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ABSTRACT 

In this paper we consider the design of FIR filters that satisfy 

magnitude specifications. We refer to such design problems as 

magnitude filter design problems. In this paper it is shown 

that by a change of variables, a wide variety of magnitude 

filter design problems can be posed as convex optimization 
problems, i.e., problems in which the objective and constraint 

functions are convex.  
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1. INTRODUCTION 

A digital filter is a computational tool to extract useful 

information and remove undesired components from input 

sequences, and simultaneously generate output sequences.  

In general, digital filters can be classified into two categories 

according to the 

duration of their impulse responses, finite-duration impulse 

response (FIR) and infinite duration impulse response (IIR). 

Generally , an FIR digital filter design can be equivalently 

formulated as a convex optimization problem in a finite-
dimensional linear space. Accordingly, its globally optimal 

solution can be achieved using various optimization 

techniques. 

However, when magnitude and phase responses are both 

under consideration, in general, it is hard to transform an IIR 

filter design problem into an equivalent convex optimization 
problem. Hence, globally optimal solutions cannot be 

definitely attained. 

The mathematics of convex optimization has been studied for 

about one century. However, new research interests in this 

topic have been rejuvenated due to the advances of interior-
point methods developed in the 1980s. Recently, many 

applications of convex optimization have been discovered in 

various fields of applied science and engineering, such as 

automatic control system, signal processing, VLSI circuit 

design, mechanical structure design, statistics and probability, 

and finance. There are many advantages of utilizing convex 
optimization to solve practical engineering problems. The 

most important one is that when a problem is equivalently cast 

as a convex optimization problem, any local solution is also a 

global optimum. Furthermore, a convex optimization problem 

can be solved very efficiently and reliably, using interior-

point methods [9,10]. 

It has been shown that given a desired frequency response, the 

WLS and minimax FIR filter design problems can be cast as 

equivalent convex optimization problems. Thus, the optimal 

designs can be definitely obtained.  

A Finite impulse response (FIR) filter is a linear 

system described by a convolution input-output relation. 
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Where u: Z→R is the input signal and y: Z→R is the output 

signal. We say n is the filter order, and 

( ) ( ) ( )( ) nRnhhhh ∈−= 1......,,1,0  are the filter 

coefficients. The filter frequency response H: R→C is defined 

as 

 

( ) ( ) ( ) ( ) ( )ωωω 11...10 −−− −++= njj enhehhH

    (1.2) 

Where .1−=j  Since H is π2 periodic and satisfies

( ) ,)(ωω HH =−  magnitude specification has the form 

( ) ],0[||)( πωω ∈≤≤ allforwHL  
   (1.3) 

We refer to L and U as the (lower and upper) frequency 

response bound functions. 

We can assume that ( ) ( )ωω UL ≤≤0 for all 

0,ω [ π]∈ , since ( )ωL  can be replaced by max 

( ) }0,{ ωL  without changing the constraint, and if 

( ) ( )ωω UL > for some ω  then the magnitude 

specification is evidently infeasible.  

The design problem can be expressed as the optimization 

problem. 

   Minimizeδ   

Subject to ( ) ],0[,||/1 pH ωωαωα ∈≤     (1.4) 

             

( ) ].,[, πωωδω sH ∈≤                      

 The optimization variables are the filter coefficients 
nh R∈  and the stop-band attenuation (bound) R∈δ . The 

Problem parameters are the filter order n, the passband 

frequency pω , the stop band frequency sω ,and the 

maximum allowed passband ripple.  

 In this paper we extend the idea and apply nonlinear 

convex Optimization techniques to a variety of magnitude 
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filter design problems. Linear and quadratic programming are 

well-developed fields; extremely efficient software is widely 

available. Making use of convex optimization methods more 

general than linear or quadratic programming preserves the 

solution efficiency, and allows us to handle a wider class of 

problems, e.g. problems with logarithmic (decibel) objectives. 

2.   SPECTRAL FACTORIZATION 

The autocorrelation coefficients associated with the filter  

(1.1) are defined as 
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    (1.5) 

 where we interpret h(t) as zero for 0<t  or

1−> nt , Since ( ) ( )trtr −=  and ( ) 0=tr  for 

,nt ≥ it suffices to specify the autocorrelation coefficients 

for ,1,.......0 −= nt with some abuse of notation, we 

will write the autocorrelation coefficients as a vector

( ) ( ) nRnrrr ∈−= )1,.....0(  

The Fourier transform of the autocorrelation coefficients is 
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i.e.,  the squared magnitude of the filter frequency response. 

We will use the autocorrelation coefficients 
nRr ∈  as the 

optimization variable in place of filter coefficients 
nRh ∈ . 

This change of variables has to be handled carefully, since the 

transformation from filter coefficients into autocorrelation 

coefficients is not One to one, and not all vector 
nRr ∈  are 

the autocorrelation coefficients of some filter. 

      The spectral factorization theorem states that are there 

exists an 
nRh ∈  such that nRr ∈  is the autocorrelation 

coefficients of h if and only if. 

    ( ) ].,0[0 πωω ∈≥ forallR                    (1.7) 

     The process of determining filter coefficients h whose 

autocorrelation coefficients are r, given an
nRr ∈ that 

satisfies the spectral factorization condition (1.7), is called 
spectral factorization. 

     The magnitude specification (1.3) can be expressed in 

terms of the autocorrelation coefficients r as 

( ) ( ) ( ) ].,0[
22 πωωωω ∈≤≤ allforURL   

 If we consider r that are the autocorrelation 
coefficients of some h,    

   

( ) ( ) ( ) ( ) ].,0[0,
22 πωεωωωω allforRURL ≥≤≤

           (1.8)         

These conditions are equivalent to the original magnitude 
specification in the following sense: there exists an h that 

satisfies (1.3) if and only if there exists an r that satisfies 

(1.8). Note that the spectral factorization constraint 

( ) 0≥ωR  is redundant, it is implied by  

                                       ( ) ( )ωω RL ≤2

.                                                                      

(1.9) 

     For each ω . the constraints in (1.8) are a pair of linear 

inequalities in the vector r; hence the overall constraint (1.8) 

is conver in r.  

3.  CONVEX OPTIMIZATION 

The convex optimization problems of the general form 

 Minimize )(0 xf  

 Subject to ,bAx =  

  ( ) ,........,1,0 mixf i =≤  
                              (1.10) 

( ) ,.......,,.........1],,0[,0, pixg i =∈≤ πωω    

where 
kRx ∈ω   is the optimization variable, f0, …….,fm : 

Rk→ R are convex functions, and for each 

),(],,0[ ωπω xg i∈  are convex functions of x. Note 

the three types of constraints: bAx =  are the equality 

constraints; ( ) 0≤xf i  are the (ordinary) inequality 

constraints; and ( ) 0, ≤ωrg i  for all ω  are the semi-

infinite inequality constraints. If the objective function 0f
 is 

identicall zero, the problem (1.10) reduces to verifying 

whether the constraints are feasible or not, i,e., to a feasibility 
problem. 

The semi-infinite inequality constraint 

( ) ],,0[,0, πωω ∈≤ allforxg i   

can be handled by expressing it as the ordinary inequality 

constraint 

( ) ( ) .0,sup ≤= ωxgxh ii  

],0[ πω ∈                                      

It is easily verified that hi  is a convex function of x, since for 

each ( )ωω ,, xg i  is convex in ω . (On the other hand, 

ih
  is often nondifferentiable, even if the function gi  are 

differentiable.) Thus, the semi-infinite constraints in (1.10) 

can be handled by several methods for general 

(nondifferentiable) convex optimization. 

 The semi-infinite constraints can also be 

approximated in a very straight forward way by sampling or 

discretizing frequency. We choose a set of frequencies. 

,..............0 2 πωωω ≤≤≤≤≤ Ni  

oftern uniformly or logarithmically spaced, and replace the 

semi-indifinite inequality constraint. 

( ) ],,0[,0, πωω ∈≤ allforxg i   

with the set of N ordinary inequality constraints 
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( ) .....,..........,1,0, NKxg ki =≤ω  

When N is sufficiently large, discretization yield a good 

approximation of the SIP [19].  

As an example consider the lowpass filter design problem 

given by (1.9). 

The discretized approximation has the form. 

                             Max  δ  

Subject to        
2 21/ ( ) ,   [0, ]k k pRα ω α ω ω≤ ≤ ∈  

   
ˆ( ) ,     [ , ]k k sR ω δ ω ω π≤ ∈               (1.11) 

 ( ) 0,     [0, ]k kR ω ω π≥ ∈  

This is in fact a linear program (LP) with n+1 variables (r, ), 

and 2N linear inequality constraints.  

 The sampled version of the problem is an outer 

approximation of the original problem, its feasible set 

includes the feasible set of the original problem. In many 

cases this causes no particular harm, especially if N is large. 

But if the spectral factorization condition does not hold. i.e., 

( ) 0<vR  for some  between samples, then spectral 

factorization breaks down; we can not find a set of filter 

coefficients h that have r as its autocorrelation. Several 

methods can be used to avoid this pitfall. The simplest is to 
add a small safety margin to the sampled version of the 

spectral factorization condition, i.e., replace it by 

( ) NKR k ,.........1, =≥ εω                     (1.12) 

Where ε is small and positive. This can be done in an ad hoc 

way, by increasing ε (and re-solving the problem ) until the 

spectral factorization of R is successful. If N is large this will 

occur when ε is small. 

We can also analyze the approximation error induced by 

discretization by bounding the variation of the functions 

( )ω,xg i  for  between samples. To give a very simple 

example, assume we use uniform frequency sampling i.e., 

( ) ..,.........1,/2/1 Nknkk =−= πω   we assume 
we have (or impose) some bound on the size of h, say, 

( ) ( ) .1..........0|||| 2

2
Mnhhh ≤−++=  

Thus, ( ) 22||||0 mhr ≤= , and a standard result show that 

( ) 2|| Mtr ≤  for all t. 

Now let w be any frequency in [o,п] and denote the nearest 

sampling frequency, so that, ( ).2|| Nk πωω ≤−  we 

have 

1 1
2 2 2

1 1
1

4 sin 4 ( 1) /
n n

k k

t t
t

M t M t M n n Nω ω ω ω π
− −

= =
=

≤ − ≤ − ≤ −∑ ∑

Thus, the inters ample error cannot exceed 

( ) NnnM /12 π−  (which evidently converges to zero as 

N→∞). For example, if we take έ ( ) NIInnM /12 −  in 

(1.12), then it is guaranteed that the (semi-infinite) spectral 

factorization condition (1.7) will be met. The bound 

developed here is very simple, and only meant to give the 

general idea; far more sophisticated bounds can be derived. 

 In the remainder of this chapter we will pose 

problems first, as convex, semi-infinite problems. We then 

either give the sampled version, or point out if it has a special 

form such as LP. The sampled versions can be thought of as 

approximation (which are probably more than adequate for 

practical design) or as subproblems that arise in sophisticated 
algorithms that handle the semi-infinite constraints exactly.  

4. LOWPASS FILTER DESIGN 

In this section we consider the lowpass filter design problems. 

The same techniques are readily applied to other filters such 

as highpass, bandpass, notch, bandstop, or complex filter 

types with multiple stop and pass bands. 

 The constraints consist of a passband ripple 

specification, 

( ) ],,0[|||/1 pforH ωωαωα ∈≤≤  

where pω
 is the passband frequency, and  1≥α  gives 

the passband ripple. The stopband attenuation specification is 

given by 

( ) ],[|| ,πωωδω sforH ∈≤   

where
pω , is the stopband frequency, and δ  gives the 

maximum stopband gain. These specification are illustrated in 

figure 1. 

 We have seen that the problem of maximizing 

stopband attenution (i.e., minimizing δ ) can be formulated 

as convex optimization problem. 

  Minimize δ  

    Subject to    ( ) ],,0[|/1 22

pR ωωαωα ∈≤     

   

         ( ) ],,0[,0 πωω ∈≥R    

 which, when discretized in frequency, yields an LP.  

We can consider several variations on this problem. Suppose 

we fix the stopband attenuation and wish to minimize the 

passband ripple. This can be expressed as the optimization 

problem. 

     Minimize α  

Subject to ( ) ],,0[|/1 pR ωωαωα ∈≤       

                                 ( ) ],,0[,0 πωω ∈≥R    

where the optimization variables are r andα . The problem 

parameters are δ, ,pω
sω  (and the filter order n). (The 

optimization variable α  corresponds to 
2α   in the ripple 

specification.) 

 This problem is in fact a conver optimization 

problem. To see this we consider the specifications at a fixed 

frequency w. the constraints 



International Journal of Computer Applications (0975 – 8887) 

Volume 180 – No.28, March 2018 

38 

( ) ( ) ( ) 0   ,  , 2 ≥≤≤ ωδωαω RR  

Are linear inequalities on the variables (r, α ). The 

remaining, nonlinear constraint is 

( ) 0/1 ≤− ωα R  

 The function ( )ωα R−/1  can be verified to be 

conver in the variables (r,α ) (since 0>α ). Indeed, when 

sampled this problem can be very efficiently solved as a 

second-order come program (SOCP). The passband ripple 

minimization (in dB) cannot be solved (directly) by linear 

programming; it can, however, be solved by nonlinear convex 
optimization. 

 It is also possible to include several types of 

constraints on the slop of the magnitude of the frequency 

response. We start by considering upper and lower bounds on 

the absolute slop, i.e., 

                                  / ( ) .a d h bω≤ ≤  

This can expressed as 

                          
1/2

2

( )

dR

dR da b
d R

ω ω
ω ω

≤ = ≤  

which (since ( )R ω is constrained to be positive) we can 

rewrite as  

( ) ( ) .2/2 bRddRaR ωωω ≤≤  

Now we introduce than assumption that 0≤a  and 

.0≥b  The inequalities can be written. 

 

( ) ( ) .0,0/2 ≤−≤− ω
ω

ωω Rb
d

dR
ddRRa  

       (1.13) 

Since ( )R ω  is a linear function of r(and positive), 

( )R ω is a concave function or r. Hence the function 

( )ωRa    and ( )ωRb−  are convex (since 0≤a  

and .0≥b ) Thus, the inequalities (1.13) are convex (since 

ωd

dR
is a linear function of r).  

5. LOGARITHMIC CHEBYCHEV 

APPROXIMATION 

 Consider the problem of designing an FIR filter so 

that its frequency response magnitude best approximates a 
target or desired function, in the sense of minimizing the 

maximum approximation error in decibels (dB). 

We can formulate this problem as 

Minimize sup 

( ) ( ) |log||logsup
],0[

ωω
πω

DH −
∈           

where RD →],0[: π  is the desired frequency response 

magnitude (with ( ) 0≤aD ω  for all ω ). We call (1.14) a 

logarithmic chebychev approximation problem, since it is a 

minimax (Chebychev ) Problem on a logarithmic scale. 

 We can express the log-Chebychev problem (1.14) 

as 

                                Minimize  a  

     Subject to   ( ) ( ) ],,0[,//1
2 πωωω ∈<≤ aDRa  

( ) ],0[,0 πωω ∈≤aR  

where the variable are 
2r R∈  and a R∈  This is a convex 

optimization problem. Simple variation on this problem 

includes the addition of other constraints or a frequency-

weighted log-Chebychev objective. 

6. MAGNITUDE EQUALIZER DESIGN 

In the simplest magnitude equalizer problem, we are given a 

function [ ]: 0,T Cπ →  not necessarily the frequency 

response of an FIR filter), and need to design an FIR filter 

(equalizer) H so that the product TH has approximately 

constant magnitude, e.g., one; 

| ( ) ( ) ].,0[ allfor  1| πωωω ∈≈HT  

Where the equalizer processes the signals before the given 
function; but the problem is the same if the order of the 

equalizer and give function, but the  problem is the same if the 

order of the equalizer and given function is reversed. Not also 

that we only need to know the Magnitude ( )T ω , and not 

( )T ω , for [0, ].ω π∈  

 The equalizer problem can be posted as the log-

Chebychev approximation  problem. 

             Minimize   

( ) ( )ωω
πω

HT ||logsup
],0[∈  

which is readily formulated as a convex problem using the 

autocorrelation coefficients r as the design variables: 

                       Minimize   α  

      Subject to   ( ) ( ) ],,0[,//1
2 πωωωα ∈<≤ aTR          

                               ( ) ],0[,0 πωω ∈≤R    

 In many applications we must add regularization 

constraints on the equalizer frequency response, to keep the 

magnitude or its slope from being too large. These constraints 

are readily handled. For example, we can impose (frequency-

dependent) bounds on | H | and its absolute or logarithmic 

derivative, as described above. A very simple way to bound 

the size of h is to impose the constraint. 

( ) ( ) ( ) 222
1......00 Mnhhr ≤−++=  

 (which is a single linear inequality on r). 

    So far we have assumed that the target equalized gain, i.e., 
the desired valus of | TH, is one. We can also allow some 

freedom in the target value of the equalized gain. This type of 

problem can be handled using an absolute (or more 

accurately, squared) criterion. 
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   Minimize 

( ) ( ) ,|sup
2

],0[

γωω
πω

=
∈

HT
 

where 
γ

 is subject to  some bounds such as 

,21 hγγγ ≤≤  and h is subject to some regularization 

constraints. Note that the optimization variables here are h and
γ

. 

we can cast this as the convex problem 

                 Minimize           α  

 Subject to                 

( ) ( ) ],,0[,||
2 πωαγωω ∈≤−TR    

                                            ( ) 0, [0, ]R ω ω π≥ ∈   

where in addition we have limits on  
γ

and some 

construction on H ( i.e.., R). If this problem is discretized, it 

becomes an LP. 

We can formulate the multi system magnitude equalization 

problem as a minimax log – Chebychev approximation 

problem : 

             Minimize  max 
( ) ( ) |||log|supmax

],0[,...1
ωω

πω
HTK

kk ∈=                          

(1.16) 

 In this formulation we have fixed the target value for each  |

kT H | as one : it is of course possible to have different target 

values for different k. We should point out that this minimax 

formulation already builds in a form of regularization: 

( )H ω will become large only if all of the ( )kT ω  are 

small. 

The goal is to choose H so that the magnitude response at

1......, ky y  are all approximately overω .           

We can formulate a minimax squared magnitude problem 

such as  

 Minimize 

 
( ) ( ) ,|supmax 2

],0[,...2,1
kHT k

kk
γωω

πω
−

∈=                             

To which we might add constraints on kγ  such as a lower and 

upper bound. Here the variables here are H and 

.,........,1 kγγ  This problem can be cast as the convex 

problem. 

             Minimize  α   

Subject to  

 ],0[ ,,....1  ,)()(
2 πωαγωω ∈=≤− KkRT kk

This becomes an LP when discretized.  

                    1 2 2 3 1[ , ],[ , ]........[ , ]k k+Ω Ω Ω Ω Ω Ω  

where 10 ..... .k π+< < Ω ≤ . A common choice of 

frequencies differ by one-third octave, i..e .., 

12

3

k

k

−

Ω = Ω  

for k=1,………., K. The average gain of a function G: [ 0, π] 

 C over the kth band [Ώk, Ώ k+1], is defined by  

                   
1

1/2

2

1

1
( )

k

k
k k

G dω ω+Ω

Ω
+

 
 Ω −Ω 

∫  

 Using a log- Chebychev (criterion for the gains and r as the 

variable, we can express this equalization problem as 

                     Minimize         α 

                      Subject to        

1

1

1 1
    1,.......,

k

k
k k

k k
α

+Ω

Ω
+

≤ =
Ω −Ω ∫  

                                             ( ) 0    [0, ]R ω ω π≥ ∈            

This is a convex problem in r and α. To solve it numerically, 
we can approximate the integral by frequency sampling. 

(Indeed, |T| is likely to be given by its values at a fine 

sampling of frequencies, and not in some analytical form). We 

can also, of course add constraints on H. 

7. LINEAR ANTENNA ARRAY 

WEIGH DESIGN 

Consider a liner array of N isotropic antennas spaced 

uniformly a distance d apart in a plane as shown in figure 9. A 

plane harmonic wave of wavelength λ is incident on the array 

from angle θ . The antennas sample the incident wave, and the 

resulting singals are demodulated and then linearly combined 

with the antenna weights 1........, n Cω ω ∈  (which are our 

design variables) to form the combined out put of the antenna 

array, which is a complex number G. The array output G 

depends on the incidence angle θ of the incoming wave (and 

also the weight). As a function of the incidence angle G: [0,π] 
 C is called the pattern function, and is given by 

               

1

0

( ) ,
n

jk

k

k

G eθ ω
−

− Ω

=

=∑                                            (1.17) 

where Ώ depends on the incidence angle as  

        
2

cos
dπ

θ
λ

Ω = −                               

(1.18) 

If we define H : [ -π π ] as  

                          

1

0

( ) ,
n

jk

k

k

H eω
−

− Ω

=

Ω =∑  

Then we have G (θ) = H (Ω ). H is then the frequency 

response of an FIR filter with (complex) coefficients 

1,...... nω ω .Since  H does not satisfy ( ) ( )H H−Ω = Ω  

(as the frequency response of an FIR filter with real 

coefficients does), we specify H over Ω ∈ [-π, π ]. 

For θ∈ [0,π ]Ώ is monotonically increasing function of θ, 

which we will denote Ψ,ϊ.e.., Ψ (θ) = - 2 πd/ λ cos θ. As the 

incidence angle θ varies from 0 to π, the variable, Ω =ψ(θ) 

varies over the range 2 /θπ λ± . To simplify the discussion 

below, we make the (common) assumption that d<λ/2, i.e.., 

the element spacing is less than one half wavelength. This 
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implies that for [0, ], ( )θ π ϕ θ∈ = Ω  is restricted to an 

interval inside [-π ,π ]. An interval.  

θmin < θ <  θmax, 

where θmin, θmax∈[0,π], transforms under (1.18) to the  

min max,Ω ≤ Ω ≤ Ω  

where Ωmin ,= ψ (θmin) andΩmax = ψ (θmax), which lie 
in [-π,π].  

By analogy with the FIR filter design problem, we can define 

an antenna pattern magnitude specification as 

( ) ( ) ( )for all [0, ].L G Uθ θ θ θ π≤ ≤ ∈          (1.19) 

   An antenna array weight design problem involves such 

specification. As a simple example suppose, we want the 
array to have approximately uniform sensitivity corresponding 

interval 

                   for [0, ],bθ θ∈ , and sensitivity as small as 

possible in the interval [θs,π]. This problem can be possible as 

. 

                     Minimize    
γ

 

Subject to   1/ ( ) ,    [0, ]bGα θ α θ θ≤ ≤ ∈
     (1.20) 

               ( ) ,    [ , ].sG θ α θ θ π≤ ∈  

This problem is the analog of the lowpass filter design 

problem (1.4) Here  

    θb   denotes the ( half) beamwidth, θs denotes the beginning 

of the side lobe, and is called the side lobe attenuation level. 

      Minimize δ   

              Subject to  

[ ]1/ ( ) , (0), ( )bHα α ψ ψ θ≤ Ω ≤ Ω∈           (1.21)

                       

[ ]( ) , ( ), ( )sH δ ψ θ ψ πΩ ≤ Ω∈         

Now (1.21) is a lowpass filter design problem, but with 

complex coefficients wi  and specification over the interval [ -

π,π]. It can be handled like an FIR filter magnitude design 

problem, by an extension of spectral factorization to the 
complex case. 

 We define the (now complex) autocorrelation 

coefficients r(k), associated with ω , as       

1

1

( ) .                0,.... 1.                            (1.22)
n

i i k

i

r k k nωω
−

+
=

= = −∑
  The Fourier transform of r is  

       

1
2

1

( ) ( ) ( ) ,
n

jk

k n

R r k e Gθ θ
−

−

=− −

= Ω =∑
           

is the squared magnitude of the antenna pattern function ( 

where θ and  Ω  is related as in (1.17)).We can use r∈Cn as 

the design variables, provided we add the spectral 

factorization condition R (θ) ≥ 0 for all θ∈[0,π]. 

The magnitude constraint can be expressed in terms of R as 

2 2 2( ) ( ) ( )    for all [0, ],L R Uθ θ θ θ π≤ ≤ ∈                

i.e., as an (infinite) set of linear inequalities onγ .  

8.  CONCLUSIONS  

                  We have shown that a variety of magnitude FIR 

filter design problem can be formulated, in terms of the 

autocorrelation coefficients, as possibly nonlinear) convex 

semi-infinite optimization problems. As a result, the globally 

optimal solution can be efficiently computed. By considering 
nonlinear convex optimization problems, we can solve a 

number of problems of practical interest, e.g. minima decibel 

problems, with an efficiency not much less than standard 

methods that really on, for example, linear or quadratic 

programming. 
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