
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.24, March 2018

22

Power Aware Task Scheduling in Compute Cloud

Biral Modi
PG Scholar

Department of Computer
Engineering

LDRP Institute of Technology and
Research

Gandhinagar, India

Bela Shrimali
Lecturer

Department of Computer
Engineering

LDRP Institute of Technology and
Research

Gandhinagar, India

Hiren B. Patel, PhD
Professor & Head

Department of Computer
Engineering

LDRP Institute of Technology and
Research

Gandhinagar, India

ABSTRACT
Cloud computing has become an attractive computing

paradigm in recent years to offer on demand computing

resources for users worldwide. Computing resources are

delivered in the form of virtual machines. In such a scenario,

task scheduling algorithms play an important role to schedule

the tasks effectively to achieve reduction in power

consumption and makespan with improvement in resource

utilization. Many task scheduling algorithms are introduced to

improve energy efficiency of data center. In our work, we

have proposed and discussed a power aware dependent task

scheduling (PADTS) algorithm and compare it with existing

ones.

Keywords

Cloud Computing, Energy Efficiency, Task Scheduling,

Makespan

1. INTRODUCTION
Cloud computing is in [1] an emerging technology enabling

ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources, for instance,

networks, servers, storage, applications and services. It can

rapidly provision and release resources with minimal

management effort or service provider interaction. It offers

the service of deploying and running applications to the end

users. The Cloud service providers (CSP) provide different

services to end users through the internet. The CSP offers

membership to the clients for different services like

infrastructure as a service (IaaS), platform as a service (PaaS)

and software as a service (SaaS) [1].

Scheduling or allocation is the process of allocating resources

to a variety of conceivable tasks. This distribution of

resources is a basic and critical job carried out by the CSP.

Effectiveness and performance of the system will be enhanced

through proper scheduling of Cloud resources. Scheduling is

taken place with two ways either it mapping of tasks to

existing finite set of virtual machines or mapping of virtual

machines to finite set of physical hosts. There are various

research work carried out on this scheduling problem by

considering different objectives or parameters like energy

consumption [2], resource utilization [3], makespan, load

balancing, guaranteeing Quality of Service

(QoS)[4],workload, response time, performance[5] and

Service Level Agreement (SLA) completion. In this paper, we

consider makespan minimization as a primary objective along

with considering power consumption of the system.

The rest of the paper is structured as follows. Section 2

overviews the related work. Section 3 describes the proposed

method along with problem statement, system model, task,

resource model, proposed algorithm and example scenario.

Section 4 includes conclusion followed by future work.

2. RELATED WORK
In this section, we discussed state-of-art of task scheduling

algorithm.

Mishra et al.[6] addressed the issue of computational power

consumption in Cloud data center. They proposed an

adaptive task allocation algorithm (by presenting a system

model/task model) to minimize makespan along with energy

consumption. The proposed mechanism has been simulated

in Cloudsim to support the claim.

For the optimization of power consumption in the Cloud, the

authors in [1] proposed an energy aware task scheduling

(EATS) for Cloud computing framework which is

responsible to schedule users’ tasks considering the energy

consumption while running those tasks. The results revealed

that CPU energy consumption account for a big part of the

energy consumption of servers, and therefore must be

considered in any energy aware scheduling algorithm. The

experiments show that the average power consumption of the

startup and the shutdown procedures account for 68% and

54%respectively.

In order to reduce computational complexity for Cloud

service providers, the authors in [7] proposed a fast and

energy aware resource provisioning and task scheduling

algorithm that effectively reduce the complexity and

minimize the execution time while achieving a reasonable

energy cost. The author claimed that the proposed algorithm

achieve up to 79.94% runtime improvement with increase in

an acceptable energy cost compared to the baseline

algorithm.

Sanjeevi et al. [8] addressed the problem of trade-off between

operating cost and energy consumption in data center through

the task scheduling using certainty and uncertainty algorithm

for non urgent and urgent tasks. Their implementation

claimed to reduce energy consumption and improvement in

operating cost.

3. PROPOSED METHOD
In this section, we discussed task scheduling algorithm for

dependent and urgent task.

3.1 Problem Statement
The task allocation problem is considered as the assignment

problem of a large number of tasks to finite number of VMs

in the Cloud environment. There are n number of tasks

defined as T1, T2, …. ,Tn and m number of VMs defined as

V1,V2…,Vm in the Cloud system. The aim is to assign these

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.24, March 2018

23

tasks to VMs efficiently to optimize makespan, along with

energy consideration for the system. Makespan and energy

consumption can be calculated as follows:

Makespan of the system is Execution time of Virtual machine

(ETV) calculated as follow.

Makespan (M) =
 (i)

Here ETVi represents the execution time of i th virtual
machine. Hence, total makespan of machine is summation of
execution time of all VMs allocated to it. Another important
consideration is energy consumption of the Cloud system.

A virtual machine is considered in either of the two state viz.
active or idle. So, to calculate the energy consumption of
virtual machine, both active and idle state energy
consumptions are considered. It is analyzed in the literature
available that the energy consumption of VM in idle state is
60% of energy consumption of VM during active state [6].
Hence, the idle state time of a VM is calculated by subtracting
the active state time from the makespan of the system. Ai
Joules/Million Instruction (J/MI) is the energy consumption of
i th VM in an active state, and Ii is in an energy consumption
of idle state. The calculation of energy consumption at
different state is defined as follows:

The energy consumption of the system is calculated by adding
the energy consumption of individual VMs using Eq. (iv).

Energy Consumption (E) =

 ……..(iv)

3.2 System Model
Consider a Cloud comprise of n number of recourses. Here,

we assume that it has enough resources to handle end user’s

service requirements. Here, the Cloud users (U1, U2,…, Un)

submit their tasks to the Cloud data centers and these tasks

(T1,T2,…Tn) are arranged in sequence. The system has two

components, Task Classifier and Power Aware Dependent

Task Scheduling (PADTS) scheduler as shown in figure 1.

The task classifier is responsible to categorize the tasks into

three main categories based on the requirement of resources

viz. CPU bound task, I/O bound task, storage bound task. It

also consider the urgency of task and identify it as urgent

CPU bound task, urgent I/O bound task, urgent Storage

Bound task. Identification of task is based on the task type as

described later in task model. Whereas, (PADTS) scheduler is

responsible to schedule task with considering their

dependency. For example, there are n number of tasks

(T1,T2,…Tn) . If task T3 is dependent on task T1 then task T1

is executed before task T3 and VM will be allocated to task T1

before T3.

Also, PADTS scheduler schedules the urgent tasks first. In

case if the urgent tasks queue is empty then they assign

regular tasks queue to the respective VMs.

After scheduling, the tasks are arranged in a queue and

allocate to resources as shown in figure 1. Here, CV(CV1,

CV2,…, CVp), IV(IV1, IV2, …, IVq), and SV(SV1, SV2,

…SVr) are represent the CPU bound virtual machines, I/O

bound virtual machines and storage bound virtual machines.

Ai = 10
−8

 × (MIPSi)
2
 J/MI (ii)

Ii = 0.6 × Ai J/MI (iii)

Figure 1: scheduling model with dependency consideration for Cloud system

3.3 Task and Resource Model
End users are submitting their request for the services in

Cloud. These request forms different tasks. These tasks are

heterogeneous in terms of length of the tasks and resource

requirements. Let’s consider n (finite) number of tasks, and

the set is T={T1, T2,…Tn}. Each task Ti, 1<= i<= n has five

tupels.

Ti = Wi CPUi Mi ʎi Ri

Where,

 Wi is the workload of service Ti in terms of MI.

 CPUi is the CPU time required for the service Ti.

 Mi is the main memory requirement for the service

Ti.

 ʎi is the bandwidth requirement of service Ti.

 Ri represents the task type.

Here Ri value is 0 if Ti CPU intensive

 1 if Ti Urgent CPU intensive

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.24, March 2018

24

 2 if Ti IO intensive

 3 if Ti urgent IO intensive

 4 if Ti Storage intensive

 5 if Ti Urgent Storage intensive

 Where,

 Hj represents jth host.

 Pj is the number of processing elements or cores of

Hj.

 Sj is the Processing speed of Hj in terms of MIPS.

 Mj is the host main memory size of Hj.

 SSj is the secondary memory size of Hj.

 ʎj is the total bandwidth provided toHj.

 VMMj is the VMM running on host Hj.

Each host Hj has finite number of virtual machines. Each

VM has five tuples.

Where,

 Vij
 represents jth VM running on ith host.

 PEij
 is the number of processing elements or cores

of Vij.

 Sij is the processing speed of Vij
 in terms of MIPS.

 Mij is the main memory size of Vij.

 SSij is the secondary memory size of Vij.

 ʎij is the total bandwidth provided to Vij.

3.4 Proposed Algorithm
The proposed PADTS Algorithm is derived from Adaptive

Task Allocation algorithm discussed in [6] and further it

carried out more functions. The proposed algorithm consider

the interdependent and storage bound task which was not

considered in [6]. As it consider interdependent task, it

checks the dependency of task before the resource allocation.

In proposed method three different parameters are considered

as different cases viz. dependency, urgency and energy

consumption. Task allocation will be different in each case.

Their effects and evolution is carried out deeply in section

3.6.

Algorithm 1: Power Aware Dependent Task Scheduling

Algorithm

Input: ETC matrix, Dependency Vector (DM), Urgency

Vector(UV)

Output: Execution time of all VMs (ET)

1. Nt=Number of tasks

2. R_ETC=RowUpdate(ETC)

3. C_ETC=ColumnUpadte(R_ETC)

4. For each Row do

5. If a single Unmarked 0 is there then

6. Mark the 0 as assigned

7. Ignore the elements of the corresponding row and

column of the assigned element in step 15

8. End if

9. End for

10. For each Column do

11. If a single Unmarked 0 is there then

12. Mark the 0 as assigned

13. Ignore the elements of the corresponding row and

column of the assigned element in step 21.

14. Print matrix AETC

15. End if

16. End for

17. If For each row of AETC has an assigned 0 then

18. Procedure call: Dependency for case 1

19. Procedure call: Urgency for case 2

20. Procedure call: Energy for case 3

21. Procedure call: Dependency

22. Using Dependency vector check dependency

23. For each i=0 to n

24. If dependency == true

25. Then attach dependent task with Ti

26. End if

27. Return task sequence

28. End for

29. Procedure call: Urgency

30. Using Urgency vector check urgent task

31. For each i=0 to n

32. If Urgency==1

33. Then update task sequence according to

priority

34. End if

35. End for

36. Call dependency procedure

37. Procedure call: Energy

38. Call dependency procedure

39. Call urgency procedure

40. For each task i=o to n

41. Allocate all dependent of Ti on same VM

42. End for

43. Else

44. Task is allocate adaptively

45. Continue for the next (i=1)th iteration

46. End if

47. End For

Algorithm 2: Update_ETC

Input: C_ETC

Output: Updated matrix C_ETC

1. Tick all unassigned rows

2. If Ticked row has 0 then

3. Tick the corresponding column

4. End if

5. If Ticked column has an assignment then

6. Tick the corresponding row

7. End if

8. Repeat step 2 to 7 till no more ticking is possible

9. Draw lines through unticked rows and ticked

columns

10. α= Smallest number that have no lines passing

through

11. C_ETCij= C_ETCij-α, If no lines passing through

12. C_ETCij= C_ETCij, If one lines passing through

13. C_ETCij= C_ETCij+α, If two lines passing through

14. Return the updated ETC

3.5 Analysis of Algorithm: Time

Complexity analysis

If the total number of tasks is n and the total number of VMs

is m. For the m=n the line 4 to 9 of algorithm 1 and line 2 to

14 of algorithm 2 will run for O(m2) times. For the line 17 to

21, individual procedure will execute for n time so total

execution for all three procedure will be 3n and hence total

execution time will be O(n2). Hence, the time complexity of

Hj = PEj Sj Mj SSj ʎj VMMj

Vij = PEij Sij Mij SSij ʎij

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.24, March 2018

25

PADTS algorithm runs O((n\m)*(m2+m2+…+ k times) =

O(mn) time for number(task)=number(VM) and for different

number of task and VM the time complexity is O(mn2).

3.6 Evaluation of algorithm: Example

Scenario
The explanation of the example will carry from the ETC

(Expected Time to Compute) matrix as shown in Table 1.

There are ten tasks and five VMs. We have considered

urgency and dependency of tasks as shown in table 1.

Table 1: before updation

 V1 V2 V3 V4 V5
Depend-
ency

Urgency

T1 11 9 3 10 5 - 0

T2 10 15 5 9 6 T5 0

T3 2 6 8 10 12 - 0

T4 8 4 13 15 6 - 1

T5 9 2 3 11 5 T4 0

T6 5 8 12 16 6 T7 1

T7 9 3 8 5 1 T9 0

T8 11 9 8 4 7 - 1

T9 3 10 8 7 6 - 0

T10 10 2 12 13 9 T8 0

Our algorithm performs row update and column update

functions as describe in [6]. This technique is useful to

indentify efficient VM for task. As shown in table 2, the pair

for which ETC is 0 is considered for allocation.

Table 2: After Updation

V1 V2 V3 V4 V5 Dependency Urgency

 T1 8 6 0 7 2 - 0

 T2 5 10 0 4 1 T5 0

 T3 0 4 6 8 10 - 0

 T4 4 0 9 11 2 - 1

 T5 7 0 1 9 3 T4 0

 T6 0 3 7 11 1 T7 1

 T7 8 2 7 4 0 T9 0

 T8 7 5 4 0 3 - 1

T9 0 7 5 4 3 - 0

T10 8 0 10 11 7 T8 0

To further consider urgency and dependency of task, Here we

have calculated the base method without dependency

calculation and as shown in table 3. From the table we can see

that the depended tasks are suspended and resumed at the end

after the completion of all tasks. We have considered the

calculation of average throughput and response time for the

comparisons.

Table 3: existing method (without dependency

consideration)

Task VM Time Throughput
Response

Time

T1 V3 3 3 0

T2 - - - -

T3 V1 2 2 0

T4 V2 4 4 0

T5 V2 4+2 6 4

T6 - - - -

T7 - - - -

T8 V4 4 4 0

T9 V1 2+3 5 2

T10 V2 4+2+2 8 6

T2 V3 4+2+5 11 6

T6 - - - -

T7 V5 2+3+1 6 5

T6 V5 2+3+1+6 12 6

 Total 61 29

Average 6.1 2.9

We have taken three cases to describe the effect and

consideration of parameters viz. dependency and urgency in

proposed method. The explanation and evaluation scenario for

each of the cases are as follows:

Case 1: Proposed method (with dependency consideration)

In this case, the tasks are allocated to VM based on

dependency of task. The dependency of the task is mentioned

in table 1. We have calculated throughput and response time

of all tasks after allocation of VMs. The average throughput

and response time is 9.5 and 3.5 respectively as shown in

table 4.

Table 4: Proposed Method (with dependency

Consideration)

Task VM Time
Through

put

Response

Time

T1 V3 3 3 0

T4 V2 4 4 0

T5 V2 4+2 6 4

T2 V2 4+2+15 21 6

T3 V1 2 2 0

T9 V1 2+3 5 2

T7 V1 2+3+9 14 5

T6 V1 2+3+9+5 19 14

T8 V4 4 4 0

T10 V4 4+13 17 4

Total 95 35

Average 9.5 3.5

%

Overhead
55.74% 20.69%

After comparison of our proposal and existing method, we can

analyze that the difference of average throughout is 3.4 and

average response time is 1.6 respectively which is shown in

figure 2.

Table 5: comparison with existing method (in time)

 ATAA algorithm PADTS algorithm

Average
Throughput

6.1 9.5

Average
response time 2.9 3.5

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.24, March 2018

26

Figure 2: comparison with existing method

We have also calculated the percentage overhead with

existing method for throughput and response time which is

55.74% and 20.69% respectively. The comparison of

percentage overhead is shown in figure 3.

Table 6: overhead in our mechanism

Overhead in Our Mechanism

Throughput 55.74%

Response Time 20.69%

Figure 3: overhead in our mechanism

Case 2: Proposed method (with dependency and urgency

parameter but without energy consumption)

In this case, we considered dependency and urgency of the

tasks. So, the allocation of VMs based on dependency and

urgency. The urgent tasks are defined in table 1. After

allocation, we calculated average throughput and response

time which is 5.5 and 1.9 respectively. The calculation is

shown in table 7.

Table 7: our proposal (with urgency consideration but

without energy consideration)

 Task VM Time Throughput
Response
Time

T4 V2 0+4 4 0

T8 V4 0+4 4 0

T9 V1 0+3 3 0

T7 V5 3+1 4 1

T6 V5 3+1+6 10 4

T1 V3 3 3 0

T5 V2 4+2 6 4

T2 V3 3+5 8 3

T3 V1 3+2 5 3

T10 V2 4+2+2 8 4

Total 55 19

Average 5.5 1.9

%

Improvement
9.84% 34.48%

We compare the case with the existing method and found the

percentage improvement in throughput and response time

which is 9.84% and 34.48% respectively. The graph of

percentage improvement is shown in figure 4.

Table 8: improvement in our mechanism

Improvement in Our Mechanism

Throughput 9.84%

Response Time 34.48%

Figure 4: improvement in our mechanism

Case 3: Proposed method (with dependency, urgency and

energy consumption considerations)

In this case, we considered dependency and urgency task

handling with energy consumption. So, the allocation of VMs

is also reducing the energy consumption. We calculated the

average throughput and response time which is 11 and 4.9

respectively. This is shown in table 9.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.24, March 2018

27

Table 9: Proposed Method (with dependency, urgency and

energy consumption considerations)

 Task VM Time Throughput
Response
Time

T4 V2 0+4 4 0

T8 V4 0+4 4 0

T9 V1 0+3 3 0

T7 V1 3+9 13 3

T6 V1 3+9+5 17 12

T1 V3 3 3 0

T5 V2 4+2 6 4

T2 V2 6+15 21 6

T3 V1 3+17+2 22 20

T10 V4 4+13 17 4

Total 110 49

Average 11 4.9

%

Overhead
80.33% 68.97%

We have compared this result with the existing method and

find the percentage overhead in throughput and response time

which is 80.33%and 68.97% respectively. The graph of

percentage overhead is shown in figure 5.

Table 10: overhead in our mechanism

Overhead in Our Mechanism

Throughput 80.33%

Response Time 68.97%

Figure 5: overhead in our mechanism

In this case, we have considered energy consumption so

calculate the energy consumed by particular VM and compare

with existing method. This comparison shows that energy is

reduced, which is shown in figure 6.

Table 11: Energy Consumption (relative)

Energy usage (Relative)

ATAA algorithm PADTS algorithm

100.00% 80.00%

Figure 6: energy consumption (relative)

4. CONCLUSION
This paper focuses on task scheduling for urgent and

dependent task and also discusses the problem of energy

consumption. In the paper, we have proposed a novel method

called PADTS algorithm in compute Cloud. We have

presented a system model including task model and resource

model that discuss and emphasizes on the importance of

urgent CPU bound, I/O bound, and storage bound task. The

task allocation process is carried out on urgent and

interdependent task and discussing allocation based on

different parameters of task like urgency, dependency and

energy consumption. The evaluation scenario discussing the

results and shows the improvement of 9.84% in throughput,

34.48 in response time and energy is saving by 20%. The

future work may include the energy aware task scheduling for

all types of tasks.

5. REFERENCES
[1] Ismail, L. and Fardoun, A.A., 2017, April. Towards

energy- aware task scheduling (EATS) framework for

divisible-load applications in Cloud computing

infrastructure. In Systems Conference (SysCon), 2017

Annual IEEE International (pp. 1-6). IEEE.

[2] Beloglazov, A., Abawajy, J. and Buyya, R., 2012.

Energy-aware resource allocation heuristics for efficient

management of data centers for Cloud computing. Future

generation computer systems, 28(5), pp.755-768.

[3] Rimal, B.P. and Maier, M., 2017. Workflow scheduling

in multi-tenant Cloud computing environments. IEEE

Transactions on Parallel and Distributed Systems, 28(1),

pp.290-304.

[4] Ali, H.G.E.D.H., Saroit, I.A. and Kotb, A.M., 2017.

Grouped tasks scheduling algorithm based on QoS in

Cloud computing network. Egyptian Informatics

Journal, 18(1), pp.11-19.

[5] Sampaio, A.M., Barbosa, J.G. and Prodan, R., 2015.

PIASA: A power and interference aware resource

management strategy for heterogeneous workloads in

Cloud data centers. Simulation Modelling Practice and

Theory, 57, pp.142-160.

[6] Mishra, S.K., Puthal, D., Sahoo, B., Jena, S.K. and

Obaidat, M.S., 2018. An adaptive task allocation

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.24, March 2018

28

technique for green Cloud computing. The Journal of

Supercomputing, pp.1-16.

[7] Li, H., Li, J., Yao, W., Nazarian, S., Lin, X. and Wang,

Y., 2017, March. Fast and energy-aware resource

provisioning and task scheduling for Cloud systems.

In Quality Electronic Design (ISQED), 2017 18th

International Symposium on (pp. 174-179). IEEE.

[8] Sanjeevi, P. and Viswanathan, P., 2015, December. A

green energy optimized scheduling algorithm for Cloud

data centers.In Computing and Network Communications

(CoCoNet), 2015 International Conference on (pp. 941-

945). IEEE.

IJCATM : www.ijcaonline.org

