
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.25, March 2018

26

In-Memory Data processing using Redis Database

Gurpreet Kaur Spal

Department of Computer Science and Engineering
Baba Banda Singh Bahadur Engineering College,

Fatehgarh Sahib, Punjab, India

Jatinder Kaur
Professor

Department of Computer Science and Engineering
Baba Banda Singh Bahadur Engineering College,

Fatehgarh Sahib, Punjab, India

ABSTRACT

In present, in-memory data processing is becoming more

popular due to examine a huge amount of information in

shorter duration of time. Previously all servers utilize their

own particular memory which is time consuming. To resolve

this problem by using distributed cache, servers using cache

memory for storing and retrieving data frequently. In present

Big data processing, in-memory enumerate has become

famous due to increase capacity and high throughput of main

memory. Both relational and NoSQL databases are in-

memory database that provides different mechanism for data

storage and retrieval. In this paper, they make use of an in-

memory key-value data storage system is Redis which works

on a large data. Also, Redis server makes use of cache

memory for increasing scalability and high throughput of

main memory. Redis database helps in getting data from

applications more frequently which improves the system

performance as compared to relational database.

General Terms

Relational database, NoSQL, Data Processing

Keywords

Key-Value Stores, Redis, Document Stores, Column-Family

Stores, Graph databases.

1. INTRODUCTION
In recent period, in-memory data processing is becoming

more and more valuable as it is essential to examine a huge

amount of information in shorter duration of time. A previous

Client Server framework gives poor execution on read and

write process regarding throughput and latency since all

servers utilize their own particular memory to deal with the

whole procedure, which is time consuming. To resolve this

problem by using distributed cache, servers using cache

memory for storing and retrieving data frequently. In-memory

data processing systems primarily focus on those objectives

which gives help to information processing. In present Big

data processing, in-memory enumerate has become popular

because to increase capacity and high throughput of main

memory. Both relational and NoSQL databases are in-

memory databases[1] that provides different mechanism for

data storage and retrieval.

Relational database store data in structure like tabular format,

where each relational table consists of rows (tuples) and

columns, therefore it depends on the relational model. In the

past, relational database[2] were popularly used for storing

information like business documents, financial information,

government records, personal data and so on. Relational

database systems do not support unstructured data and do not

scale easily[3]. Data can be retrieving from relational database

using structure query language (SQL). Key features of

relational database systems organized data into relations and

provide ACID (Atomicity, Consistency, Isolation and

Durability) transactional properties.

Numerously recent applications that rely on storing and

processing large amount of information, wants high

availability and scalability which added more difficulties to

relational database. Therefore an increasing number of

companies have followed different categories of NoSQL data

stores or non-relational databases, generally termed as NoSQL

databases. NoSQL[2] is non-relational data storage system

which does not require a fixed table schema, to replicate and

distribute (partition) data over many servers. Today, NoSQL

is used by large number of companies named as Adobe, Digg,

Facebook, Foursquare, Google, Mozilla, etc.

2. TYPES OF NOSQL
According to NoSQL data model[4], the data stores are

grouped into four categories are key-value data stores,

document stores, column-family stores and graph databases.

2.1 Key-value stores
The key-value stores provide simple data structure and do not

require any fixed schema, although they still face many

problems such as single node failure, data inconsistency and

so on. The system need to understand their design and

implementation which helps in resolving these problems.

Information in main memories is volatile so the system is

unreliable because the information can lost due to unexpected

system crash. Now to resolve this problem by data replication

and traditionally, to ensure information prevention by saving

information as image files or save onto disks. Data replication

is that makes copies of data over different nodes to improve

reliability of the system. Basically key-value stores are the

most general categories of NoSQL database[5] that can store

data in the form of key and value pairs in primary memory.

Probably the most important key-value stores such as

Redis[6], Riak, Scalaris, etc.

2.1.1 Redis
The one of the most popular used in-memory non-relational

database is Redis[6], as an open source, single-threaded

server[7], advanced key-value cache and store. Redis is

blazing fast in speed as compared to the relational database. In

Redis, the data processing time ranges in nanoseconds or

milliseconds. The use of Redis is easier as compared to

relational database. Redis database has many options of data

storage like strings, lists, sets, hashes, sorted sets and some

advanced functions including publish/subscribe, master/slave

replication, disk persistence and scripting. Data stored in

Redis as plain text and is not supported data encryption[8].

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.25, March 2018

27

2.2 Document stores
The document stores contain collection of documents

including JSON (JavaScript Object Notation), XML

(Extensible Markup Language) and so on; can help in storing

and retrieving documents[4]. No joins are available in

document databases as compared to relational database. In

general, it is used for storing and managing big data- size

collections of complex documents. As compared to relational

database, ACID transactional properties are not supported by

document stores. There is some of the most important

document stores are SimpleDB, CouchDB, etc.

2.3 Column family stores
The column family stores are very sparse which primarily

work on columns where each column is treated independently.

Column family stores are specifically useful in handling large

amounts of information distributed over different nodes.

These systems can easily replicating data to increase the

number of nodes in the cluster. Most efficiently used column

family stores are Cassandra, HBase, HyperTable, etc.

2.4 Graph databases
The graph databases[4] are category of the NoSQL database,

stores data in the form of a graph. In graph databases, the

graph is made up of two things: nodes act as the entities or

objects and edges act as the relationship between the entities

or objects. The graph databases are gaining attraction as they

are currently being handled in organizations for managing

information within applications like social networking

applications[4], content management, security and access

control, networking and cloud management etc. There are

some of the graph databases are Neo4j, OrientDB, etc.

3. DESIGN AND IMPLEMENTATION
In this section, they will give detail about two proposed

designs are Read data from relational database and Read

data from redis database. They will show their details and

how they are implemented in the following subsections.

3.1 Read data from relational database
In this subsection, they will give detail about the proposed

design of “Read data from relational database” and also

discuss the implementation steps of the following design in

the flow chart.

Fig 1: Flow chart of read sample data from relational database

Fig. 1 shows how this method works. Initially, they will

install JDK (Java Development Kit) contains in addition the

development tools to create java programs. Then install and

run eclipse is an integrated development environment which

may be used to develop in different programming languages.

Then get sample data in CSV (Comma Separated Values)

format which has a strict tabular structure. Creating sample

data of different size by adding or deleting values from the

sample data for testing the execution time. Finally apply

iterations and calculate the execution time.

3.2 Read data from redis database
In this paper, they mainly consider the method which

improves the system performance by reading data more

frequently from applications and also saves time.

Start

Install JDK

Install and run eclipse

Get sample data

Create sample data of different size

Apply iterations

Stop

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.25, March 2018

28

Fig 2: Flow chart of read sample data from redis database

Fig. 2 shows how to read sample data from redis database.

Implementation of this method is developed in Java as code in

the backend provide application program interface with the

redis-client and redis server. If there is no jedis dependency

then it gives error and stop. For redis, a client library in Java

is termed as jedis, is driven by a key store data structure to

persist data. By Adding jedis dependency that helps in making

connection successful with redis database. Create sample data

in key-value format and store into it. SET command sets the

value stored at the given key. The redis database stored data in

the form of key-value pairs but it can also view as JSON and

plain text. GET command fetches the value stored at the given

key. Get the sample data from redis database and then apply

iterations where different sizes of sample data are getting

(reading) from it. Finally, calculate the execution time and the

formula for calculating the execution time is:

Execution time = End time – Start time

4. EXPERIMENTAL RESULTS

4.1 Test environment
In this experiment, the use Redis Desktop Manager 0.8.8.384

as a baseline for performance evaluation. The proposed

methods are also implemented on this version of Redis

Desktop manager. They use their own benchmark

implemented in Java to test the performance of Redis database

and relational database. The software requirements are:

operating system (Windows (64-bit)), platform (Windows),

and tool (Eclipse) and hardware requirements are Minimum

Dual core processor operating at 3.6 GHz or above, 160 GB

hard disk and RAM (2 GB or above).

4.2 Comparative evaluation of relational

database and redis database on a single

machine
The performance of proposed work that read sample data

from relational database has been evaluated the performances

parameters: size of sample data and execution time. Fig 3

Start

Create connection with redis server

If jedis

dependency

Establish connection successfully

Generate key-values of sample data

Set sample data in redis database

Get sample data from redis database

Apply iterations

Calculate the execution time

Stop

Error

generated

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.25, March 2018

29

shows the execution of relational database in ms

(milliseconds) and the sample data in CSV (Comma Separated

Values) format which has a strict tabular structure. It also

shows the sample data of different size for testing the

execution time. Fig 4 shows the execution time in ms

(milliseconds) of getting key-value data and the sample data

of different size for testing the execution time. The

comparisons of execution time of Relational database with

Redis database as shown in Fig. 5. Redis database supports

getting multiple values in a single command to speed up

communication with the client libraries. A very high read

speed is achieved by Redis database as compared to

Relational database.

Fig 3: Time taken during reading of sample data from relational database

Fig 4: Time taken during reading of sample data from redis database

0

10000

20000

30000

40000

2kb
11kb

34kb
11mb

35mb

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Size of sample data

2kb 11kb 34kb 11mb 35mb

Relational database 103 265 297 11502 30144

0

50

100

150

2kb 11kb 34kb 11mb 35mb Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Size of sample data

2kb 11kb 34kb 11mb 35mb

Redis database 23 36 41 61 139

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.25, March 2018

30

Fig 5: Compare the reading time of relational and redis database

5. RELATED WORKS
The qualitative comparison of in-memory data management

systems[1] are Relational databases, NoSQL databases, Graph

databases, Cache systems, Big data analysis systems and real

time processing systems on multiple dimensions. The

comparison of Relational and NoSQL databases on the basis

of the security issues[2], where security is necessary today.

NoSQL databases are very popular today because of their

ability to support for structured and unstructured data and

perform heavy write operations with low latency[3]. The

feature analysis of different categories of NoSQL databases

and selecting databases on the basis of query handling in

social networks[4]. They has been examined that how much

time taken by applications during inserting and reading

operations. Rick Cattell have discussed a number of SQL and

NoSQL data stores[5] on their data models with examples.

J.L. Carlson proposed that how to use Redis[6] on the system

and also explain simple interaction with it using example of

key-value data storage system which is useful in solving real

problems. A comparison between several NoSQL databases

with comments and notes[9]; to offer high performance on the

basis of their speed.

6. CONCLUSION
In this paper, they make use of an in-memory key-value data

storage system is Redis which works on a large data. Redis is

blazing fast in speed on reading process as compared to the

relational database. The major problem is a previous Client

Server framework gives poor execution on read and write

process regarding throughput and latency since all servers

utilize their own particular memory to deal with the whole

procedure, which is time consuming. To resolve this problem

by using distributed cache, redis server using cache memory

for storing and retrieving data frequently. Also, Redis server

makes use of cache memory for increasing scalability and

high throughput of main memory. In Redis, the data

processing time ranges in nanoseconds or milliseconds as

shown in these experimental results.

The future work includes other NoSQL databases such as

MongoDB, Riak, CouchDB and so on, will create cloud

environment for reading and writing large amount of data.

NoSQL databases will proceed to command and be adjusted

to the necessities.

7. REFERENCES
[1] Zhang, H., Chen, G., Ooi, B.C., Tan, K.L. and

Zhang, M., 2015. In-memory big data management

and processing: A survey. IEEE Transactions on

Knowledge and Data Engineering, 27(7), pp. 1920-

1948.

[2] Mohamed, M.A., Altrafi, O.G. and Ismail, M.O.,

2014. Relational vs. nosql databases: A survey.

International Journal of Computer and Information

Technology, 3(03), pp. 598-601.

[3] Jogi, V.D. and Sinha, A., 2016, March. Performance

evaluation of MySQL, Cassandra and HBase for

heavy write operation. In Recent Advances in

Information Technology (RAIT), 2016 3rd

International Conference on (pp. 586-590). IEEE.

[4] Mathew, A.B. and Kumar, S.M., 2015, August.

Analysis of data management and query handling in

social networks using NoSQL databases. In

Advances in Computing, Communications and

Informatics (ICACCI), 2015 International

Conference on (pp. 800-806). IEEE.

[5] Cattell, R., 2011. Scalable SQL and NoSQL data

stores. Acm Sigmod Record, 39(4), pp. 12-27.

[6] Carlson, J.L., 2013. Redis in Action. Manning

Publications Co..

[7] Lubis, R. and Sagala, A., 2015, October. Multi-

thread performance on a single thread in-memory

database. In Information Technology and Electrical

Engineering (ICITEE), 2015 7th International

Conference on (pp.571-575). IEEE.

[8] Sahafizadeh, E. and Nematbakhsh, M.A., 2015. A

Survey on Security Issues in Big Data and NoSQL.

Advances in Computer Science: an International

Journal, 4(4), pp. 68-72.

0

5000

10000

15000

20000

25000

30000

35000

2kb 11kb 34kb 11mb 35mb

Relational database 103 265 297 11502 30144

Redis database 23 36 41 61 139

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.25, March 2018

31

[9] Tudorica, B.G. and Bucur, C., 2011, June. A

comparison between several NoSQL databases with

comments and notes. In Roedunet International

Conference (RoEduNet), 2011 10th (pp. 1-5). IEEE.

[10] Zaki, A.K. and Indiramma, M., 2015, March. A

novel redis security extension for NoSQL database

using authentication and encryption. In Electrical,

Computer and Communication Technologies

(ICECCT), 2015 IEEE International Conference on

(pp. 1-6). IEEE.

[11] Chen, S., Tang, X., Wang, H., Zhao, H. and Guo,

M., 2016, August. Towards Scalable and Reliable

In-Memory Storage System: A Case Study with

Redis. In Trustcom/BigDataSE/I SPA, 2016 IEEE

(pp. 1660-1667). IEEE.

[12] Saad, W., Abidi, L., Abbes, H., Cérin, C. and Jemni,

M., 2014, October. Wide Area bonjougrid as a data

desktop grid: Modeling and implementation on top

of redis. In Computer Architecture and High

Performance Computing (SBAC-PAD), 2014 IEEE

26th International Symposium on (pp. 286-293).

IEEE.

[13] Wu, X., Long, X. and Wang, L., 2013, December.

Optimizing Event Polling for Network-Intensive

Applications: A Case Study on Redis. In Parallel

and Distributed Systems (ICPADS), 2013

International Conference on (pp. 687-692). IEEE.

IJCATM : www.ijcaonline.org

