
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.28, March 2018

`

15

Optimizing Binary Serialization with an Independent

Data Definition Format

David Carrera Castillo

MSc. Computer Science
Autonomous University of

Guadalajara

Jonathan Rosales
Research Professor, Computer

Science Department
Autonomous University of

Guadalajara

Gustavo A. Torres Blanco
Senior Engineer
Mobica Solutions

ABSTRACT

The current technologies used for message communication

over a network, will begin to be inefficient as the diversity of

the hardware and the need to transfer more information in less

time increases, as mobile applications and the bandwidth

consumption is important; therefore, the methods of sending

data in the network is an important area to analyze if we want

to optimize the time of data transfer and size of the

information. The object serialization is a key element to

optimize when looking to reduce transfer time, network

saturation, processing of data sent and storage of information.

In this paper we propose an algorithm to optimize binary

serialization based on the current formats like MessagePack,

Protocol Buffers and JSON. To show the efficiency, test cases

were executed which show an optimization of 25% and 50%

in file size and serialization time respectively.

Keywords

Binary Serialization, data format, optimization, algorithm,

web service.

1. INTRODUCTION
The services allow us an optimized way of communication

through the network, sending of data in different formats

between client-server. Service oriented applications are those

that use most of this technology. The exchange of information

through web services is specified on the SOAP or XML-RPC

protocols and these are based on the XML data model for

sending messages [1].

The messages sent between web services and clients that

consume these services can be in different formats and types

and for different environments: mobile clients, desktop

applications, applications in the cloud, web applications and

clients with different types of hardware.

As Amorim mentions in [2], companies that look for a correct

migration of their systems to the cloud, must start migrating

their systems to service oriented applications. These service-

oriented architectures (SOA) present challenges such as the

constant exchange of messages to perform tasks, the number

of these messages can increase to millions even for a single

application [3].

Thus, we see that building applications focused on the new

technologies, as well as migrating existing ones, brings us

back to an initial point in the problematic that is: the transfer

of data. The existing technology used for message

communication may no longer be efficient due to the diversity

of the current hardware; therefore, the method of sending data

in the network becomes an important area to optimize in terms

of data transfer time and size of information.

The object serialization process becomes a key element to

optimize when looking to reduce data transfer time, network

saturation, processing of sent data and storage of information.

That’s a key element, where the implementation of an

optimized binary object serialization format has many

advantages over JSON or XML formats if we focus on

information processing time and storage capacity.

In this paper, we present a proposal to optimize the binary

serialization, designing an algorithm that will allow creating a

serialized file with the pure data separated from the data

definition and building the object (deserialize) dynamically

with the definition created at the beginning of the process.

Some binary formats such as MessagePack and Protocol

Buffers are taken as a base for our proposal as equal as JSON.

Those binary formats are currently in use and have managed

to optimize this process.

The rest of the paper is organized as follows: Section II

presents a summary of the problem, research and advances

regarding binary serialization. In Section III we present our

optimization algorithm, then, in Section IV we show the

results of the implementation of our proposed algorithm.

Finally, in Section V we conclude our work and mention our

future work.

2. RELATED WORK
There is much research that deals with the issue of

serialization, whether in plain text or binary format,

comparisons, as well as their performance.

In [4], the author makes a measurement of data transfer times

of XML formats in calls and responses from web services

through HTTP. Concluding that the overhead that exists in the

transfer is not significant, however if the data is compressed,

the performance of the serialized message transfer would be

much better. This is one of the objectives of this optimization

proposal

Another comparison is made in [5], where the author

compares the time it takes to serialize / deserialize objects

using serializers in text (JSON) and binary formats (Avro,

Protocol Buffers, Thrif), where all the test results show that

the binary serialization got smaller times compared to JSON.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.28, March 2018

`

16

That is why binary serialization is taken as a process to

optimize with this algorithm.

In [6], the author is responsible for comparing the

performance of the objects serialization in web services

applications, using text-based formats such as XML, JSON

and a couple of binary formats. From those formats, Google

Protocol Buffers had better performance. The author

concludes that when a human-understandable format is not a

priority, then the binary format is the best option. In our

proposal, a human-understandable format is not the priority

for the optimization algorithm.

In [7], different libraries are analyzed for a quantitative as

well as a qualitative measurement, in which the author reaches

the same conclusion which is our starting point in this paper,

which is that text-based formats are not optimal compared to

the binary formats when it comes to disk space. However, the

author mentions that if one tries to make the model

understandable (readable), JSON and XML formats will

always be preferred.

In [8], the authors evaluate the binary serialization in different

platforms, concluding that all of those platforms have the

capacity to process binary serializations.

The study carried out in [9], has as a main purpose to optimize

the performance of web services using serialization. An

algorithm was developed that allowed reaching the objective,

using message structures that are saved as templates to be

used in the web service. That means a reduction in processing,

with the limitation that the templates that will be used as the

basis for serialization will increase over the time.

In [10], the objects serialization is presented as an

indispensable component in new computer systems in which

simplicity and an effective data exchange is a primary

objective.

Finally, in [11], the data exchange formats: JSON, XML,

MessagePack and Protocol Buffers, were analyzed to measure

the data communication efficiency in the Cloud. The results

show that binary formats are better when processing times are

measured; they also generate smaller files, which translate

into less bandwidth consumption when transferring

information in the cloud. From these two serialization

formats, MessagePack generates files slightly smaller than

Protocol Buffers; although in processing time is Protocol

Buffers the format that takes advantage.

3. DESIGN AND IMPLEMENTATION
The proposed format in this paper is an optimized

combination that takes the best features of commercial and

proved binary serialization formats and JSON as base for this

algorithm.

Fig 1: JSON and XML messages

Fig. 1, shows what this design completely eliminates, making

the separation of the data definition and the data itself. While

JSON compared with XML, eliminated parameter name

redundancy, it keeps repeating (red box) the definition of each

field for each serialized element (green box); the fields:

“FirstName”, “LastName”, “Email” will be repeated once for

each element that contains the serialized file, this implies data

redundancy that is reflected in the size of the file and transfer

and processing time.

In Fig. 2, we show the optimization that we propose, defining

(green letters) only once the data type at the beginning of our

serialized file and the pure data (blue letters) as the rest of the

file. One of our objectives with this algorithm is to split a

JSON messages and create a smaller and dynamic file.

No definitions will be repeated for N number of elements that

we have, this means savings in file size and serialization time

for a large list of data.

Our proposed development implies that the algorithm to

serialize and deserialize reads the definition only once, build

the new model or container for the objects and the subsequent

data will be adjusted to that model. This separation scheme is

a little bit similar to the way Protocol Buffers works, however

it is not handled as an independent file of the data, nor will it

be handled as a template for other data, this result in a not

mandatory labels for each data.

With that logic, we will avoid trying to process a file without

its schema or data definition

. Fig -2: JSON message converted to our design

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.28, March 2018

`

17

The serialization algorithm that we develop, receives as the

first step, the type of data that will be serialized in order to

analyze it and create the data definition of the object; that

means, iterates over each of the fields in case of being a class,

or identify the data type with which we are working. Then the

data section is built; both sections are converted to their

hexadecimal values, using a format table that we have

previously defined, similar in how other binary serialization

approaches work. We proceed to map each type of data with a

hexadecimal value of our dictionary, and the pure data

converted to its binary representation.

As shown in Fig. 3, in order to further optimize the size of the

file on disk as well as the transfer time (not the serialization

process time), data compression is proposed in ZIP format

because it is one of the most used. Also we show the way our

proposed algorithm will treat the data and data definition

The important process in our algorithm is the transformation

of the data definition to the hexadecimal representation

defined in our format table, which means, the labels that will

identify our data and that will be used to process the data to be

serialized and deserialized.

Fig -3: Our approach for Serialization

The object deserialization is basically the opposed algorithm

to the serialization process, where the data structure must first

be created with the definition that appears at the beginning of

the file and then process the data dynamically, that will form

the object to be deserialized. Dynamic process implies that if

for some reason the data changes and the definition of the data

is still the same, those data that don’t match will be omitted in

the process.

4. RESULTS
In this section we put into practice the algorithm of

optimization of serialization that we explained in the previous

sections; we compared the performance of our algorithm with

two more formats: binary-MessagePack-and JSON.

First, in section 4.1 we describe the hardware and software

environment in which we ran the tests. Then in section 4.2 we

show the results we obtained in terms of size on disk after we

serialized the objects and compared with the other formats.

Then, in section 4.3 we describe the results in terms of time,

demonstrating the optimization that we achieved with the

developed algorithm.

Fig -4: Object serialized - representation

4.1 Test Environment
The tests ran on Windows 10 Professional, Intel(R) Core(TM)

i7-6500U CPU @ 2.50GHz, 2601 MHz, 2 Cores, 4 Logical

Processors, 16 GB RAM, NTFS 1.82 TB. Running a .Net

Framework 3.5 console application. Lists with N elements

were serialized using the object shown in Fig. 4 as a base. The

MessagePack version was 0.9.2; .Net

DataContractJsonSerializer library was used for JSON

serialization.

4.2 Performance: File Size
Chart-1 shows the size of the file on disk after serializing a list

with 100,000 objects as shown in Fig. 4. We can notice the

big difference in Kilobytes if we compare JSON against

binary serialization. Comparing with MessagePack, our

optimization manages to reduce the final file size

approximately 25%.

Chart -1: File size after 100,000 serialized elements

In Chart-2, we executed the same previous test, but with a list

of 500,000 elements. We can appreciate a notorious difference

with JSON. Our optimization was approximately 25%, so we

see a constant in our algorithm regardless of the number of

elements to serialize.

15821

11430

45179

0 10000 20000 30000 40000 50000

MSGPCK

Our Approach

JSON

Kilobytes

Serializing List object with 100,000 elements

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.28, March 2018

`

18

Chart -2: File size after 500,000 serialized elements

4.3 Performance: Serialization Time
In Chart-3, we see the time in milliseconds that it took to

serialize a list of N elements with the object shown in Fig-4.

The tests proved that it shares almost the same serialization

time initially, however, as the number of elements increases;

our algorithm decreases the time compared to MessagePack,

the optimization algorithm reduce up to 50% the time in a list

of 500,000 items.

Chart -3: Serializing process time

5. CONCLUSIONS AND FUTURE

WORK
With our algorithm presented in this paper, we looked for

optimizing binary serialization process for the transfer of large

amounts of data over the network. This optimization is based

on an algorithm that separates the data from its definition,

avoiding repeating labels like JSON message does. The

serialized labels in binary format are the key to create the

model and then transform the serialized data dynamically to

the data definition/model previously created.

With the performance tests that were executed, we have been

able to demonstrate the efficiency of our algorithm, by

optimizing up to 25% the size of the files on disk and up to

50% of the serialization time of large amount of data.

Future work includes preparing this serialization process to be

interoperable, that means implements our algorithm to run

over different platforms not only .NET. Also we will work on

the integration of parallelism to this algorithm to be able to

read and process a large list of data.

Due serialization is an important process in the applications

that exchange messages, we will identify and study what

external processes or under what conditions in hardware of

software our performance could be affected.

6. REFERENCES
[1] J. M. Tekli, E. Damiani, R. Chbeir y G. Gianini, “SOAP

Processing Performance and Enhancement”, IEEE

Transactions on Services Computing, vol. 5, nº 3, 2012.

[2] G. Amorim, “The Importance of SOA to Cloud

Computing”, Service Technology Magazine, vol. 1, nº

87, 2014.

[3] Z. Mahmood, “Service Oriented Architecture: Potential

Benefits and Challenges”, 11th WSEAS International

Conference on COMPUTERS, Agios Nikolaos, Crete,

Greece, 2007.

[4] A. B. Dauda, Z. Saber, F. Alotaibi, M. A. Mustapha and

M. T. Abdullah, "Effect of serialized messaging on Web

services performance", 2017 International Conference

on Computing Networking and Informatics (ICCNI),

Lagos, 2017, pp. 1-5.doi:

10.1109/ICCNI.2017.8123774.

[5] A. Nagy and B. Kovari, "Analyzing .NET serialization

components", 2016 IEEE 11th International Symposium

on Applied Computational Intelligence and Informatics

(SACI), Timisoara, 2016, pp. 425-430. doi:

10.1109/SACI.2016.7507414.

[6] T. Aihkisalo and T. Paaso, "A Performance Comparison

of Web Service Object Marshalling and Unmarshalling

Solutions", 2011 IEEE World Congress on Services,

Washington, DC, 2011, pp. 122-129. doi:

10.1109/SERVICES.2011.61.

[7] K. Maeda, “Performance Evaluation of Object

Serialization Libraries in XML, JSON and Binary

Formats”, Digital Information and Communication

Technology and its Applications (DICTAP) 2012

Second International Conference, 2012.

[8] C. J. M. Tauro, N. Ganesan, S. Mishra y A. Bhagwat,

“Object Serialization: A Study of Techniques of

Implementing Binary Serialization in C++, Java and

.NET”, International Journal of Computer Applications,

vol. 45, nº 6, 2012.

[9] N. Abu-Ghazaleh y M. J. Lewis, “Differential

Deserialization for Optimized SOAP Performance”,

Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, 2005.

[10] S. &. R. Chawla, “Object Serialization Formats and

Techniques a Review”, Global Journal of Computer

Science and Technology Software & Data Engineering,

vol. 13, nº 6, 2013.
[11] V. C. Emeakaroha, P. Healy, K. Fatema y J. P.

Morrison, “Analysis of Data Interchange Formats for

Interoperable and Efficient Data Communication in

Clouds”, IEEE/ACM 6th International Conference on

Utility and Cloud Computing, 2013.

79102

61149

225900

0 50000 100000 150000 200000 250000

MSGPCK

Our Approach

JSON

Kilobytes

Serializing List object with 500,000
elements

0

500

1000

1500

2000

2500

3000

3500

M
ili

se
co

n
d

s

Elements

Serializing List<T>

MSGPACK

Our
Approach

IJCATM : www.ijcaonline.org

