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ABSTRACT 

The massive increase of multi-dimensional (spatial) data 

collected, either in size or veracity, has demanded better 

spatial index techniques able to handle efficient storing and 

fast retrieval of spatial objects. No matter how big the data 

are, eventually it will reside on physical storage media 

arranged as a series of logical blocks with prefixed sizes 

resembling nodes in tree-structured spatial indices. Good node 

splitting strategy is essential since it affects; the final shape of 

the index, the overlap area between nodes, and the overall 

index performance. Better node splitting process results will 

be obtained if multiple splitting strategies (quality factors) 

were combined to govern the split decision, and it will 

eliminate the need for dynamic or static tree packing. 

Three widely used quality factors; minimizing total overlap 

area, even distribution of objects, and squared nodes’ margins, 

along with a fourth factor named the “preferred-axis” were 

merged in one combined value to govern the split decision. 

Provided results, for the index creation tests and different 

sized window queries performance, indicate the superiority of 

the combined quality factors strategy in comparison of other 

unilateral usage of quality factors. Provided results showed 

that combined quality-factors strategy had outperformed 

different two strategies found in the literature in both index 

creation tests and index performance tests. The obtained 

results were achieved without the need for any dynamic or 

static tree packing. 
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1. INTRODUCTION 
The insisting need for proper storing and fast retrieval of 

spatial – multidimensional – objects made spatial data indices 

of great importance [1, 2]. Spatial data collected, which are 

increasing in size and veracity [3, 4], demanded better spatial 

index techniques able to handle efficient storing and fast 

retrieval of spatial objects [5, 6]. 

In the literature, different types of spatial indices were 

proposed that can deal with multidimensional data and 

preserve the objects’ spatial properties [7-9], one of the 

widely accepted among these is the R-tree spatial-data index 

[10] proposed by Guttman in 1980 [11]. R-tree index is a tree 

data structure that stores spatial objects using its minimum 

bounding rectangle (MBR) in leaf nodes which resemble disk 

pages. Tree nodes (Disk pages) have a limited storage 

capacity; it can hold up to a certain amount of spatial objects 

(Data). If a leaf node becomes full and an additional object(s) 

need to be added to it, then this node should be split, splits 

may propagate up to the tree root. 

Good node splitting strategy is fundamental; it affects the 

final shape of the index, the overlap area between nodes, and 

the overall performance of the index [12]. In the search for 

suitable splitting strategies, a vast amount of research was 

proposed in the literature. In general, they were designed to; 

reduce overlap area between tree nodes [11], getting more 

even distribution of objects among nodes [12], and having 

more squared nodes shapes [13]. These strategies are referred 

to as the node splitting quality factors. Up to our best 

knowledge, in all the research proposed only one quality 

factor is governing the tree nodes splitting process at a time. 

Even when a different quality factor is used for splitting 

different levels of the tree as the case of the R*-tree, or when 

an alternative quality factor is used to break ties in the 

adopted quality factor computed values. We haven’t 

encountered any situation where two or more quality factors 

values were combined, and its combination is governing the 

split process. 

This work introduces: (1) A naming convention for node 

regions of two-dimensional nodes case. How spatial objects of 

a node are classified according to node’s regions. The use of 

objects classification as a quality factor (preferred-axis quality 

factor) to govern node splitting process, and performance tests 

of this quality factor. (2) A formula to combine four different 

quality factors; the three quality factors used in the literature 

and the preferred-axis quality factor, along with a percentage 

weight given for each quality factor to control its participation 

rate in the final result. Introduce the combination of weights 

assigned to the quality factors that produced the best results 

during index creation and query performance tests. 

1.1. Naming convention 
In a node of any dimension, drawing lines at the center of 

each axis will produce distinct regions, four regions in the 

case of 2-d nodes, eight regions for 3-d nodes, and so on. 

Each region is given a unique name. For example, the four 

regions of a 2-d node naming convention are: The Higher-Left 

region (RHL), the Higher-Right region (RHR), the Lower-Left 

region (RLL), and the Lower-Right region (RLR), all regions 

meet at the node center (Xcen, Ycen). A graphical 

demonstration of regions naming convention is illustrated in 

figure 1 [14]. 
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Fig 1: Node’s regions naming convention for a 2-d node. 

1.2. Objects classification 
Objects belonging to a node can be classified according to the 

node’s regions that they spanned in. In the case of a 2-d node 

any object is enclosed in a minimum bounding rectangle 

(MBR), the MBR has two points; the lowest point with (Xlow, 

Ylow) coordinated, and the highest point with (Xhigh, Yhigh) 

coordinated. There are only three possibilities for the object 

located inside the node: an object is located in only one 

region, spanned in two regions, or spanned in four regions [9]. 

Supposing that the node is to be split at the center of one of its 

main axes along the other axis then the possible overlap 

imposed by each object according to its classification can be 

predicted. In general; any object which is resided entirely in 

only one region will not impose any overlap whatever the 

chosen split axis is. Objects that are spanned in two regions 

will just impose overlap if the chosen split axis is the one 

opposite to its longest side. Objects that are traversed in four 

regions will impose overlap on either axis selected, and for 

this case it can only predict which split axis will impose less 

overlap [15]. 

Table 1 presents a summary of the classification cases (object 

start region), classification subcases (object end region), the 

object is spanned in which regions, along with the possible 

overlap effect according to objects locations [14]. 

 

Table 1. Possible produced overlap in node-splitting process according to objects locations 

Classification: Object: 

Overlap effect 
Case Subcase 

Start region 

(Xlow, Ylow) 

End region 

(Xhigh, Yhigh) 
Spanned in 

1 -- RHR RHR  RHR only No effect 

2 
a RLR RLR RLR only No effect 

b RLR RHR RLR & RHR Only along X-axis 

3 
a RHL RHL RHL only No effect 

b RHL RHR RHL & RHR Only along Y-axis 

4 

a RLL RLL RLL only No effect 

b RLL RLR RLL & RLR Only along Y-axis 

c RLL RHL RLL & RHL Only along X-axis 

d RLL RHR All regions On either axis 

1.3. Using objects locations as a quality 

factor. 
The object-classification enabled the use of a new quality 

factor that describes the preferred splitting axis by objects. A 

preferred axis is simply the axis that if the node is to be split 

along it then objects majority will not produce overlap area 

between resulting nodes, preferred-axis factor value for each 

axis is calculated by dividing the count of objects favoring 

that axis by the total number of objects in the overflown node. 

Preferred-axis factor graphical demonstration of is presented 

in figures 2, 3 and 4 for the splitting of a 2-d node 

In figure 2, an overflown node with eight objects: Four 

objects are located in only one region and thus do not favor 

any axis (objects 1, 3, 7, and 8). Four objects are spanned in 

two regions with its longest side is facing the X-axis, and thus 

favoring splitting along X-axis (objects 2, 4, 5, and 6). There 

are no objects favoring splitting along Y-axis. It follows that 

X-favored ratio is (4/8 = 0.5), while the Y-favored ratio is (0/8 

= 0.0), and the node will be split along the X-axis. The result 

of splitting the node along the X-axis is presented in figure 3, 

while figure 4 shows the resulting nodes if splitting was along 

the Y-axis. The total coverage area for resulting nodes when 

splitting along the X-axis had decreased with no overlap area 

between resulting nodes, while an overlap area percentage of 

around 30% when the split was along the Y-axis. 

 

Fig 2: An overflown node with eight objects. 
 

 

Fig 3: The two resulting nodes when splitting along X-axis. 
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Fig 4: The two resulting nodes with the overlap area 

between resulting nodes when splitting along Y-axis. 

To investigate the performance of the index built by the 

preferred-axis quality factor, tests were performed against two 

other algorithms; the original R-tree quadratic splitting 

algorithm (Quad), and the CBS linear algorithm. Each of the 

three algorithms was used to build an index using 100,000 

uniformly distributed objects with different sizes. Maximum 

object size is 0.01 of the world space, generated by a C++ 

random generator, nodes maximum fill (Max fill) constraint 

was set to 50 objects, nodes minimum fill (Min fill) restriction 

was set to Max/4 objects. 

Results of index creation tests by each algorithm are listed in 

table 2. The table shows that the new splitting quality factor 

has produced the least number of internal, leaf, and total index 

tree nodes. Furthermore, it has the least amount of overlap 

area percentage between resulting nodes when splitting (best 

results are underlined). 

Table 2. Results of index creation tests by the Quad, CBS, 

and Preferred-axis algorithms using Uniform data file 

with 100,000 MBRs, minimum fill = Max/4. 

Index nodes 

count 
Quad Alg. CBS Alg. 

Preferred-

axis Alg. 

Internal 102 90 79 

Leaf 3227 2902 2896 

Total 3329 2992 2975 

Overlap area % 6.95% 5.59% 3.93% 

For further investigating properties of the preferred-axis 

quality factor, performance tests were conducted over the 

indices produced by each algorithm with same settings using 

uniformly distributed window queries of different sizes; 

window sizes were (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50) of 

the world size. For each window size, ten random-generated 

window queries of the same size were invoked, query results 

resemble the count of disk accesses needed to fulfill the 

query, and the average of these ten queries is recorded for 

each query size in table 3, along with the performance gain 

percentage. The table shows a performance gain percentage 

between 10% up to 20% for the preferred-axis quality factor 

algorithm against the Quad algorithm (1- (Preferred-axis / 

Quad)). A performance gain percentage between 2% up to 

27% for the preferred-axis quality factor algorithm against the 

CBS algorithm (1- (Preferred-axis / CBS)). Figure 5 shows 

the performance gain percentage of the preferred-axis 

algorithm against the Quad algorithm and the  CBS algorithm, 

performance gain is the highest at small query sizes and start 

to decrease during query size is increasing. 

Table 3. Results of index performance tests by the Quad, CBS, and Preferred-axis algorithms using Uniform data file with 

100,000 MBRs 

Widow size Preferred-axis Alg. Quad Alg. 
Performance gain over 

Quad Alg. 
CBS Alg. 

Performance gain over 

CBS Alg. 

0.01 6.5 8.1 19.75% 8.9 26.97% 

0.05 21.2 24.3 12.76% 23.5 9.79% 

0.10 51.5 60.4 14.74% 60.7 15.16% 

0.20 156.5 180.9 13.49% 169.2 7.51% 

0.30 331.8 373.4 11.14% 349.7 5.12% 

0.40 559.0 628.7 11.09% 586.0 4.61% 

0.50 845.9 947.5 10.72% 863.8 2.07% 

2. FORMULA TO COMBINE QUALITY 

FACTORS  
In the search for getting better results, the next step was to 

combine the Preferred-axis splitting quality factor with well-

known three quality factors, namely: overlap area percentage, 

even distribution of objects, and squared margins. The four 

factors are to be used in one splitting algorithm altogether to 

determine the best split possible of an overflown node along 

one of its main axes. For each main axis, each quality factor 

value is calculated independently, and is normalized in the 

range between [0, 1], the sum of the four factors normalized 

values for each axis is compared, and the highest sum 

determines the split axis. Furthermore, a percentage weight 

was given for each normalized quality factor value to adjust 

the participation percentage of each quality factor in the final 

split decision or even canceling its participation at all. The 

way of combining quality factors for the X-axis of a two-

dimensional node is given in formula (1), and the same is 

done for other axes. 
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Fig 5: The performance gain percentage of the preferred-

axis algorithm against Quad algorithm and CBS 

algorithm for different query sizes. 

The notation (1, 1, 1, 1) is used to represent the order of 

weights given to quality factors (overlap, preferred-axis, even 

distribution, and squared margin), the weight value assigned 

to each factor can range between 0% (0.0) and 100% (1.0). In 

the following tests; Uniform data file was used in creating the 

index, nodes maximum fill are set to 50 objects, and nodes 

minimum fill is Max/4 objects. Each window size recorded 

result is the average of 10 random generated window queries. 

First tests were conducted using only one quality factor 

weight set to 1 (100%) while all other three quality factors 

weights set to zero (0%) of the same size, results are shown in 

table 4, the best result for each row is underlined. 

All Factors Normalized For X-axis =   

((Normalized Value of Factor_1 for X-axis * 

Factor_1 Weight) +  

(Normalized Value of Factor_2 for X-axis * 

Factor_2 Weight) +  

(Normalized Value of Factor_3 for X-axis * 

Factor_3 Weight) +  

(Normalized Value of Factor_4 for X-axis * 

Factor_4 Weight)) ---------------------------------------- 

 

(1) 

 

Table 4, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting only 

one factor to 100% 

 
1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1 

Index nodes 

count 

Internal 75 79 88 87 

Leaf 2903 2896 2900 2904 

Total 2978 2975 2988 2991 

Overlap area % 3.86% 3.93% 5.32% 4.11% 

Query size % 

0.01 6.9 6.5 9.9 6.5 

0.05 19.6 21.2 27.0 19.7 

0.10 51.3 51.5 57.2 51.0 

0.20 157.6 156.5 167.1 159.4 

0.30 329.0 331.8 343.9 335.2 

0.40 
563.1 559.0 586.4 563.3 

0.50 
856.0 845.9 877.0 855.1 

The best results were changing between the different 

combinations, although the combination (0, 0, 1, 0) didn’t get 

any best result, it got the second best result in leaf nodes 

count. 

Next, tests were conducted using the same settings with only 

two quality factors weights set to 1 (100%) and the other two 

quality factors weights set to zero (0%), the results are shown 

in table 5. best result for each row is underlined. 

Table 5, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting only 

two factors weights to 100%. 

 
1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,0 0,1,0,1 0,0,1,1 

Index internal nodes 77 80 75 85 72 78 

Index leaf nodes 2895 2882 2880 2874 2883 2862 

Index total nodes 2972 2962 2955 2959 2955 2940 

Overlap area percentage 3.83 4.19 3.92 4.27 3.99 4.51 

Query size % 

0.01 7.0 6.8 6.6 7.8 6.6 6.9 

0.05 20.3 21.3 20.2 21.3 20.8 20.6 

0.10 53.0 54.0 50.1 56.0 50.8 50.9 

0.20 158.5 159.8 155.5 159.4 153.9 157.6 

0.30 330.1 328.1 322.4 331.0 322.6 328.2 

0.40 560.1 564.1 553.1 566.7 557.0 556.6 

0.50 845.8 848.4 836.6 843.9 838.8 840.4 

Best results were still changing between different 

combinations. Best results for the index internal index nodes 

were for the combination (0,1,0,1), while best results for the 

leaf and total index nodes were for the combination (0,0,1,1). 
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The combination (1,1,0,0) got the least overlap ratio, and the 

most of best results for the window query were for the 

combination (1,0,0,1). 

Next, tests were conducted using the same settings while 

setting three quality factors weights to 1 (100%) and only one 

quality factor weight set to zero (0%), results are shown in 

table 6 including the last case where all four weights are set to 

100%. 

From the fourth, fifth, and sixth tables, it can noticed that in 

index creation tests; the least index internal nodes resulted 

from the combination (0,1,0,1), the least index leaf nodes and 

the least index total nodes resulted from the combination 

(0,1,1,1), and the least overlap ratio resulted from the 

combination (1,1,0,0). In index query performance tests, it is 

noticed that in small query sizes the best performance for the 

size 0.01 was for the combinations (0,0,0,1) and (0,1,0,0), for 

query size 0.05 the best performance was for the combination 

(1,0,0,0), for query size 0.20 the best performance was for the 

combination (0,1,0,1), and for all other query sizes (0.10, 

0.30, 0.40, 0.50) the best performance was for the 

combination (1,1,0,1). 

 

Table 6, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting three 

factors weight to 100%. 

 1,1,1,0 1,0,1,1 1,1,0,1 0,1,1,1 1,1,1,1 

Internal nodes 81 77 74 76 79 

Leaf nodes 2886 2868 2868 2841 2849 

Total nodes 2967 2945 2942 2917 2928 

Overlap area % 3.91 3.99 3.88 4.11 3.89 

Query size % 

0.01 7.8 7.2 6.8 6.8 7.0 

0.05 20.5 20.3 19.9 21.3 21.3 

0.10 52.6 52.8 49.2 52.3 51.1 

0.20 158.7 154.8 154.0 155.7 156.5 

0.30 326.8 323.7 321.0 322.5 325.2 

0.40 559.2 553.9 544.5 552.4 550.8 

0.50 846.4 840.2 829.2 832.5 829.8 

From the previous tests, it can be observed that each factor 

has a good influence on some cases and a bad influence on 

some other cases. For having the best results possible, unequal 

weights for the factors were applied; and several tests were 

conducted using weights ranging between 0% and 100%. 

After performing many experiments, better results are 

observed possible if using different weights for each factor. 

The quality factors weights combinations listed in table 7 as 

an example of weights combinations which had shown better 

results in one or more criteria used, the best results in most 

tests criteria were seen when the combination (0.9,0.5,0.5,0.5) 

was used.  

 

Table 7, Results of index creation and performance tests by the combined quality factors splitting algorithm when setting three 

factors weight to 100%. 

 1,1,0.5,0.9 1,0.9.0.5,0.5 1,0.8.0.5,0.5 1,0.5.0.5,0.5 0.9,0.5.0.5,0.5 0.8,0.1.0.5,0.5 

Index internal nodes 76 76 75 78 77 75 

Index leaf nodes 2872 2851 2853 2842 2839 2859 

Index total nodes 2948 2927 2928 2920 2916 2934 

Overlap area 

percentage 
3. 809 3.811 3.805 3.860 3.855 3.918 

Query 

size % 

0.01 7.1 7.0 7.1 7.0 7.0 7.2 

0.05 20.2 20.4 20.4 20.8 20.9 19.4 

0.10 50.4 50.0 50.0 50.7 50.1 51.3 

0.20 155.6 154.7 155.0 156.6 155.6 155.5 

0.30 322.3 321.3 321.0 322.0 321.0 320.4 

0.40 552.3 549.9 550.1 550.0 547.9 548.2 

0.50 838.0 835.8 835.5 827.8 827.0 827.6 

By comparing the (0.9,0.5.0.5,0.5) combination results with 

the results of table 2, it showed better improvement in almost 

all comparison criteria; the comparison is presented in table 8. 

In index creation tests, the combined quality factors algorithm 

has got the least count of index internal, leaf, and total nodes. 

Also, it has the least amount of overlap ratio between nods. In 

index performance tests; the better performance was achieved 

except for the query size 0.01 against the Preferred-axis 

algorithm which was decreased by 7.7%; this result can be 

attributed to the good performance of the Preferred-axis 

algorithm in very small sized window queries. For all other 

query sizes, the performance gain was improving especially 

for large-sized queries, for example, the performance increase 

has doubled its value against the CBS algorithm for query size 

0.5. 

This improvement proofs that having multiple splitting quality 

factors working together will get better results in both index 

creation criteria and index overall performance tests. 

Graphical representation of the performance gain of the 

combined quality-factors algorithm using a combination (0,9, 

0.5, 0.5, 0.5) against the other three algorithms; Preferred-

axis, Quad, and CBC is shown in figure 6. 
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Table 8, Results of index creation and performance tests by the combined quality factors splitting algorithm compared to 

results in table 1, using Uniform data file with 100,000 MBRs, Min fill = Max/4. 

 0.9,0.5.0.5,0.5 Preferred axis Alg. Quad Alg. CBS Alg. 

Index internal nodes 77 79 102 90 

Index leaf nodes 2839 2896 3227 2902 

Index total nodes 2916 2975 3329 2992 

Overlap area percentage 3.855% 3.93% 6.95% 5.59% 

Query size 

% 

0.01 7.0 6.5 8.1 8.9 

0.05 20.9 21.2 24.3 23.5 

0.10 50.1 51.5 60.4 60.7 

0.20 155.6 156.5 180.9 169.2 

0.30 321.0 331.8 373.4 349.7 

0.40 547.9 559.0 628.7 586.0 

0.50 827.0 845.9 947.5 863.8 

 

 

Fig 6: The performance gain percentage of the combined quality factors algorithm using the combination (0.9,0.5.0.5,0.5) 

against preferred-axis algorithm, Quad algorithm, and CBS algorithm for different query sizes. 

3. CONCLUSION 
Physical distribution of spatial objects inside node regions - 

its locations - is used to classify these objects, objects 

classification is implemented as a strategy (i.e., quality factor) 

to govern the node splitting process. Performance tests for this 

splitting quality factor against other well-known splitting 

strategies have proven its superiority in both index creation 

and data retrieval tests. Moreover, investigation was 

conducted for the possibility of getting better results if 

multiple quality factors were combined in a single value to 

govern the split decision, combining was made by 

normalizing each quality factor value into the range [0..1], and 

the sum of all normalized values was used to decide the split 

axis, tests showed improved results. Furthermore, 

investigation of the possibility of having better results if 

different weights were assigned for the quality factors to 

specify the amount of factor participation in the final value. 

Many tests were performed while varying each quality factor 

weight between 0% and 100%, the combination of weights 

that showed the best results were: 90% for area overlap, 50% 

for preferred axis, 50% for even distribution, and 50% for 

node margin. Provided results for the index creation tests and 

different sized window queries performance, proof the 

superiority of the combined quality factors strategy in 

comparison of unilateral usage of quality factors. 

Future research will try to investigate the graphical 

representation of index nodes produced by spatial indexes to 

show how nodes are organized and distributed in the space 

visually, how nodes are shaped, and the intersection areas 

(overlap) between nodes. 
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