
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.26, March 2018

35

Designing of a Real Time Software Fault Tolerance

Schema based on NVP and RB Techniques

Omar Anwer Abdulhameed
Al-Mansour University College, Iraq

Computer Technology Engineering Dept.

Noor Kareem Jumaa
Al-Mansour University College, Iraq

Computer Technology Engineering Dept.

ABSTRACT

Software fault tolerance is an important criterion for the

dependable systems, especially in real time and critical

systems. There are few techniques that are used to implement

fault tolerance in software, such as the most two common

techniques: “N-Version Programming” and “Recovery

Block”, also there are other driven techniques from these two

techniques, as well as, other supporting methods like

Exception Handling. Development programs must consider

the development risks associated with using conventional

software fault tolerance techniques that theoretically can

outcome in a better system; but also, that could drive the

entire effort of the development to fail because of the design

team inability to manage the system complexity within a

reasonable cost and time frame. Also, these conventional

techniques cannot always guarantee producing a correct or an

acceptable output. So, this paper proposes is to design a fault

tolerance technique that consists of two layers: the first layer

is the special layer that derived from the other known

techniques in a way that use the positive characteristics of

these techniques, with the consideration of keeping the

complexity of the system in minimum degree. This layer can

be named the 2-Version Software with Acceptance Test

Support. The other layer is the general layer that can be used

with the software fault tolerance technique that proposed in

the first layer or with any other “software fault tolerance”

techniques. The second layer propose is the design of a

software fault tolerance mechanism that concerns on the use

of unusual (intelligence) ways for system recovering from

design faults, also allowing the system operator to interfere in

the process of system recovering. The developed mechanism

will be used to support the operation of the conventional

“software fault tolerance” techniques.

General Terms

Real Time Systems, Critical Systems, Fault Tolerance,

Exception Handling.

Keywords

Software Fault Tolerance Techniques, N-version

programming, NVP, Recovery Blocks, RB, N-version

software, NVS.

1. INTRODUCTION
Software Fault Tolerance means that “the software is designed

so that faults in the delivered software do not result in system

failure”. The basis for accepting the faults is that if and when

the system response fails, it is economy (cheaper) to pay for

the consequences of failure rather than the discovering and

removing the faults before delivery of the system [1, 2].

Design of systems with “fault tolerance” capabilities to satisfy

the requirements of a particular application is a complex

process and loaded with experimental and theoretical analysis

in order to find the most appropriate trade-offs within the

design space. Properties of a system to be considered include:

dependability (i.e. availability, reliability, maintainability, and

etc.), failure modes, performance, environmental resilience,

cost, weight, volume, design effort, power, and verification

effort. “In addition to these, development programs must also

weigh in the development risks associated with using

technologies that in theory could result in a better system but

that could also drive the whole development effort to failure

due to the inability of the design team to manage the

complexity of the system within a reasonable time frame”. [3]

Also, these conventional techniques cannot always guarantee

producing a correct or an acceptable output. There are some

situations where these techniques are unable to produce or

select the right output, and this will lead to the system failure.

The argument here is how to implement fault tolerance in a

software system without increasing the overall system

complexity in a way that may decrease the system reliability

and how to overcome the disadvantages and the performance

lacks that exist in the conventional software fault tolerance

techniques.

This paper proposes the design of a fault tolerance technique

that consists of two layers. The first layer is the special layer

that derived from the other known techniques in a way that

exploit the effective characteristics of these techniques, with

the consideration of keeping the complexity of the system in

minimum degree. This layer can be named the 2-Version

Software with Acceptance Test Support. The other layer is

the general layer that can be used with the software fault

tolerance technique that proposed in the first layer or with any

other software fault tolerance techniques. The second layer

propose the design of a software fault tolerance mechanism

that concerns on the use of unusual (intelligence) ways for

system recovering from design faults, also allowing the

system operator to interfere in the process of system

recovering. The developed mechanism will be used to support

the operation of the conventional software fault tolerance

techniques.

So, before discussing the proposed technique, a review of the

basic conventional software fault tolerance techniques will be

presented including those that are accommodated in the

proposed design. Also, the disadvantages and the performance

lacks that exist in these techniques are exposed.

The rest of this paper is organized as follow: section 2 provide

a literature survey of the related works, section 3 and its

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.26, March 2018

36

subsections review the techniques of the fault tolerance, an

additional consideration has been discussed in section 4,

section 5 and its subsections present the details of the

proposed fault tolerance technique, and section 6 discuss the

concluding remarks.

2. RELATED WORKS
In [4], Jashan Deep and Dr. Rajiv Mahajan published a survey

on software fault tolerance in parallel computing which

surveys various software fault tolerance techniques and

methodologies. Their research focuses on both RB and NVP

techniques and their cost as fault tolerance techniques.

The researchers of [5] have been discuss the architecture of

software fault tolerance techniques. The ”present the logical

vehicle that permits reasoning on the equivalence or the

compatibility of the various expressions of fault tolerance

properties at various abstraction levels”.

The researcher of [6], discuss the techniques of the software

fault tolerance. The research surveys the recovery blocks,

single version programming, N-version programming, multi-

version programming, and the combinational of N-version

with recovery block techniques.

In [7], the N-Version Programming (NVP) is the main

concern of the research. The researchers used the VPN to

design a version of six language N-Version Programming

project for fault tolerance flight control software.

3. SOFTWARE FAULT TOLERANCE

TECHNIQUES
Fault tolerance techniques that applied to software can be

categorized into to two classes: “single version” and “multi-

version” software techniques. Single version fault tolerance

techniques concern on developing the “fault tolerance” of a

single piece of software (module) by addition of mechanisms

into the design in order to improve the error detection,

containment of errors, and handling of the errors caused by

the activation of faults design [5, 6].

“Multi-version fault tolerance techniques concern on using

multiple versions (or variants) of a piece of software (module)

in a structured way to ensure that design faults in one version

will be covered by other versions in such a way that do not

cause system failures”. A basic typical of the software fault

tolerance techniques is that they can, by principle, be applied

at any level of a software system: process, procedure, full

application program, or the entire system with the operating

system. Also, the techniques can be applied selectively to

those modules who most potentially to have design faults due

to their complexity [5, 6].

So, a mainly review to the two basic software fault tolerance

techniques are discussed in the following subsections since,

these techniques can be accommodated in the proposed

design. The two techniques are: N-Version Programming and

Recovery Blocks.

3.1 N-Version Programming (NVP)
The N-version programming is defined as the “independent

generation of N ≥ 2 functionally equivalent programs from the

same initial specification”. The N programs possess all the

necessary attributes for concurrent execution, during which

comparison vectors (“c-vectors”) are generated by the

programs at certain points. The program state variables that

are to be included in each c-vector and the cross-check points

(“cc-points”) at which the c-vectors are to be generated are

specified along with the initial specification (see Figure 1). In

another words, N-Version programming is a multi-version

technique. Using a common specification, the software system

implemented in a number of different versions by different

teams [2, 4, 8, 9].

These versions are executed in parallel on separate computers,

and it can be used effectively in single-processor applications.

All N results are sent to an output checker which [2, 4, 8]:

 Compares all results and votes on the comparison, then

- If all agree, outputs the result, otherwise

- Selects the result agreed by the majority and outputs

this value (normally there are N – 1 agreement at any

one time).

This technique can tolerate software bugs that affect a

minority of versions, but cannot tolerate correlated fault

(reason for failure is common to two or more modules) [10].

Building and using N-version programming requires three

major efforts [11]:

 To lay down the member versions of the N-version

programming unit, including all of the features that are

needing to be embedded into the N-version execution

environment.

 To describe and execute the N-version software process

in a way that maximize the independence of the

programming efforts.

 To design, build, and dimensions the system of N-

version execution environment for a very reliable and

time-efficient execution of -version programming

elements.

3.2 Recovery Blocks (RB)
The Recovery Blocks technique is one of the common and

earliest developed techniques for multi-versions software fault

tolerance. This technique is based on combining the basic

concepts of checkpoint and restart mechanism with multiple

versions of software components (modules). The main issue

in this technique is to use different developing methods and

approaches (i.e., different algorithms, different programming

languages, etc) in building the multiple versions, so as to try

to ensure that at least there is one of the versions (alternate

modules) be able to tolerate the component (module) or the

system failure [8].

The approach of recovery block, attempts to prevent residual

software faults from impact on the system environment; also,

it is aiming to provide fault-tolerant functional modules which

may be nested within a sequential program. The usual syntax

is as follows (see Figure 2) [4]:

Checkpoints are shaped or created before version executes.

After a version fails, checkpoints are needed to recover the

state to make available a valid operational starting point for

the next version if an error is detected. The acceptance test

(performed on exit from a primary or alternate block to

validate its actions), “need not be an output-only test and can

be implemented by various embedded checks to increase the

effectiveness of the error detection. Also, because the primary

version will be executed successfully most of the time, the

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.26, March 2018

37

alternates could be designed to provide degraded performance

in some sense (e.g., by computing values to a lesser

accuracy)”.

“Like data diversity, the output of the alternates could be

designed to be equivalent to that of the primary, with the

definition of equivalence being application dependent. Actual

execution of the multiple versions can be sequential or in

parallel depending on the available processing capability and

performance requirements. If all the alternates are tried

unsuccessfully, the component must raise an exception to

communicate to the rest of the system its failure to complete

its function. Note that such a failure occurrence does not

imply a permanent failure of the component, which may be

reusable after changes in its inputs or state. The possibility of

coincident faults is the source of much controversy

concerning all the multi-version software fault tolerance

techniques” [3,12].

One of the most difficult (and critical) aspects of the recovery

blocks is the design of the acceptance tester. Three different

methods may be used [9]:

 Test result against pre-defined values (e.g. checking that

values lie within valid ranges).

 Test result against predicted values. In dynamical

systems, for example, the maximum rates of change of

parameters can be used for this purpose. Using this, the

maximum possible change of parameter values in any

time interval can be predicted. The actual value

produced by the algorithm should not exceed the

predicted amount.

 Using the output value, compute the input values which

should have produced this output. Compare these with

the checkpoint values to see if they agree. This

technique (an inverse or ‘reverse’ algorithm check) can

be applied in general to control and signal processing

algorithms where time isn’t a problem.

Note that the knowledge of system and/or software attributes

must been known in order to form acceptance tests.

Fig. 1: The N-version software (NVS) model with n = 3

ensure acceptance test

by primary alternate
else by alternate 2

.

.
else by alternate n

else error

Fig. 2: The recovery block (RB) model

Execution

Environment (EE)

Recovery Cache

Execution Support

Functions

Xi Xj

EE

Yes

Accepted

Results

j-th Recovery Block Software Unit

Acceptance

Test

No

Take Next

Alternate

Alternate 2

Alternate 1

No

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.26, March 2018

38

3.3 Other Derived Techniques
As mentioned before, there are numerated software fault

tolerance techniques that are derived and developed from

those two techniques (N-Versions Programming and

Recovery Blocks) after applying some integration and

updating processes on them. These techniques as follows:

3.3.1 N Self-Checking Programming
This technique is based on the using of multiple software

versions that are combined with modified models of the

Recovery Blocks and N-Version Programming. Hence, two

models of this technique can be developed. The first one is the

N Self-Checking programming using acceptance tests. The

second model of the N Self-Checking programming is N Self-

Checking programming using comparison for each pair of

versions to detect errors [13].

3.3.2 Consensus Recovery Blocks
This technique is based on combining N-Version

Programming technique and Recovery Blocks technique to

gain better reliability than that achieved by using each

technique alone. In other words, the Consensus Recovery

Blocks technique is an integration of N-Version Programming

technique and Recovery Blocks technique to try to overcome

the shortages and difficulties those are embedded in each of

those techniques when they designed and used as individuals

[7, 13].

3.3.3 t/(n-1)-Variant Programming
Selection logic design is based on the theory of system _level

fault diagnosis. Essentially, a t/(n-1)-VP architecture

consisting of n variants and use the t/(n-1) diagnosibility

measure to separate the faulty units to a subset of size at most

(n-1) assuming that there are at most t units are faulty.

Therefore, at least one non-faulty unit exists such that its

output is correct and can be used as the result of computation

for the module [3].

3.4 Exception Handling
Different definitions are available of exceptions. For example,

an exception may be defined as an error or an event that

occurs infrequently or unexpectedly, also an exception

defined as an abnormal event or abnormal response from

inside a module that indicates the detection of errors in the

module. Exception handling is the immediate response and

consequent action taken to handle one or more exceptions

[14].

Although exception handling is one of the most powerful

techniques for handling run-time errors, unfortunately there

are many languages that not embed or support the exception

construct. In such cases a work-around is needed to overcome

this shortage [5, 14].

 It makes good sense to always define pre- and post-

conditions for encapsulated operations. The pre-condition

may be translated into code to act as acceptance tests. If there

is a test failure an exception may be raised. Alternatively, it

may be sufficient to return an error indication to the calling

unit. Post-conditions can be used to specify expected results

when carrying out unit testing [5].

There are many requirements that must be considered in the

design of a system that supplied with embedded feature of

exception handling. Such as the possible events activating the

exceptions, the effects of those events on the system, and the

selection of appropriate recovery actions. For a software

module, there are three classes of exception that activating

events as follows: [5, 14]

 Interface Exceptions: These exceptions are activated by

the self-protection mechanisms of a module when it

detects an unacceptable service request. Then these

exceptions will be handled by the module that requested

the service.

 Local Exceptions: These exceptions are activated or

triggered by the error-detection mechanisms of a module

when it detects an error in its own interior operations.

Then, these exceptions will handle by the module’s fault

tolerant capabilities.

 Failure exceptions: These exceptions are activated by a

module when it detects an error but it faults processing

mechanism did not have the ability to handle this error in

correct way. So, failure exceptions inform the module

ask for the service that some other means must be found

to execute its function.

The concept of error containment and isolation is very

important and must be considered in the design of a system

that embed and support exception handling features, because

this will lead to the design of effective exception handlers.

These exception handlers must be supported with a proper

design of system structure, actions, and error detection

mechanisms in order to enclose and isolate the effects of

errors within a particular set of interacting components at the

moment the error is detected.

4. ADDITIONAL CONSIDERATIONS
There are some critical issues in the use of the software fault

tolerance techniques that are reviewed above, such as:

 Research has demonstrated that the arguments for

reliability through diversity (N-version programming) are

not always valid. When developing software from the same

specification, different teams made the same mistakes.

Software redundancy did not give the theoretically

predicated increase in system reliability. Furthermore, if the

specification is incorrect, all versions will include the

common specification errors. This does not mean that N-

version programming is useless. It may reduce the absolute

number of failures in the system. N-version programming

gives increased confidence but not absolute confidence in

the system reliability [3].

 There are not many but important differences between the

N-versions technique and recovery block technique, as

follows: [3, 7, 13]

 The main difference between these two techniques is

that the N-versions technique usually uses one generic

decision algorithm (voter or decider), while the

recovery blocks technique uses an acceptance tester

(adjudicator) for each module which is application

dependent.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.26, March 2018

39

 The other important difference is that, in the beginning

and also the conventional case, the multiple versions in

the recovery blocks are executed on sequential manner.

Later, the recovery block technique has been extended

to include concurrent execution of the various

alternatives. The N-versions programming is designed

always to execute the multiple versions in parallel on

separate processors.

 So, in a sequential “retry system”, the cost in time of

trying multiple alternatives may be very expensive,

especially for real-time system applications.

Conversely, concurrent systems need the expense of N-

way hardware and a communications network to

connect them.

 The both techniques (N-versions technique and recovery

block technique) have the advantages and disadvantages of

the engineering trade-offs, especially economic costs,

involved with developing. It is very important issue for the

engineer to consider these costs when deciding the best

technique to be implemented in his project [3].

 There is an argument that there is a difference between fault

tolerance and exception handling. “The difference between

fault tolerance versus exception handling is that exception

handling deviates from the specification and fault tolerance

attempts to provide services compliant with the

specification after detecting a fault. This is an important

difference to realize between trying to construct robust

software versus trying to construct reliable software.

Reliable software will accomplish its task under adverse

conditions while robust software will be able to indicate a

failure correctly”, (hopefully without the entire system

failing) [14].

 Theoretically, according to the reliability concepts, this

combined approach (e.g., Consensus Recovery Blocks

technique) has the likelihood of producing a more reliable

piece of software, but it will be much more complex than

either of the individual techniques. Hence, there should be a

consideration that the added complexity could work against

the system design in such a way that makes the design less

reliable [3, 14].

 Although the previous mentioned techniques have many

important advantages but also they include critical

disadvantages, such as: [3, 7, 13]

 in recovery blocks technique: the complexity of

designing appropriate acceptance tests, and late results.

 in N-version programming technique: concurrent

systems need the expense of N-way hardware and a

communications network to connect them, and there is

a possibility that all the versions have different outputs.

 in N self-checking programming technique, if one of

the versions produces a result which is only slightly

different from the other the acceptance test may not be

able to determine that it is incorrect.

5. The Proposed Technique
A software fault tolerance technique that consists of two

layers has been proposed in this paper. The layers are: the

general layer and the special layer.

5.1 The General Layer
The general layer is the first layer in the proposed technique.

This layer is a modified fault tolerance technique which its

design and development will depend on accommodating the

three software fault tolerance techniques previously

mentioned in section 2 (N-Version Programming, Recovery

Blocks and Exception Handling techniques). The architecture

of the proposed system is consisting of the following

components (see Figure 3):

 The N-version software (NVS) model with n = 2,

 The Acceptance Tester that will be taken from the

recovery block technique, and,

 The Exception handler for local exception triggering

events.

The two versions of the software will run in parallel. In each

stage of processing there is a voter that will checks the truth of

the stage's output, by comparing the results of the two

versions and votes on the comparison. If the results of the two

versions agree, then outputs the result, otherwise uses the

acceptance tester to select the proper result. This means that

the proposed system will include in its structure an acceptance

tester that will activated (enabled) only when there is disagree

in voting results.

The idea behind using only two versions of N-version

software model is to decrease the system's complexity to

minimum degree. The general concept is that "using more of

software versions will increase the possibility of achieving

higher reliability to the implemented system", but this thing

may increases the system complexity in a way that affect its

reliability in passive way.

An exception handling method is added to each software

version, to support the dependability of our proposed system.

The exception handlers in each version are signalled by a

module as soon as its detection mechanisms of error find an

error in its own interior operations. These exceptions should

be handled by the module’s fault tolerant capabilities.

The general layer can be named the 2-Version Software with

Acceptance Test Support. This layer can also be implemented

by using the other software fault tolerance techniques,

therefore it termed as general layer.

There is a possibility that the first layer of the proposed

technique cannot select or produce a correct or an acceptable

output. This situation can be occurring when the two versions

have different outputs and the acceptance test may not be able

to determine which output is incorrect when one of the

versions produces a result which is only slightly different

from the other. To overcome this problem, the system will

switch to the second layer to handle the output in order to

produce a correct or an acceptable output.

5.2 The Special Layer

The second layer is called the special layer because its

implementation depends on developing a specific mechanism

that differs from the conventional software fault tolerance

techniques but this mechanism will be apply to support the

functionality of these techniques.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.26, March 2018

40

As mentioned before, when the first layer fails to produce a

correct or an acceptable output, the system will switch to the

second layer to overcome this problem by using

unconventional ways to produce the appropriate output.

The unconventional ways that will be adopted in the

development of the second layer mechanism are as follows:

 Assigning dynamic weights for each software version that

exists in the first layer. The weights will be generated from

normal cases when the acceptance tester is able to

determine the correct or the acceptable output. There is a

counter associated with each version’s weight, where this

counter will be incremented in each time the output of the

related version is selected by the acceptance tester and

decremented in each time the output of the other version is

selected. In the same way the counter of the other version

will work. Also, there is another counter that its weight will

be incremented in each time the acceptance tester succeeds

in selecting the appropriate output; this weight will be

called the Total weight. The following formula can give a

confidence measurement for the version:

100
weightTotal

weightversion
versionaofConfidence

 An archive file must be created to contain the outputs that

generated from normal cases when the voter or the

acceptance tester approves these outputs as correct or

acceptable outputs. Also, this file must contain the

correspondent inputs for these outputs and the identification

of the version that produce the appropriate output.

 The proposed mechanism can produce the appropriate

output according to the following two criteria:

 It can use history of previous results to produce an

expected output value by selecting the version output

value that is closest to the expected value. Thus, a

Divergence factor must be calculated depending on the

following formula:

outputectedoutputversionDivergence exp

 It can use the value of the confidence factor of a version

output as a second criterion to support the process of

selecting appropriate output.

 So, the procedure of selecting the appropriate output will

apply the following steps:

 If the minimum divergence value and the maximum

confidence value are associated with same version, then

adopt this version output as the appropriate output.

 If the minimum divergence value and the maximum

confidence value are associated with different versions,

then select the version with the minimum difference

value and adopt its output as the appropriate output.

The difference value can be calculated depending on

the following formula:

ConfidenceDivergenceDifference

No

Version 1

Exception
Handler

Version 2

Input

X

X

X

Trigger

Trigger

Handle

Handle

Acceptance
 Text

Y1

Y2

Yes (Y1=Y2) → Y

(Y1,Y2)
No

Yes

Y

Y Y

Select Algorithm
(Voter)

Special Layer

(Second Layer)

Y

Fig. 3: The proposed technique (General Layer)

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.26, March 2018

41

6. CONCLUDING REMARKS
Balancing between system complexity and reliability is an

important issue that must be considered in the system design

to get more reliable and less complex system to achieve

dependable software. For this reason, the designed algorithm

was proposed using N-version software technique with only

two versions to minimize the complexity of the system, but on

other hand, creating dependable versions must be guaranteed.

That can be achieved through trying to prevent the incident of

common faults between the system versions. Usually, these

common faults occur because of the design of the two

software versions will depend on the same faulty system

specifications. So, to avoid this type of faults, the following

issues must be considered:

1- Using two different sources of system specifications to

develop each software version.

2- Using two different teams to develop the system, each

team will be responsible about developing a version

depending on its own system specification source that

differ fro the other team.

3- Using different programming languages, compilers,

paradigms, data structure… etc.

But there is no guarantee that the common faults can be

recovered totally. So, a proposition that the implementation of

another layer in the system to support the first layer when it is

fail to produce appropriate output. One of the ways that used

in the second layer is generating confidence weights to the

versions.

There is a previous work that proposes the use of genetic

algorithms or neural networks for implementing the voter in

such a way that performance is associated to the application

and the particular characteristics of the software versions.

As known fact, the implementation of neural networks or

genetic algorithms will increase the complexity of the system,

considering that the system complexity is already increased

due to the application of software fault tolerance mechanism

on it. Therefore, an algorithm for proposed more simple

method for weight generation that did not increase the system

complexity in obvious way.

7. REFERENCES
[1] Ian Sommerville, “Dependable Software

Development”, pp 3 – 4, 2000.

[2] Ian Sommerville, “Software Engineering”, 6th Edition,

Addison Wesley, 2001.

[3] Wilfredo Torres-Pomales, “Software Fault Tolerance: A

Tutorial”, NASA, pp 8 – 9, 2000.

[4] Jashan Deep and Dr. Rajiv Mahajan, “A Survey on

Software Fault Tolerance in Parallel Computing”,

International Journal of Engineering Sciences &

Research Technology (IJESRT), ISSN: 2277-9655,

2013, Iraqi Virtual Scientific Library (IVSL).

[5] Titos Saridakis and Valerie Issarny, “Fault Tolerance

Software Architectures”, Institute National De

Recherche En Informatique Et En Automatique

(INRIA), 1998, Iraqi Virtual Scientific Library (IVSL).

[6] Dr. K. C. Joshi, “Techniques of Software Fault

Tolerance”, International Journal of Computer Science

& Engineering Technology (IJCSET), Vol. 3, No. 4,

2012, Iraqi Virtual Scientific Library (IVSL).

[7] Michael R. Lyu, Jia-Hong Chen, and Algridas

Avižienis, “Experience in Metrics and Measurements

for N-Version Programming”, Citeeerx, Iraqi Virtual

Scientific Library (IVSL).

[8] Michael R. Lyu, “Software Fault Tolerance”, Wiley, pp

23 – 27, 1995.

[9] Jim Cooling, “Software Engineering for Real – Time

Systems”, Addison Wesley, 2003.

[10] Arun Somani & Nitin Vaidya, “Fault Tolerance”, IEEE

Computer, pp 7 , 25, 1997.

[11] Wanlei Zhou, " Fault Tolerant Computing - Study

Guide ", Deakin University, pp 66, 2001.

[12] M.Soneru, “Fault Tolerance”, CS-550[SaS], pp 10.

Zaipeng Xie, Hongyu Sun and Kewal Saluja, “A

SURVEY OF SOFTWARE FAULT TOLERANCE

TECHNIQUES”, University of Wisconsin-

Madison/Department of Electrical and Computer

Engineering 1415 Engineering Drive, Madison WI

53706 USA.

[13] Jie Xu & Brian Randell, “Exception Handling and

Software Fault Tolerance”, DSN-2000 Tutorial 4, pp 6,

2000.

[14] Chris Inacio, “Software Fault Tolerance”, 18-849b

Dependable Embedded Systems, 1998.

IJCATM : www.ijcaonline.org

mailto:%3cmailto:%20inacio@ece.cmu.edu%3e

