connecting u and v, it must include at least one more vertex so that the length of P is ≥ 2 and so is not geodesic.
Now the convex hull of S is itself and so S is a convex $\gamma_{v c t}$-set of G. Therefore by theorem 3.1 $C H_{\gamma_{v c t}}(\mathbf{G})=\gamma_{v c t}(\mathbf{G})$. But $\gamma_{v c t}(\mathbf{G})=$ $|S|=2$.
Hence $C H_{\gamma_{v c t}}(\mathrm{G})=2$.

THEOREM 3.3. $C H_{\gamma_{v c t}}\left(K_{m, n}\right)=2$ where $K_{m, n}, 2 \leq m \leq n$ is a complete bipartite graph.

Proof. Let $K_{m, n}, 2 \leq \mathrm{m} \leq \mathrm{n}$ be a complete bipartite graph with bipartition
(U, V) where $\mathrm{U}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $\mathrm{V}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $S_{i j}=\left\{u_{i}, v_{j}\right\}$ for all $\mathrm{i}=1,2,3, \ldots, \mathrm{~m} ; \mathrm{j}=1,2,3, \ldots, \mathrm{n}$ is a $\gamma_{v c t}{ }^{-}$ set of $K_{m, n}$. It is clear that $\left\langle S_{i j}\right\rangle=K_{2}$. Therefore by theorem 3.2 . each $S_{i j}$ is a convex $\gamma_{v c t}$-set for $\mathrm{i}=1,2,3, \ldots, \mathrm{~m} ; \mathrm{j}=1,2,3, \ldots, \mathrm{n}$ and $C H_{\gamma_{v c t}}\left(K_{m, n}\right)=2$.

LEMMA 3.4. $C H_{\gamma_{v c t}}\left(P_{n}\right)=\left\{\begin{array}{cc}2 & \text { if } n=2,4 \\ 4 & \text { if } n=5\end{array}\right.$ where $_{n}$ is a path on n vertices.

Proof. $\mathrm{S}=\left\{v_{1}, v_{2}\right\}$ is the unique $\gamma_{v c t}$-set of P_{2}. Obviously [S] $=\left\{v_{1}, v_{2}\right\}=\mathrm{S}$. So S is a convex $\gamma_{v c t}$-set of P_{2}. Hence $C H_{\gamma_{v c t}}\left(P_{2}\right)$ $=2$.
If $\mathrm{V}\left(P_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then $S=\left\{v_{2}, v_{3}\right\}$ is the unique $\gamma_{v c t}$-set of P_{4}. Since $\langle S\rangle=K_{2}$, by theorem $3.2 S$ is a convex $\gamma_{v c t}$-set of P_{4} and $C H_{\gamma_{v c t}}\left(P_{4}\right)=2$.
If $\mathrm{n}=5, S_{1}=\left\{v_{1}, v_{4}\right\}$ and $S_{2}=\left\{v_{2}, v_{5}\right\}$ are the $\gamma_{v c t}$-sets of P_{5}. Then their convex hulls are $\left[S_{1}\right]=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\left[S_{2}\right]=\left\{v_{2}\right.$, $\left.v_{3}, v_{4}, v_{5}\right\}$.
Hence $C H_{\gamma_{v c t}}\left(P_{5}\right)=4$.

Lemma 3.5. If $n \equiv 0(\bmod 3)$, then $C H_{\gamma_{v c t}}\left(P_{n}\right)=n-2$.
Proof. Let the vertex set of P_{n} be $\left\{v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{n}\right\}$. In [6], it is proved that $\gamma_{v c t}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. It is clear that if $\mathrm{n} \equiv 0(\bmod$ 3), then $\mathrm{S}=\left\{v_{3 i-1}: 1 \leq \mathrm{i} \leq \frac{n}{3}\right\}=\left\{v_{2}, v_{5}, \ldots, v_{n-1}\right\}$ is the unique $\gamma_{v c t}$-set of P_{n}. Then the vertices contained in the geodesic paths joining any two vertices of S are $v_{2}, v_{3}, v_{4}, v_{5}, \ldots, v_{n-1}$. Therefore $[\mathrm{S}]=\mathrm{V}\left(P_{n}\right)-\left\{v_{1}, v_{n}\right\}$. Hence $C H_{\gamma_{v c t}}\left(P_{n}\right)=\mathrm{n}-2$.

LEMMA 3.6. If $n>4$ and $n \equiv 1(\bmod 3)$, then $C H_{\gamma_{v c t}}\left(P_{n}\right)=$ $n-2$.

Proof. In [6], it is proved that $\gamma_{v c t}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. So it is clear that if $\mathrm{n} \equiv 1(\bmod 3)$, then $S_{1}=\left\{v_{3 i+1}: 0 \leq \mathrm{i} \leq \frac{n-1}{3}\right\}=\left\{v_{1}\right.$, $\left.v_{4}, \ldots, v_{n}\right\}$ is a $\gamma_{v c t}$-set of P_{n}. Then the vertices contained in the geodesic paths joining any two vertices of S_{1} are $v_{1}, v_{2}, v_{3}, v_{4}, \ldots$, v_{n}. Therefore the convex hull of S_{1} is $\left[S_{1}\right]=\mathrm{V}\left(P_{n}\right) . S_{2}=\left\{v_{3 i+1}\right.$: $\left.1 \leq \mathrm{i} \leq \frac{n-1}{3}\right\} \cup\left\{\mathrm{v}_{2}\right\}=\left\{v_{2}, v_{4}, v_{7}, \ldots, v_{n}\right\}$ is also a $\gamma_{v c t}$-set of P_{n}. Then the vertices contained in the geodesic paths joining any two vertices of S_{2} are $v_{2}, v_{3}, v_{4}, \ldots, v_{n}$. Therefore $\left[S_{2}\right]=\mathrm{V}\left(P_{n}\right)$ $\left\{v_{1}\right\}$. Also $S_{3}=\left\{v_{3 i-1}: 1 \leq \mathrm{i} \leq \frac{n-1}{3}\right\} \cup\left\{\mathrm{v}_{n-1}\right\}=\left\{v_{2}, v_{5}, \ldots\right.$, $\left.v_{n-2}, v_{n-1}\right\}$ is a $\gamma_{v c t}$-set of \bar{P}_{n}. Then the vertices contained in the geodesic paths joining any two vertices of S_{3} are $v_{2}, v_{3}, v_{4}, \ldots$, v_{n-1}. So $\left[S_{3}\right]=\mathrm{V}\left(P_{n}\right)-\left\{v_{1}, v_{n}\right\}$. Also $S_{4}=\left\{v_{3 i-1}: 1 \leq \mathrm{i} \leq \frac{n-1}{3}\right.$ $\} \cup\left\{\mathrm{v}_{n}\right\}=\left\{v_{2}, v_{5}, \ldots, v_{n-2}, v_{n}\right\}$ is another $\gamma_{v c t}$-set of P_{n}. Then the vertices contained in the geodesic paths joining any two vertices of S_{4} are $v_{2}, v_{3}, v_{4}, \ldots, v_{n}$. So $\left[S_{4}\right]=\mathrm{V}\left(P_{n}\right)-\left\{v_{1}\right\}$. Similarly if S is any other $\gamma_{v c t}$-set of P_{n} which necessarily excludes any one of the end vertices or both, then the convex hull of S contains $n-1$ or n -2 vertices.
Hence $C H_{\gamma_{v c t}}\left(P_{n}\right)=\min .\{\mathrm{n}, \mathrm{n}-1, \mathrm{n}-2\}=\mathrm{n}-2$.

LEMMA 3.7. If $n>5$ and $n \equiv 2(\bmod 3)$, then $C H_{\gamma_{v c t}}\left(P_{n}\right)=$ $n-2$.

Proof. In [6], it is proved that $\gamma_{v c t}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. So it is clear that if $\mathrm{n} \equiv 2(\bmod 3)$, then $S_{1}=\left\{v_{3 i+1}: 0 \leq \mathrm{i} \leq \frac{n-2}{3}\right\}=\left\{v_{1}\right.$, $\left.v_{4}, \ldots, v_{n-1}\right\}$ is a $\gamma_{v c t}$-set of P_{n}. Then the vertices contained in the geodesic paths joining any two vertices of S_{1} are $v_{1}, v_{2}, v_{3}, v_{4}$, \ldots, v_{n-1}. Therefore the convex hull of S_{1} is $\left[S_{1}\right]=\mathrm{V}\left(P_{n}\right)-\left\{v_{n}\right\}$. Also $S_{2}=\left\{v_{3 i-1}: 1 \leq \mathrm{i} \leq \frac{n+1}{3}\right\}=\left\{v_{2}, v_{5}, \ldots, v_{n}\right\}$ is another $\gamma_{v c t}$-set of P_{n}. Then the vertices contained in the geodesic paths joining any two vertices of S_{2} are $v_{2}, v_{3}, v_{4}, \ldots, v_{n}$. So $\left[S_{2}\right]=$ $\mathrm{V}\left(P_{n}\right)-\left\{v_{1}\right\}$. The other $\gamma_{v c t}$-sets of P_{n} are $S_{3}=\left\{v_{3 i+1}: 1 \leq \mathrm{i}\right.$ $\left.\leq \frac{n-2}{3}\right\} \cup\left\{v_{2}\right\}=\left\{v_{2}, v_{4}, v_{7}, \ldots, v_{n-1}\right\}$ and $S_{4}=\left\{v_{3 i-1}: 1 \leq \mathrm{i}\right.$ $\left.\leq \frac{n-2}{3}\right\} \cup\left\{v_{n-1}\right\}=\left\{v_{2}, v_{5}, \ldots, v_{n-3}, v_{n-1}\right\}$. Also $\left[S_{3}\right]=\left[S_{4}\right]=$ $\overline{\mathrm{V}}\left(P_{n}\right)-\left\{v_{1}, v_{n}\right\}$. Similarly if S is any other $\gamma_{v c t}$-set of P_{n} which necessarily excludes any one of the end vertices or both, then the convex hull of S contains $n-1$ or $n-2$ vertices.
Hence $C H_{\gamma_{v c t}}\left(P_{n}\right)=\min .\{\mathrm{n}-1, \mathrm{n}-2\}=\mathrm{n}-2$.

Thus we have the following theorem.
THEOREM 3.8. If P_{n} is a path on n vertices, then
$C H_{\gamma_{v c t}}\left(P_{n}\right)=\left\{\begin{array}{cc}2 & \text { if } n=2,4 \\ 4 & \text { if } n=5 \\ n-2 & \text { otherwise }\end{array}\right.$
REMARK 3.9. As discussed in [1], P_{n+1}^{k} is the $k^{t h}$ power of P_{n+1} defined as follows.
Let P_{n+1} be the path of order $n+1$ on the vertices $v_{0}, v_{1}, v_{2}, \ldots$, v_{n}. Then P_{n+1}^{k} contains the same vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ and two vertices in P_{n+1}^{k} are adjacent if there exists a path of length at most k in P_{n+1} for every positive integer $k \geq 2$. When $k \geq n, P_{n+1}^{k}$ is the complete graph.

REMARK 3.10. The following theorem provides the convex hull number with respect to $\gamma_{v c t}$-sets of P_{n+1}^{n-1}.

THEOREM 3.11. $C H_{\gamma_{v c t}}\left(P_{n+1}^{n-1}\right)=1$.
Proof. For $\mathrm{n}=5$, the graph P_{6}^{4} is as shown in Figure 6.

Figure 6
By the definition of P_{n+1}^{n-1}, it is clear that $\left\{v_{0}, v_{n}\right\}$ is the unique β_{0} set. Therefore $\mathrm{C}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is the unique α_{0}-set of P_{n+1}^{n-1}. So $S_{i}=\left\{v_{i}\right\}$ is a γ-set intersecting C for each $\mathrm{i}=1,2, \ldots \mathrm{n}-1$. Hence each S_{i} is a $\gamma_{v c t}$-set of P_{n+1}^{n-1} and so is a convex $\gamma_{v c t}$-set of P_{n+1}^{n-1}. Therefore $C H_{\gamma_{v c t}}\left(P_{n+1}^{n-1}\right)=1$.

4. CONCLUDING REMARKS

Domination theory is one of the most application-oriented area of research in the field of Graph theory. Several authors have introduced many new parameters in domination. The vertex covering transversal domination in graphs has been introduced in [6]. It influences one to restrict the family of γ-sets to the family of $\gamma_{v c t}$ sets. It is observed that $\gamma_{v c t}=\gamma$ in most of the graphs considered. But even though $\gamma_{v c t}=\gamma$, there are graphs in which γ-sets do not become $\gamma_{v c t}$-sets. Moreover, it is possible to concentrate on the convex hull of $\gamma_{v c t}$-sets and hence the convex hull number with respect to $\gamma_{v c t}$-sets in a graph. This concept paves the way to filter the $\gamma_{v c t}$-sets which are responsible for producing the convex hull number with respect to $\gamma_{v c t}$-sets.

5. REFERENCES

[1] AbuGhneim OA; Al-Khamaiseh B; Al-EzEH H, The geodetic, hull, and Steiner numbers of powers of paths, Utilitas Mathematica, 2014, Vol.95, 289-294
[2] E.J. Cockanye, S.T. Hedetniemi,Towards a theory of domination in graphs, Networks 7 (1977), 247-261.
[3] Douglas B.West,Introduction to Graph Theory, PrenticeHall of India Private Limited, New Delhi.
[4] Gary Chatrand and Ping Zhang,Introduction to Graph Theory, Eighth Reprint 2012, Tata McGraw Hill Education Private Limited, New Delhi.
[5] Ismail Sahul Hamid,Independent Transversal Domination in Graphs, Discussiones Mathematicae Graph Theory 32(1) (2012) (5-17)
[6] R.VASANTHi, K.Subramanian, Vertex covering transversal domination in graphs, International Journal of Mathematics and Soft Computing, Vol.5, No. 2 (2015), 01-07.
[7] R.VASANTHi , K.SUbRAMANIAN, On vertex covering transversal domination number of regular graphs, The Scientific World Journal, Vol 2016, Article ID 1029024, 7 pages.
[8] R.VASANTHI, K.Subramanian, On the minimum vertex covering transversal dominating sets in graphs and their classification, Discrete Mathematics, Algorithms and Applications Vol. 9, No. 5 (2017) 1750069 (15 pages).

