
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.29, March 2018

49

Evaluating Various Quality Factors for Splitting Nodes in

Tree-Structured Spatial Indices

Esam Al-Nsour
Computer Science Department,

King Abdulla II School for
Information Technology “KASIT”

University of Jordan
Amman, Jordan

Azzam Sleit
Computer Science Department,

King Abdulla II School for
Information Technology “KASIT”

University of Jordan
Amman, Jordan

Mohammad Alshraideh
Computer Science Department,

King Abdulla II School for
Information Technology “KASIT”

University of Jordan
Amman, Jordan

ABSTRACT

The massive increase of multi-dimensional (spatial) data

collected, either in size or veracity, has demanded better

spatial index techniques able to handle efficient storing and

fast retrieval of spatial objects. No matter how big the data

are, eventually it will reside on physical storage media

arranged as a series of logical blocks with prefixed sizes

resembling nodes in tree-structured spatial indices. Good node

splitting strategy is essential since it affects; the final shape of

the index, the overlap area between nodes, and the overall

index performance. Better node splitting process results will

be obtained if multiple splitting strategies (quality factors)

were combined to govern the split decision, and it will

eliminate the need for dynamic or static tree packing.

Three widely used quality factors; minimizing total overlap

area, even distribution of objects, and squared nodes’ margins,

along with a fourth factor named the “preferred-axis” were

merged in one combined value to govern the split decision.

Provided results, for the index creation tests and different

sized window queries performance, indicate the superiority of

the combined quality factors strategy in comparison of other

unilateral usage of quality factors. Provided results showed

that combined quality-factors strategy had outperformed

different two strategies found in the literature in both index

creation tests and index performance tests. The obtained

results were achieved without the need for any dynamic or

static tree packing.

General Terms

Algorithms, spatial indexes, node splitting, R trees.

Keywords

Splitting strategies, combined node splitting quality factors,

Objects classification, Spatial big data.

1. INTRODUCTION
The insisting need for proper storing and fast retrieval of

spatial – multidimensional – objects made spatial data indices

of great importance [1, 2]. Spatial data collected, which are

increasing in size and veracity [3, 4], demanded better spatial

index techniques able to handle efficient storing and fast

retrieval of spatial objects [5, 6].

In the literature, different types of spatial indices were

proposed that can deal with multidimensional data and

preserve the objects’ spatial properties [7-9], one of the

widely accepted among these is the R-tree spatial-data index

[10] proposed by Guttman in 1980 [11]. R-tree index is a tree

data structure that stores spatial objects using its minimum

bounding rectangle (MBR) in leaf nodes which resemble disk

pages. Tree nodes (Disk pages) have a limited storage

capacity; it can hold up to a certain amount of spatial objects

(Data). If a leaf node becomes full and an additional object(s)

need to be added to it, then this node should be split, splits

may propagate up to the tree root.

Good node splitting strategy is fundamental; it affects the

final shape of the index, the overlap area between nodes, and

the overall performance of the index [12]. In the search for

suitable splitting strategies, a vast amount of research was

proposed in the literature. In general, they were designed to;

reduce overlap area between tree nodes [11], getting more

even distribution of objects among nodes [12], and having

more squared nodes shapes [13]. These strategies are referred

to as the node splitting quality factors. Up to our best

knowledge, in all the research proposed only one quality

factor is governing the tree nodes splitting process at a time.

Even when a different quality factor is used for splitting

different levels of the tree as the case of the R*-tree, or when

an alternative quality factor is used to break ties in the

adopted quality factor computed values. We haven’t

encountered any situation where two or more quality factors

values were combined, and its combination is governing the

split process.

This work introduces: (1) A naming convention for node

regions of two-dimensional nodes case. How spatial objects of

a node are classified according to node’s regions. The use of

objects classification as a quality factor (preferred-axis quality

factor) to govern node splitting process, and performance tests

of this quality factor. (2) A formula to combine four different

quality factors; the three quality factors used in the literature

and the preferred-axis quality factor, along with a percentage

weight given for each quality factor to control its participation

rate in the final result. Introduce the combination of weights

assigned to the quality factors that produced the best results

during index creation and query performance tests.

1.1. Naming convention
In a node of any dimension, drawing lines at the center of

each axis will produce distinct regions, four regions in the

case of 2-d nodes, eight regions for 3-d nodes, and so on.

Each region is given a unique name. For example, the four

regions of a 2-d node naming convention are: The Higher-Left

region (RHL), the Higher-Right region (RHR), the Lower-Left

region (RLL), and the Lower-Right region (RLR), all regions

meet at the node center (Xcen, Ycen). A graphical

demonstration of regions naming convention is illustrated in

figure 1 [14].

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.29, March 2018

50

Fig 1: Node’s regions naming convention for a 2-d node.

1.2. Objects classification
Objects belonging to a node can be classified according to the

node’s regions that they spanned in. In the case of a 2-d node

any object is enclosed in a minimum bounding rectangle

(MBR), the MBR has two points; the lowest point with (Xlow,

Ylow) coordinated, and the highest point with (Xhigh, Yhigh)

coordinated. There are only three possibilities for the object

located inside the node: an object is located in only one

region, spanned in two regions, or spanned in four regions [9].

Supposing that the node is to be split at the center of one of its

main axes along the other axis then the possible overlap

imposed by each object according to its classification can be

predicted. In general; any object which is resided entirely in

only one region will not impose any overlap whatever the

chosen split axis is. Objects that are spanned in two regions

will just impose overlap if the chosen split axis is the one

opposite to its longest side. Objects that are traversed in four

regions will impose overlap on either axis selected, and for

this case it can only predict which split axis will impose less

overlap [15].

Table 1 presents a summary of the classification cases (object

start region), classification subcases (object end region), the

object is spanned in which regions, along with the possible

overlap effect according to objects locations [14].

Table 1. Possible produced overlap in node-splitting process according to objects locations

Classification: Object:

Overlap effect
Case Subcase

Start region

(Xlow, Ylow)

End region

(Xhigh, Yhigh)
Spanned in

1 -- RHR RHR RHR only No effect

2
a RLR RLR RLR only No effect

b RLR RHR RLR & RHR Only along X-axis

3
a RHL RHL RHL only No effect

b RHL RHR RHL & RHR Only along Y-axis

4

a RLL RLL RLL only No effect

b RLL RLR RLL & RLR Only along Y-axis

c RLL RHL RLL & RHL Only along X-axis

d RLL RHR All regions On either axis

1.3. Using objects locations as a quality

factor.
The object-classification enabled the use of a new quality

factor that describes the preferred splitting axis by objects. A

preferred axis is simply the axis that if the node is to be split

along it then objects majority will not produce overlap area

between resulting nodes, preferred-axis factor value for each

axis is calculated by dividing the count of objects favoring

that axis by the total number of objects in the overflown node.

Preferred-axis factor graphical demonstration of is presented

in figures 2, 3 and 4 for the splitting of a 2-d node

In figure 2, an overflown node with eight objects: Four

objects are located in only one region and thus do not favor

any axis (objects 1, 3, 7, and 8). Four objects are spanned in

two regions with its longest side is facing the X-axis, and thus

favoring splitting along X-axis (objects 2, 4, 5, and 6). There

are no objects favoring splitting along Y-axis. It follows that

X-favored ratio is (4/8 = 0.5), while the Y-favored ratio is (0/8

= 0.0), and the node will be split along the X-axis. The result

of splitting the node along the X-axis is presented in figure 3,

while figure 4 shows the resulting nodes if splitting was along

the Y-axis. The total coverage area for resulting nodes when

splitting along the X-axis had decreased with no overlap area

between resulting nodes, while an overlap area percentage of

around 30% when the split was along the Y-axis.

Fig 2: An overflown node with eight objects.

Fig 3: The two resulting nodes when splitting along X-axis.

Lower Left Region

(R
LL

)

Higher Left Region

(R
HL

)

Higher Right Region

(R
HR

)

Lower Right Region

(R
LR

)

(X
h
, Y

h
)

(X
L
, Y

L
)

 (X
L
, Y

h
)

(X
h
, Y

L
)

 (X
Centre

)

(Y
Centre

)

 (X
Cen

, Y
Cen

)

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.29, March 2018

51

Fig 4: The two resulting nodes with the overlap area

between resulting nodes when splitting along Y-axis.

To investigate the performance of the index built by the

preferred-axis quality factor, tests were performed against two

other algorithms; the original R-tree quadratic splitting

algorithm (Quad), and the CBS linear algorithm. Each of the

three algorithms was used to build an index using 100,000

uniformly distributed objects with different sizes. Maximum

object size is 0.01 of the world space, generated by a C++

random generator, nodes maximum fill (Max fill) constraint

was set to 50 objects, nodes minimum fill (Min fill) restriction

was set to Max/4 objects.

Results of index creation tests by each algorithm are listed in

table 2. The table shows that the new splitting quality factor

has produced the least number of internal, leaf, and total index

tree nodes. Furthermore, it has the least amount of overlap

area percentage between resulting nodes when splitting (best

results are underlined).

Table 2. Results of index creation tests by the Quad, CBS,

and Preferred-axis algorithms using Uniform data file

with 100,000 MBRs, minimum fill = Max/4.

Index nodes

count
Quad Alg. CBS Alg.

Preferred-

axis Alg.

Internal 102 90 79

Leaf 3227 2902 2896

Total 3329 2992 2975

Overlap area % 6.95% 5.59% 3.93%

For further investigating properties of the preferred-axis

quality factor, performance tests were conducted over the

indices produced by each algorithm with same settings using

uniformly distributed window queries of different sizes;

window sizes were (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50) of

the world size. For each window size, ten random-generated

window queries of the same size were invoked, query results

resemble the count of disk accesses needed to fulfill the

query, and the average of these ten queries is recorded for

each query size in table 3, along with the performance gain

percentage. The table shows a performance gain percentage

between 10% up to 20% for the preferred-axis quality factor

algorithm against the Quad algorithm (1- (Preferred-axis /

Quad)). A performance gain percentage between 2% up to

27% for the preferred-axis quality factor algorithm against the

CBS algorithm (1- (Preferred-axis / CBS)). Figure 5 shows

the performance gain percentage of the preferred-axis

algorithm against the Quad algorithm and the CBS algorithm,

performance gain is the highest at small query sizes and start

to decrease during query size is increasing.

Table 3. Results of index performance tests by the Quad, CBS, and Preferred-axis algorithms using Uniform data file with

100,000 MBRs

Widow size Preferred-axis Alg. Quad Alg.
Performance gain over

Quad Alg.
CBS Alg.

Performance gain over

CBS Alg.

0.01 6.5 8.1 19.75% 8.9 26.97%

0.05 21.2 24.3 12.76% 23.5 9.79%

0.10 51.5 60.4 14.74% 60.7 15.16%

0.20 156.5 180.9 13.49% 169.2 7.51%

0.30 331.8 373.4 11.14% 349.7 5.12%

0.40 559.0 628.7 11.09% 586.0 4.61%

0.50 845.9 947.5 10.72% 863.8 2.07%

2. FORMULA TO COMBINE QUALITY

FACTORS
In the search for getting better results, the next step was to

combine the Preferred-axis splitting quality factor with well-

known three quality factors, namely: overlap area percentage,

even distribution of objects, and squared margins. The four

factors are to be used in one splitting algorithm altogether to

determine the best split possible of an overflown node along

one of its main axes. For each main axis, each quality factor

value is calculated independently, and is normalized in the

range between [0, 1], the sum of the four factors normalized

values for each axis is compared, and the highest sum

determines the split axis. Furthermore, a percentage weight

was given for each normalized quality factor value to adjust

the participation percentage of each quality factor in the final

split decision or even canceling its participation at all. The

way of combining quality factors for the X-axis of a two-

dimensional node is given in formula (1), and the same is

done for other axes.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.29, March 2018

52

Fig 5: The performance gain percentage of the preferred-

axis algorithm against Quad algorithm and CBS

algorithm for different query sizes.

The notation (1, 1, 1, 1) is used to represent the order of

weights given to quality factors (overlap, preferred-axis, even

distribution, and squared margin), the weight value assigned

to each factor can range between 0% (0.0) and 100% (1.0). In

the following tests; Uniform data file was used in creating the

index, nodes maximum fill are set to 50 objects, and nodes

minimum fill is Max/4 objects. Each window size recorded

result is the average of 10 random generated window queries.

First tests were conducted using only one quality factor

weight set to 1 (100%) while all other three quality factors

weights set to zero (0%) of the same size, results are shown in

table 4, the best result for each row is underlined.

All Factors Normalized For X-axis =

((Normalized Value of Factor_1 for X-axis *

Factor_1 Weight) +

(Normalized Value of Factor_2 for X-axis *

Factor_2 Weight) +

(Normalized Value of Factor_3 for X-axis *

Factor_3 Weight) +

(Normalized Value of Factor_4 for X-axis *

Factor_4 Weight)) --

(1)

Table 4, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting only

one factor to 100%

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

Index nodes

count

Internal 75 79 88 87

Leaf 2903 2896 2900 2904

Total 2978 2975 2988 2991

Overlap area % 3.86% 3.93% 5.32% 4.11%

Query size %

0.01 6.9 6.5 9.9 6.5

0.05 19.6 21.2 27.0 19.7

0.10 51.3 51.5 57.2 51.0

0.20 157.6 156.5 167.1 159.4

0.30 329.0 331.8 343.9 335.2

0.40
563.1 559.0 586.4 563.3

0.50
856.0 845.9 877.0 855.1

The best results were changing between the different

combinations, although the combination (0, 0, 1, 0) didn’t get

any best result, it got the second best result in leaf nodes

count.

Next, tests were conducted using the same settings with only

two quality factors weights set to 1 (100%) and the other two

quality factors weights set to zero (0%), the results are shown

in table 5. best result for each row is underlined.

Table 5, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting only

two factors weights to 100%.

1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,0 0,1,0,1 0,0,1,1

Index internal nodes 77 80 75 85 72 78

Index leaf nodes 2895 2882 2880 2874 2883 2862

Index total nodes 2972 2962 2955 2959 2955 2940

Overlap area percentage 3.83 4.19 3.92 4.27 3.99 4.51

Query size %

0.01 7.0 6.8 6.6 7.8 6.6 6.9

0.05 20.3 21.3 20.2 21.3 20.8 20.6

0.10 53.0 54.0 50.1 56.0 50.8 50.9

0.20 158.5 159.8 155.5 159.4 153.9 157.6

0.30 330.1 328.1 322.4 331.0 322.6 328.2

0.40 560.1 564.1 553.1 566.7 557.0 556.6

0.50 845.8 848.4 836.6 843.9 838.8 840.4

Best results were still changing between different

combinations. Best results for the index internal index nodes

were for the combination (0,1,0,1), while best results for the

leaf and total index nodes were for the combination (0,0,1,1).

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.29, March 2018

53

The combination (1,1,0,0) got the least overlap ratio, and the

most of best results for the window query were for the

combination (1,0,0,1).

Next, tests were conducted using the same settings while

setting three quality factors weights to 1 (100%) and only one

quality factor weight set to zero (0%), results are shown in

table 6 including the last case where all four weights are set to

100%.

From the fourth, fifth, and sixth tables, it can noticed that in

index creation tests; the least index internal nodes resulted

from the combination (0,1,0,1), the least index leaf nodes and

the least index total nodes resulted from the combination

(0,1,1,1), and the least overlap ratio resulted from the

combination (1,1,0,0). In index query performance tests, it is

noticed that in small query sizes the best performance for the

size 0.01 was for the combinations (0,0,0,1) and (0,1,0,0), for

query size 0.05 the best performance was for the combination

(1,0,0,0), for query size 0.20 the best performance was for the

combination (0,1,0,1), and for all other query sizes (0.10,

0.30, 0.40, 0.50) the best performance was for the

combination (1,1,0,1).

Table 6, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting three

factors weight to 100%.

 1,1,1,0 1,0,1,1 1,1,0,1 0,1,1,1 1,1,1,1

Internal nodes 81 77 74 76 79

Leaf nodes 2886 2868 2868 2841 2849

Total nodes 2967 2945 2942 2917 2928

Overlap area % 3.91 3.99 3.88 4.11 3.89

Query size %

0.01 7.8 7.2 6.8 6.8 7.0

0.05 20.5 20.3 19.9 21.3 21.3

0.10 52.6 52.8 49.2 52.3 51.1

0.20 158.7 154.8 154.0 155.7 156.5

0.30 326.8 323.7 321.0 322.5 325.2

0.40 559.2 553.9 544.5 552.4 550.8

0.50 846.4 840.2 829.2 832.5 829.8

From the previous tests, it can be observed that each factor

has a good influence on some cases and a bad influence on

some other cases. For having the best results possible, unequal

weights for the factors were applied; and several tests were

conducted using weights ranging between 0% and 100%.

After performing many experiments, better results are

observed possible if using different weights for each factor.

The quality factors weights combinations listed in table 7 as

an example of weights combinations which had shown better

results in one or more criteria used, the best results in most

tests criteria were seen when the combination (0.9,0.5,0.5,0.5)

was used.

Table 7, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting three

factors weight to 100%.

 1,1,0.5,0.9 1,0.9.0.5,0.5 1,0.8.0.5,0.5 1,0.5.0.5,0.5 0.9,0.5.0.5,0.5 0.8,0.1.0.5,0.5

Index internal nodes 76 76 75 78 77 75

Index leaf nodes 2872 2851 2853 2842 2839 2859

Index total nodes 2948 2927 2928 2920 2916 2934

Overlap area

percentage
3. 809 3.811 3.805 3.860 3.855 3.918

Query

size %

0.01 7.1 7.0 7.1 7.0 7.0 7.2

0.05 20.2 20.4 20.4 20.8 20.9 19.4

0.10 50.4 50.0 50.0 50.7 50.1 51.3

0.20 155.6 154.7 155.0 156.6 155.6 155.5

0.30 322.3 321.3 321.0 322.0 321.0 320.4

0.40 552.3 549.9 550.1 550.0 547.9 548.2

0.50 838.0 835.8 835.5 827.8 827.0 827.6

By comparing the (0.9,0.5.0.5,0.5) combination results with

the results of table 2, it showed better improvement in almost

all comparison criteria; the comparison is presented in table 8.

In index creation tests, the combined quality factors algorithm

has got the least count of index internal, leaf, and total nodes.

Also, it has the least amount of overlap ratio between nods. In

index performance tests; the better performance was achieved

except for the query size 0.01 against the Preferred-axis

algorithm which was decreased by 7.7%; this result can be

attributed to the good performance of the Preferred-axis

algorithm in very small sized window queries. For all other

query sizes, the performance gain was improving especially

for large-sized queries, for example, the performance increase

has doubled its value against the CBS algorithm for query size

0.5.

This improvement proofs that having multiple splitting quality

factors working together will get better results in both index

creation criteria and index overall performance tests.

Graphical representation of the performance gain of the

combined quality-factors algorithm using a combination (0,9,

0.5, 0.5, 0.5) against the other three algorithms; Preferred-

axis, Quad, and CBC is shown in figure 6.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.29, March 2018

54

Table 8, Results of index creation and performance tests by the combined quality factors splitting algorithm compared to

results in table 1, using Uniform data file with 100,000 MBRs, Min fill = Max/4.

 0.9,0.5.0.5,0.5 Preferred axis Alg. Quad Alg. CBS Alg.

Index internal nodes 77 79 102 90

Index leaf nodes 2839 2896 3227 2902

Index total nodes 2916 2975 3329 2992

Overlap area percentage 3.855% 3.93% 6.95% 5.59%

Query size

%

0.01 7.0 6.5 8.1 8.9

0.05 20.9 21.2 24.3 23.5

0.10 50.1 51.5 60.4 60.7

0.20 155.6 156.5 180.9 169.2

0.30 321.0 331.8 373.4 349.7

0.40 547.9 559.0 628.7 586.0

0.50 827.0 845.9 947.5 863.8

Fig 6: The performance gain percentage of the combined quality factors algorithm using the combination (0.9,0.5.0.5,0.5)

against preferred-axis algorithm, Quad algorithm, and CBS algorithm for different query sizes.

3. CONCLUSION
Physical distribution of spatial objects inside node regions -

its locations - is used to classify these objects, objects

classification is implemented as a strategy (i.e., quality factor)

to govern the node splitting process. Performance tests for this

splitting quality factor against other well-known splitting

strategies have proven its superiority in both index creation

and data retrieval tests. Moreover, investigation was

conducted for the possibility of getting better results if

multiple quality factors were combined in a single value to

govern the split decision, combining was made by

normalizing each quality factor value into the range [0..1], and

the sum of all normalized values was used to decide the split

axis, tests showed improved results. Furthermore,

investigation of the possibility of having better results if

different weights were assigned for the quality factors to

specify the amount of factor participation in the final value.

Many tests were performed while varying each quality factor

weight between 0% and 100%, the combination of weights

that showed the best results were: 90% for area overlap, 50%

for preferred axis, 50% for even distribution, and 50% for

node margin. Provided results for the index creation tests and

different sized window queries performance, proof the

superiority of the combined quality factors strategy in

comparison of unilateral usage of quality factors.

Future research will try to investigate the graphical

representation of index nodes produced by spatial indexes to

show how nodes are organized and distributed in the space

visually, how nodes are shaped, and the intersection areas

(overlap) between nodes.

4. REFERENCES
[1] Zou Z, Wang Y, Cao K, Qu T, Wang Z. Semantic

overlay network for large-scale spatial information

indexing. Computers & geosciences. 2013 Aug

31;57:208-17

[2] A Sleit, M Al-Akhras, I Juma, M Ali, Applying ordinal

association rules for cleansing data with missing values,

Journal of American Science 5 (3), 52-62, 2009

[3] W Almobaideen, D Al-Khateeb, A Sleit, M Qatawneh, K

Qadadeh, Improved stability based partially disjoint

AOMDV, Int'l J. of Communications, Network and

System Sciences 6 (5), 244-250, 2011.

[4] A Sleit, H Saadeh, I Al-Dhamari, A Tareef, An enhanced

sub image matching algorithm for binary images,

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.29, March 2018

55

RECENT ADVANCES in APPLIED MATHEMATICS,

565-569, 2010.

[5] A Sleit, W AlMobaideen, AH Baarah, AH Abusitta, An

efficient pattern matching algorithm, Journal of Applied

Sciences 7 (18), 2691-2695, 2007

[6] W Almobaideen, R Al-Soub, A Sleit, MSDM:

Maximally spatial disjoint multipath routing protocol for

manet, Communications and Network 5 (04), 316, 2013

[7] Sahr, K. and White, D., 1998. Discrete global grid

systems. Computing Science and Statistics, pp.269-278.

[8] Samet, H., 1984. The quadtree and related hierarchical

data structures. ACM Computing Surveys (CSUR),

16(2), pp.187-260.

[9] Morton, G. M. (1966), A computer Oriented Geodetic

Data Base; and a New Technique in File Sequencing,

Technical Report, Ottawa, Canada: IBM Ltd.

[10] Manolopoulos Y, Nanopoulos A, Papadopoulos A,

Theodoridis Y. R-trees: Theory& Applications. Springer

Sci.&Business Media; 2010Sep8.

[11] Guttman, A. R-Trees, a Dynamic Index Structure for

Spatial Searching. Proceedings of ACM SIGMOD

Conference 1984; 47-57.

[12] Sleit A, Al-Nsour E. Corner-based splitting: An

improved node splitting algorithm for R-tree. Journal of

Information Science. 2014 Apr; 40(2):222-36.

[13] Beckmann N, Kriegel HP, Schneider R, Seeger B. The

R*-tree: an efficient and robust access method for points

and rectangles. In: Acm Sigmod Record, 1990 May 1

(Vol. 19, No. 2, pp. 322-331). ACM.

[14] Al-Nsour, E., Sleit, A., and Alshraideh, M., 2017,

December. R-tree node-splitting algorithm using

combined quality factors and weights (CSCI), 2017

International Conference on (in press). IEEE.

[15] Al-Sayyed, R.M., Al-Nsour, E.Y. and Al-Omari, L.M.,

2016. Extending Auditing Models to Correspond with

Clients’ Needs in Cloud Environments. International

Journal of Communications, Network and System

Sciences, 9(09), p.347.

IJCATM : www.ijcaonline.org

