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ABSTRACT

DNA sequence approximate matching is one of the main challenges
in Bioinformatics. Despite the evolution of new technology, there
is still a need for new algorithms that accommodate the huge
amount of Bioinformatics data. In this paper, a parallel n-gram
approach is proposed with a method that is taking in mind the
variety of DNA sequence lengths for approximate matching. The
proposed approach showed a satisfiability result in terms of time
complexity compared to parallel dynamic programming method.
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1. INTRODUCTION

Bioinformatics refers to solving biological problems using
computer technology, with the evolution of technology, the amount
of Bioinformatics data has been increased significantly. One of
the main issues in Bioinformatics era is DNA pattern matching.
DNA contains basic information that specified species, and the
characteristics of a particular species [1].

Pattern matching is one of the most challenge in computer science
field, i.e. Intrusion detection, image processing, and information
retrieval. Pattern matching is considered to find all occurrences of
pattern in the source. String matching is used to find the match
between string s and target text ¢ [2].

Since DNA sequencing is determined through four bases: Adenine,
Guanine, Cytosine, and Thymine (A, G, C, and T respectively). The
DNA sequencing matching can be solved as similarly as the string
matching. There are several algorithms that solve string matching
in literature starting from brute force solution that require time
complexity of O(m2™), where m, and n is the length of the two
strings [3]. String matching can be divided into two categories:
exact matching and approximate matching [4]. Finding an exact
match is not that complicated compared to approximate matching
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due to a lot of factors such as (existing of extra letter, string shifting,
etc.).

Approximate matching is much useful than exact matching in many
cases, for instance, finding spelling mistakes, or if two words have
the same origins (i.e. Deleting, and deleted) [S].

Despite the technology evolves, the amount of data is increased
significantly, and this increased the need to revise a new efficient
algorithm to speed up the search of matching DNA sequences in a
big dataset.

In this research, we propose a multi-threaded algorithm for solving
a DNA sequence matching (Approximate matching) using n-gram.
That aims to the reduce time complexity also in order to reduce
the time needed to check a sequence in a pool of sequences in
a dataset. The proposed method does a clustering of the dataset
as a pre-processing step. This helps in reducing the number of
comparing sequences significantly, and affects the overall time
complexity.

The rest of this paper as follows; Section 2 presents the related
works, while Section 3 discusses the methodology, Section 4 and
Section 5 present the results and conclusion, respectively.

2. RELATED WORKS

Searching of exact or approximate pattern match is one of the
fundamental problems in computer science. Many algorithms have
been developed in the last three decades, focusing on the general
problem [6][7] [8] [9] [10]. Also, the recent advances in genomics
research, the speed of processor development growth, and the
increased amount of data have been open the challenge in this era.
[6] Proposed a new hybrid algorithm for string matching (ASSBR)
that compromises of Berry Ravindran (BR) shift function and
Alpha Skip Search (ASS) algorithm to improve the performance.
The hybrid algorithm tested by three types of data: DNA, Protein,
and English text; and showed a better performance than both
original algorithms in terms of number of attempts and character
comparisons.

[7] Proposed a filter- then search- based exact matching algorithm
for long pattern matching. The algorithm used the benefits of SIMD
to accelerate the performance of the algorithm. The performance of
the algorithm has a strong effective, especially when considering
the length of the alphabet sizes. The algorithm has a good



performance for exact matching of long patterns in the worst case,
the time complexity needed is O(n*m), for searching n byte pattern
in m byte text.

[L1] Proposed a two level n-gram approximate string matching
that enhances the performance of n-gram exact string matching in
[12] in term of query performance and reduce the index size by
proposing an inverted index structure.

[13] Improved two matching algorithm EBOM/ FBOM, and
proposed a two-new single pattern matching algorithm (SEBOM/
SFBOM), that removed unnecessary branches, and reduced the
core calculation based on 2-grams algorithm. The algorithms are
very fast for short pattern and reduced the number of memory
accesses.

Bit parallel techniques have been used by many researchers in
solving pattern matching [[14] [15]. [14]developed a bit parallel
algorithm based on a Shift-Or algorithm for exact and approximate
string matching under hamming distance. The developed algorithm
based on forward matching approach, which gives it?s a simplicity,
is coming from the fact that pattern shifts are constant. The
algorithm has a time complexity of worst case O(n).

At 1977, Boyer-More search algorithm have been proposed by [16],
which is one of the string searching that is a standard benchmark
for practical string search in literature. The algorithm based on
preprocessing the pattern being searched for, not the text being
searched for. The algorithm keeps in mind the information gathered
during the preprocessing step, and uses it to skip sections in the
text, thus reduces the time for searching comparing to other string
search algorithms.

[L5] Considered the bit parallel of Boyer-Moore type for an exact
pattern match. They proposed four bit parallel algorithms. A
two modification of Backward Nondeterministic DAWG Matching
(BNDM) which is one of the proposed algorithm that achieved
the best performance. It keeps the examined characters in history
through a bit vector, while shifting based on this bit vector.

[9] Proposed a variation of the BNDM algorithm for exact
matching, where at each alignment the algorithm performs a
g-gram process, then tests the state variable. The algorithm
variations were tested against several data: DNA, Binary, and
English text with several lengths. The proposed variation of BNDM
runs faster than other previous exact matching algorithms. Also, the
new variation work fine with short patterns, which is not typical
with Boyer Moore algorithm.

[10] Proposed a hybrid string matching algorithm SSTBMQS
based on the best features of tunes Boyer-Moore algorithm and
Quick- step algorithm. The algorithm was tested again many
Benchmark datasets with different pattern length and different
dataset size. It outperforms the original algorithm in terms of the
number of comparisons and the number of attempts.

Despite the work in the related works, the amount of data is
increased significantly. This increased the need to revise a new
efficient algorithm to speed up the search. The proposed algorithm
mixed between clustering for reducing the time complexity of
searching, and using multi-threaded n-gram techniques, which
make it a powerful tool for searching DNA sequences in large
dataset.

3. METHODOLOGY

In this section, we describe the proposed approach for approximate
matching DNA sequences. The methodology for our work divided
into three parts: Clustering, Searching, and Compare Results.
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Table 1. : n-gram example for different values of n.

H Sample Sequence ‘ Unigram ‘ Bigram ‘ Trigram H

H ...AGCTTCGA ... ‘ . AGCTTCGA, . ‘ .AG,GC,CT, T, TC, CG, GA, ... ‘ -, AGC, GCT, CTT, TTC, TCG, CGA, ... H

3.1 Clustering the DNA Dataset (Preprocessing step)

The aim of clustering the dataset is to minimize the number of
comparisons, where the target sequence will be searched only in
the cluster of best match among other clusters. K-means clustering
techniques used for clustering the dataset.

DNA sequences are converted to a binary code in order to represent
it as vector, where A = 00b, C = 01b,G = 10b,and T = 11b.
Every sequence is represented as a vector, and cosine similarity
measure is used to find the similarity between the vectors. First, five
sequences are chosen randomly and initially become the centroid
of each cluster, then pick randomly a new sequence to find the best
similarity between the sequence and each centroid. The sequence
will be a part of the cluster of best match among all clusters. This
procedure is repeated until the centroid values have no change. This
procedure is repeated until all sequences are clustered. Algorithm
[[]shows the pseudocode for K-means clustering, where Equation|[I]
presents the cosine similarity formula [17]].

. T A.B
cosine Slmllarlty = W
Z?:l Az‘Bi

= 1
Moy oA

Where A; and B; are components of vector A and vector B,
respectively.

Algorithm 1 K-means Clustering Pseudocode (Sayed, 2010).

1: procedure K-MEANS CLUSTERING
2 Clusters the data into k groups where k is predefined.
3: Select k points at random as cluster centers.
4 Assign objects to their closest cluster center according to
the Cosine Similarity function.
Calculate the centroid or mean of all objects in each cluster.
Repeat steps 2, 3 and 4 until the centroids are not changing.

aw

3.2 Approximate Matching

In order to enhance the speed of matching, the proposed approach
uses a multithread n-gram to find the longest common subsequence
between the target sequence and the sequences in the dataset. We
use multiple values of n-gram (2, 3,4, 5,6, 7, and 8) to decide the
best value for n. Table[T]shows the n-gram for particular sequences
with different values of n.

3.3 Compare results

The main challenge in approximate DNA matching in a dataset
with various sequence’s length, is that the alphabet of DNA
sequence is only four characters {A, T, C, and G}; which means
that the occurrence of these characters in particular order will
occasionally happen, especially in the longest sequence in the
dataset. So, here the longest common subsequence of a given DNA
sequence will be always in the longest sequence in the dataset.
Example 1 clarifies the point of approximate matching for a target
DNA sequence with two DNA sequences that varies with their



length.
Example 1.

Suppose that we have target DNA sequence, we have to check it
with two DNA sequences that varies with their length. The length
of the target sequence is 30 characters, the length of sequence 1
is 42 characters, while the length of sequence 2 is 493 characters.
By finding the longest common subsequence(LCS) for target DNA
with the other sequences, the LCS for sequence 1 equals to 15,
while the LCS for sequence 2 equals to 30 which is the length
of the target DNA. Initially, if we look to the red character at
the sequences which represents the matching character, we can
configure that sequence 1 has better matching than sequence 2;
which is violating the LCS values. To solve this problem, the
number of mismatch character in the match area has to be taken in
mind. To do so, the matching area has to be cut, as shown in the
example, then count the number of mismatching character along
the matching area, and take the ratio of matching character to the
mismatching character. This will give a reasonable result with
respect to the length of DNA sequence.

Target DNA:
ATGAACCGCATCAGCACCACCACCATTACCACCAT

Sequence 1:
—ATGTTTAAGACCGAGCAATCAAATTGC+TTTTAGAGACGG
CCG

Sequence 2:
—ATGCTTACGCCAAAACCCACGCTCGAATGTTGCACTGCGA
TGCCGCCTATCGGGAAAACCCAACGGCGCTTTTCACCAGGT
TCGCGGCGATCGCCCGGCAACGCAGCCTGTGGAAT+CCG
CGGATATCGACAGTAAAGATGATTTAAAAAGCCTGCTGCTGG
TAGATAGCGCGCTGCGCATTACCGCTTTAGGTGACACTGTCA
CCATTCAGGCGTTATCTGATAATGGCGCCTCGTTATTGCCGC
TACTGGATACCGCCCTGCCCGCTGGCGTGGACGATGTCCTG
CCTGCCGGTCGCGTTCTACGCTTCCCGCCCGTCAGCCCATT
ATTAGATGAAGACGCCCGTTTATGCTCTCTGTCGGTATTTGAT
GCGTTCCGTCTGTTACAGGGAGTGGTGAACATACCGACGCA
AGAGCGGGAGGCTATGTTTTTCGGCGGTCTGTTTGCCTACG
ACCTGGTCGCTGGCTTTGAAGCGCTGCCACACC

. . _ match —
Il?,satw of approximate match for sequencel = e =
5 = 1.25

. . _ match _
Ratioof approzimate match for sequence2 = —maci. —

35 =0.406

According to the ratio values, sequence 1 has a better matching than
sequence 2 with respect to DNA sequence lengths.

3.4 Algorithm Analysis

According to Algorithm [2] that presents the pseudocode of parallel
n-gram, the time complexity of steps 1,2,4 is O(1), step 3 will
execute n/p times, where n is the number of sequences in Dataset D,
and p is the number of threads. Steps 5,6,7 will execute once, and
step 8 will execute k times, where k is the number of n-gram in the
target sequence. The overall time complexity for parallel n-gram is
O(% x k) for searching a sequence of length k, in a dataset contains
n sequences.

The n is reduced according to the clustering preprocessing step.
Then n is the number of sequence in a cluster only not the full
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Algorithm 2 Pseudocode for parallel n-gram

procedure PARALLEL N-GRAM
Input: Target Sequences TS, and Dataset D.
Outpu: Best match sequence from the dataset.
1. string TS; // the Target sequence.
2. let NTS = n-gram (TS, n); /* where n is the size of the
n-gram */
3. Spawn for each (S in D) /* where S is a sequence in
dataset D */
[match, dismatch]=Find-Match-Dismatch(S, NTS, n);
4. end for
Find-Match-Dismatch(S,NTS,n){
5. let NS= n-gram(S,n);
6. let match =0;
7. let mismatch=0;
8. for each (g in NTS) // where g is an n-gram word
9. if (NS.contains(g))
10. ++match;
11. NS.remove(g);
12. Else if (match ; 0)
13. ++mismatch
14. end for
15. return [match, dismatch]
16. }

Table 2. : NCBI Datasets information [18].

‘ ‘ S. No ‘ Dataset ‘ Species ‘ Length in bp ‘ Size Bytes ‘ ‘
1 AC_000133.1 Homo sapiens chromosome 1 219,475,005 222,610,362
2 AL954800.2 Human chromosome 14 87,191,216 88,436,873
3 BA000007.2 Escherichia coli 0157 5,498,450 5,577,087
4 AE006468.1 Salmonella enterica 4,857,432 4,926,935
5 NC_010473.1 E. coli? 4,686,137 4,753,183
6 NC_000913.3 E. coli? 4,641,652 4,706,047
7 NC_007146.2 Haemophilusinfluenzae 1,914,490 1,941,932
8 NC_008229.1 Helicobacter acinonychis 1,553,927 1,576,223
9 NC_001139.9 Saccharomyces cerevisiae 1,090,940 1,106,622

dataset, where the input is the target sequence and a dataset to
search through. The output will be the best matching sequence for
the target sequence in the dataset.

4. EXPERIMENTS AND RESULTS

This section shows the experimental results for the parallel n-gram.
In order to compare our results, we implement parallel dynamic
programming by [19] to find the LCS of the target sequence and
compare the results to the parallel n-gram. The two algorithms are
tested with and without clustering. A real DNA sequences used to
test the algorithms, Table 2] presents the dataset used. The datasets
obtained from the NCBI database [20].
All experiments were run on an Intel Core i5, with CPU 2.3
GHz, 10 GB of memory installed, running on MacOS High Sierra
(version 10.13.1). The target sequence was generated randomly to
test the approaches. The sequence length for testing were extracted
from the sequence length in the datasets, where five lengths were
picked; minimum sequence length through the datasets, the first
quartile, the second quartile, the third quartile, and the maximum
length among the datasets. Table[3]shows the sequence length used
for testing.

Table [] shows the running time in seconds for n-gram, and
dynamic programming for three sequence lengths (short, medium,



Table 3. : The length of target sequences.

H ‘ Min sequence length ‘ First Quartile (Q1) ‘ Second Quartile (Q2) ‘ Third Quartile (Q3) ‘ Max sequence length H
[["#of Characters | 45 [ 462 [ 801 [ 1245 [ 16680 I

Table 4. : Running time in seconds for varies sequences length over nine
NCBI datasets.

- Run Time/Seconds for each Sequence length

Dataset Approach N Qi @ (o8 Max

N-gram 0.871 1.672 0.866 2.286 3.518
dynamic 1.014 | 10.198 | 6.392 | 22.621 | 140.821

AC-000133.1 Cluster-N-gram | 0.203 | 0.732 0.705 0.741 1.750
Cluster-dynamic | 0.253 | 4.286 3.805 5.934 55.083

N-gram 0.088 | 0.144 0.160 0.201 0.373

dynamic 0.099 | 0.446 0.430 1.102 5.779

AL954800.2 Cluster-N-gram | 0.068 | 0.131 0.082 0.136 0.249

Cluster-dynamic | 0.081 0.337 0.283 0.602 4.647

N-gram 1.021 1.921 0.893 2.374 4.891
dynamic 1.168 | 13.447 | 7.290 | 24.242 | 162.745

BA000007.2 Cluster-N-gram | 0.289 | 0.542 0.790 1.490 1.511
Cluster-dynamic | 0.326 1.891 4.037 9.510 38.087

N-gram 0.261 0.476 0.313 0.681 0.789

dynamic 0.280 | 3.138 1.878 6.807 33.374

AE006468.1 Cluster-N-gram | 0.136 | 0.298 0.068 0.178 0.481

Cluster-dynamic | 0.150 | 2.111 0.257 0.741 4.855

N-gram 1.654 | 2.729 1.073 4.440 5.727
dynamic 1.769 | 17.507 | 9.963 | 51.160 | 271.438

NC.010473.1 Cluster-N-gram | 0.348 1.536 0.488 2711 2.429
Cluster-dynamic | 0.409 | 7.537 2.175 17.327 | 67.463

N-gram 0.366 | 0.942 0.546 1.611 1.180

dynamic 0.525 | 5.439 3.199 12,958 | 76.671

NC.000913.3 Cluster-N-gram | 0.180 0.654 0.328 0.533 0.512
Cluster-dynamic | 0.204 | 3.240 1.714 5.375 13.898

N-gram 0.687 1.674 2.526 2.610 3.074
dynamic 0.730 | 8.745 5.742 19.681 | 105.042

NC.007146.2 Cluster-N-gram | 0.235 0.815 0.506 1.484 1.154
Cluster-dynamic | 0.411 | 4.178 2.269 9.797 29.722

N-gram 0.596 1.626 0.753 2.368 3.062

dynamic 0.645 | 7.826 6.459 16.838 | 98.093

NC-008229.1 Cluster-N-gram | 0.160 1.023 0.189 1.116 0.881
Cluster-dynamic | 0.178 | 5.323 0.755 9.397 15711

N-gram 1.181 3.319 1.249 4.049 5.705
dynamic 1.349 | 17.551 | 11.021 | 60.154 | 261.250

NC-001139.9 Cluster-N-gram | 0.361 1.013 0.614 1.599 2.128
Cluster-dynamic | 0.383 4.949 3.803 10.230 53.490

and long). To assure fair comparison, a random sequence generator
was used to generate a random target sequence. Both algorithms
run in multithreaded mode, and run in two scenarios: one without
clustering, and other with clustering (preprocessing step). As the
results show that the parallel n-gram, and dynamic programming
have a close performance when the sequence length was short
as Min value (45 long), while the n-gram have a significant
enhancement in time, when the sequence length becomes larger.
The performance of n-gram in term of time has been tested on nine
different datasets from NCBI [20].

To evaluate the performance of using clustering as a preprocessing
step, 10 different sequences were tested for every sequence length,
and see how many times the result without clustering were the same
as with clustering step. The result shows that 85

In order to evaluate the performance of the proposed approach in
multithreading mode, a big dataset needed to seek the effectiveness
for the number of threads on the proposed approach. To do so, all
datasets from BCNI have been merged into one large dataset for
evaluation purpose. Four versions of N-gram have been evaluated
in multithreading mode, Figure[l]- Figure[3]shows the running time
of N- gram version across one of eight numbers of threads for Min,
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Fig. 1: Run time/second for n-gram versions with different number of
threads for Min sequence length.
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Fig. 2: Run time/second for n-gram versions with different number of
threads for Q1 sequence length.

Q1, Q2, Q3, and Max target sequences length. The results show
that using 4 threads is the optimal way of using multithreading.
It’s clear that the running time of using three threads is close to the
running time of using four threads, this due to, that the fourth thread
has been used for the main class (distributing the sequences among
threads, and compare the results of the matching ratio among all
sequences), as the results show that using more than four threads
increased the running time, this due to the number of cores used
and context-switching time.
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Fig. 3: Run time/second for n-gram versions with different number of
threads for Q2 sequence length.
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Fig. 4: Run time/second for n-gram versions with different number of
threads for Q3 sequence length.
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Fig. 5: Run time/second for n-gram versions with different number of
threads for Max sequence length.
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5. CONCLUSION AND FUTURE WORKS

One of the main issues of matching methods is the variation
of sequences length in a particular dataset, that will affect the
results. Since the longest sequence among the other will always
have the longest common subsequence. In this paper, a parallel
n-gram method has been proposed with multi-length sequences
aware approach. The proposed method, used clustering method
as preprocessing step to minimize the number of sequences
comparative, however it absolutely affects the matching accuracy,
since only one of the clustered will be checked. Parallel n-gram
have been compared to parallel dynamic programming, and the
results showed the parallel n-gram reduced the time for matching
significantly when the sequence length become longer, whereas
both algorithms have similar performance in terms of time
complexity when the sequence length were short.

For future work, this method can be applied to string matching in
general, also the proposed algorithm uses the prefix method, and
can be enhanced by using both prefix and suffix methods together.
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