
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

32

Domain Engineering: A Conceptual Model of the

Software Application Architecture

Sanjay Bhagwan Sonar, PhD
Associate Professor

Dept. of Computer Science and IT
Rai University, Ahmedabad

Gujarat, India

Vimal N. Pandya, PhD
Director

Navgujarat College of Computer Applications
Gujarat University, Ahmedabad

Gujarat, India

ABSTRACT
Domain is the business functional workout area to be

designed in the mode of discrete component, domain workout

area is a conceptual representation of the business logic and

rules and real situation objects in the domain, here domain is

also called conceptual model of the requirement engineering.
In software development requirements must start with domain

modeling and business workout area is formulated by the

domain modeling for software application architecture. Before

requirements can be defined the application domain must be

defined. Here domain is the initial conceptual model of the

requirement engineering. Domain classify with vertical and

horizontal method to prove number of modules in hierarchical

mechanism with interface in vertical method and

functionalities of the each modules is defined in horizontal

method. Domain engineering directly support to the acquiring

business rule, logic and functionalities. As well as define the
requirement elicitation and specification using tools and

techniques of the domain engineering. Using this the physical

objectization is extracted. In this paper we outline the basic

facets of objectization from domains.

General Terms
Domain work out area, Clustering of base domain for discrete

work, define functionality of each domain by business logic

Keywords
Domain, Sub-Domain, Co-Domain, Ethnography, Heuristics,

Brainstorming, Composition, Segmentation, Objectization.

1. INTRODUCTION
In real situation, the present businesses terms are based on the

discrete component mode, based on business rule and logic

divided into discrete component as the bases on the
interfacing topologies also these components are divided into

modules/ functionalities as the bases of the requirements of

the business logic[2] Here business workout area of the

domain engineering is represented by visual representation

which encompasses classes or real situation objects in the

domain. The domain model representations the hierarchy of

the sub-domain and co-domain is called vertical

representation of the domains, where classifications,

functionalities, attributions, interfaces and binding of the

domains is called horizontal domain according to the business

functionalities [1],[11] Here, We have designed the business

domain as the business functional workout area and Sub-
domains are the discrete component of the business as well as

component is divided into co-domain (modules), and all

functionality are carried out by the almost in co-domain. At

last the base domain is clustered for sub-domain to define

discrete work out segments in base domain in as a vertical

form, and each sub-domain horizontally bifurcated for define

functionalties to identify actual objectization[13].

Fig. 1 Conceptual Domain models

The above figure 1 denote the domains system in the business
model, as like BD- business domain is the main system

domain which cover all business functional workout area. The

functional world view of the business and BD has discrete

sub-domain and each sub-domain has discrete co-domain.

This partition of the domain decomposition is based on the
functional dependency as the requirements of the business.

Here Base Domain (BD), Sub-Domain (SD) and Co-

Domain (CD)

BD = {SD1, SD2, SD3 …., SDn}, SD ح BD

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

33

SD = {CD1, CD2, CD3 ….,CDn}, CD ح SD

Here BD contains more than one SDs and SD contains more

than one CDs, here SD is subset of BD and CD is subset of

SD.

2. OBJECTIVES
The Domain modeling is the prerequisite task of the

requirement engineering, according to the domain model, we

can define the actual functional requirements of the business.

Therefore domain engineering is the subset of the requirement

engineering. The following objectives are measured for

proceed the system from domain engineering to objectization.

1. Design Base domain of the system

2. Identification the sub-domain and co-domain from the
base domain according to business logic/functionalities

3. Design interface oriented architecture of the each

domain for identification of discrete component and

module

4. Functionalities of the each co-domain

5. Pre requisite of the requirement engineering

6. Definition of the requirement elicitation

7. Graphical representation of the domains

8. Genericity in all domain objects for commonness.

3. EXPERIMENTAL DESIGN AND

PROCEDURE

Here we design the procedure of the domain engineering

process from business work-out area to domain interfacing as

the basis of business functional requirements. The domain

decomposition is segmented in vertical and horizontal

mechanism of the sub-domain and co-domain.

3.1 Vertical mechanism of the domain
The vertical decomposition of the domain is segmented in

hierarchical form of the sub-domain and co-domain according
the business logic. The following procedural task denote

vertical domain system

3.1.1 Identify Business rule/logic workout domain

3.1.2 Identity/Define domain Decomposition (sub-

domains/Components)

3.1.3 Design sub/Co-domain

Interface/Composition

3.1.1 Identify Business rule/logic workout

domain
Business functional logic is a formal condition and Model of

real business objects of business rule that describes a specific

procedure. The rules are workflow includes tasks, procedural
steps, input and output information tools, definitions and

constraints that apply to an organization. Domain logic is the

initial task of the software applications architecture, and

identification of the software modules and objectization in

each module. Also prescribes how business objects interact

with one another, and implements the routes and the methods

by which business objects are accessed and updated. Business

logic determines how this rule is implemented as a process,

like the application of Interest rate on fix-deposit is a business

rule but the calculations [8],[15],[18].

 The business rules for ATM transaction is as like,

1. The Customer having the particular bank debit card.

2. Customer is getting its PIN by SMS by its enrolled

mobile number from the bank.

3. Each Customer transaction must be atomic

 The business logic for ATM transaction is as like,

1. Verify the card and PIN of the customer as

authorized customer.

2. Verify the account Number of the customer

validation.

3. Verify the required Balance of the customer in

account for withdrawal.

4. Verify the minimum balance of the customer in

particular account.

5. Generate appropriate message for the customer.

6. Update the withdrawal amount from the account if

balance is sufficient.

7. Update the log file.

8. Update the transaction file of the bank.

9. ATM-machine Count the notes.

10. Issues the amount to the customer by the machine

for allocated time period.

11. Generate the withdrawal slip for the customer if

wanted by the customer.

12. Consistent state

3.1.1.1 The domain extracts tools and

techniques.
1. Ethnography (observation technique to understand

operational processes)

2. Heuristics (Artificial logic applied also backward

and forward passes are applied)

3. Workshops (Collaborations of the stack holders,

JAD (Joint Application Developers/Members)

4. Brainstorming (Dynamic/Creative ideas for the

solution, made conclusion for problem)

5. Prototyping (Applied systems development method

for the solutions of problems)

6. Interview and questionnaires (asking questions
related to the domain work out area)

7. Survey and document review (Observation and

documents verification as manual)

8. Group center (JAD members (clients, users and

developers) center points) [1],[15],[19].

3.1.1.2 Additional tasks for extraction mining

tools and techniques.
It can be useful to attach to a mined rule additional

informational and workflow attributes, such as: [1],[15].

1. Reviewer text annotations

2. Rule type (I/O, calculation, validation, security)

3. Audit status (approved, not approved)

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

34

4. Workflow status (extracted, working, accepted,

rejected)

5. Transition (valid, requires modification, duplicate,

complete)

6. Transition (valid, requires modification, duplicate,

complete)

7. Transition (valid, requires modification, duplicate,

complete)

8. Reviewer Identity

9. Program derived from

10. Code segment location (start, end)

11. Code segment text

12. Input and output data elements

3.1.1.3. Vertical Domain Approach: Top-

Down
Hare different types of approaches have the sense for

designing the domain models from its own characteristics.
Here the Top-down approach is suitable for designing the

vertical domain. Top down approach is the hierarchical

approach of the domain decomposition, like following figure

2[8],[10]

Fig. 2 Vertical approach of the domain

decomposition

3.1.2 Identitification / Define domain

Decomposition (sub-domains)
The following figure 3 presentation the conceptual

decomposition of the base domain into sub-domain as a

segmentation, this segmentation is find out by the above

domain extraction tools and techniques. Also implies mining
tools for designing the sub-domain and interface with

cardinality between the sub-domains.

Fig. 3 Sub-domain conceptual representation

The following figure 4 represents practical example of the

sub-domain decomposition The following figure 4 represents

practical example of the sub-domain decomposition of the

bank accounting system, here bank have different

types of atomic accounts and each account is maintained

separately [2]

Fig. 4 Sub-domain representation of the Bank Accounting System

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

35

In the above figure 4 there are four different account designed

as sub-domain of the system. And also two co-domains

defined in the sub-domain current account and loan account.

Here each sub-domain is interacted with other sub or co-

domain in the boundary of the base domain. Each sub domain

separately interacted with other sub or co-domain based on

the business functional requirements. The identification of the

sub-domain is based on the functional requirements to be

discrete work-out area of the system. The functional
dependency between sub-domain to sub-domain or to co-

domain is designed by the business logic of the system. The

business rule and logic would be the central point in

functional dependency to decompose the base domain into

sub-domain vertically. Here the cardinality of interface

between the domains is also depended on the functional

dependency to applying the business requirements of the

system.

3.1.3 Define sub-domain/co-domain

interfaces
Domain interfaces in between sub-domain to sub-domain and

co-domain interaction purely basis on the functional

dependency in business logic of the requirements of system.

Interface is required for the information inserting, deleting,
displaying, printing, viewing, verifying, transferring,

modifying, accessing, etc. For this task, the sub-domain

interacts with other one or more than one Sub or Co-domain

as business rule/logic. The following figure 5 denotes the

interfaces from sub-domains. By the business requirements,

the functional dependency of the interface is that, all fixed

deposit customers only can get overdraft and loan from the

bank, as same, all saving account customers only can take

loan from the bank. According to the business logic, system

indentifies customer status of the deposit and saving account

before issuing the loan and overdraft therefore previously

conceptual interface will be as below.

Fig.5 Sub-Domain & co-domain interface
The above figure 5 denotes interface between sub-domains is

conceptual model, according to the business logic, and each
sub-domain interact with other atomic sub-domain or also

interact with co-domain.

3.2 Horizontal mechanism of the

domain
3.2.1 Identify/Define Co-Domain from

decomposed Sub-domains.
Here co-domain is the subset of the sub-domain, called

module, which maintain properties, classification and

functionalities. If by the business model/rule the, co-domain

does not need, then all classification and functionalities are

carried out by the sub-domain. Basically co-domain is
declared as functional area of the task, each co-domain have

classification and actual business logical task to be performed

by the specific operations using logic. Following figure 6

denote the bifurcation of co-domains from the sub-domain

current account and saving account

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

36

Fig. 6 Co-Domain representations from decomposed sub-domain

Each sub-domain has individual co-domains like current

account co-domain is Ultima current account, Supreme

current account, Premium current account, Apex current

account, and Regular current account and Flexi current

account. As same deposit sub-domain co-domain like Regular

fixed deposit, Recurring fixed deposit, Super Saver Facility

etc.

3.2.2 Define conceptual functionality of the

co-domain.
The following figure 7 denotes conceptual classes and

packages for the co-domain current account, to covers
physical functionalities of the co-domain. Here if co-domain

does not exist? Then all functionalities are covered in the sub-

domain in the system. The basic functionalities are defined in

the sub/co-domain by packages, abstract class, derived class,

interface class, shared members, module class, external class

interaction with internal class, and JDBC for database

connection class etc, This functions are associated and

aggregated with each other as the basis of business logic with

high cohesion and low coupling. Functionality should nearly

loosely couple as based on the high cohesion and low
coupling. The conceptual classes’ terms are designed by

[2],[8]

1. Symbol: words or images or actors are representations

are conceptual classes.

2. Intension: The definition of the conceptual classes.

3. Extension: Set of examples for the conceptual classes.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

37

Fig. 7 Conceptual Classes of the Sub / Co-domain

3.3 Requirement Mining
Here identification of needs are extracted from the domain

engineering, and functional requirements are elicited using

requirements elicitation tools and requirements gathering

techniques support to identify actor, use cases, initial objects

and PDL for define functional requirements of the system, as

prescribed business model. The following tasks are carried out

by the requirement engineering

1. Requirement Elicitation

2. Requirement Specification

3. Requirement Validation

3.3.1 Requirement Elicitation
Requirement Elicitation focuses functional requirements of

the system. Using Joint application developers (JAD)

members identify physical functionality of the each domain of

the system. Here requirement elicitation process finds the

actual objectization, properties and functionalities in each

domain. Using Requirement Elicitation, the JAD members

manipulate each domain for actual functional requirements
from the domain and design the actual functionalities from the

above conceptual functionality of the co-domain according

the following scenario [1],[7],[8]

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

38

Fig. 8 Requirement Elicitation Process

In above figure 8 denote the JAD members use the above

requirement elicitation tools for identifies actual

functionalities from the each co-domain or sub-domain
according to requirement elicitation techniques. Here

requirement elicitation tools that realize for the functional

requirements of the system. The following requirements

elicitation activities/tools described to extracts the functional

requirements of the system. The objectization is defined and

designed from the requirement elicitation tools [8],[12]

• Identify initial objects
 Identify initial objects, apply the following heuristics,

1. Recurring noun from the use cases

2. Define actors which are interact with other actor(s)

3. Identify cases which are operated by the actor(s)

4. Identify interface/form/module which is interact

with other object/actor

5. Identify Data sources and sink

6. Identify user interaction task like master

form/home page/MDI form/form

• Identify actors
 Identify actors from the use case model, apply the

following heuristics,

1. Identify tangible entities from the task

2. Extract tangible entities from the use case

realization

3. Identify use case interaction entities.
4. Identified transitions occurred by the actor

5. Identify the entities specialization or generalization

6. Identify interface/ boundary objects which are

interact with tangible entity(s)

7. Identify control or link objects from the use case

synchronization/ automation

• Identify use cases (carried out by an

actor(s))

 Identify use cases, apply the following heuristics,

1. Identify transition/ interaction from one entity to

other entity

2. Identify internal and external interface of the

objects/entities

3. Identify operation/functionality between

objects/entities
4. Design scenario for the objects transition, to

Identify cases

5. Identify synchronization/ automation/threads from

the operation

6. Identify the interface classes/objects to be operated

by other entities

• Define PDL (Programmable
Development Language)
PDL is designed for the specification of the actual

compilation of the task in the system by the JAD members, as

like sources, sinks, operations manipulations, interfaces,

updating used actors; transitions etc. are identified by the
PDL. (Here PDL is equal to Structural English and Pseudo

code). The JAD members examine each Sub and Co-domain

transition functionally using PDL, and then proceed for

requirements validation. PDL cover all task of the system, like

number of actors performs; numbers of operations/transitions

are occurred number of interfaces of the action of the actors,
number of functionality and conditions as well as statements

in the task etc. [8],[9]

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

39

3.3.2 Requirement Specification and Validation

Fig. 9 Requirement Elicitation Process

The requirements are specified by the JAD members

(customer, users, and developers) of the system from the each

co-domain, JAD members jointly design the requirements

specifications of the system. Especially requirements

elicitation tools designed graphically for the requirement

specification, as well as use case scenarios are also designed

for the specifications [1],[8]

3.3.3 Requirement Validation
After the requirements elicitation and specification, the

requirements are validated by the JAD members using the

following task checking for the accurate functional

requirements of the business model. The following tasks are
to be carried out for the requirements validation as the

functional requirements of the system.

1. Basic source/sink are covered

2. Verify business logic

3. Maintain actor interaction

4. Maintain system interaction

5. Define interaction design

6. Define actors which are converter in to the database

7. Accuracy in automated and synchronized operations

8. Validity check, Consistency check, Completeness

check And realism check

9. Applied task as like Review, Prototyping,

Automated consistency Analysis And Test case

generation for actualization

4. CONCLUSION
Here present businesses term is based on the discrete

component mode, that directly support to the present pure
object oriented programming languages, here domain model

and requirement model support them. The domain engineering

decomposes the system into different sub-domain as vertical

hierarchical form according the business requirements. Same

horizontal domain designs the conceptual model of the

functionalities of the each co-domain. After the both domain
is identified, the requirements is mined for actual

objectization according to business goal/logic using different

task of the domain engineering and requirement engineering.

Here requirement elicitation is enquired by above task of the

domain specifications. The domain engineering directly

support to the JAD member for identification and definition of

the requirements engineering and achieve the application

requirements of the business.

5. ACKNOWLEDGMENTS
Thanks to the experts who have contributed towards

development of the this paper. Specially thansks to Mr. Anil

Tomar sir dy.Provost and Registrar of rai university,

Ahmedabad who extreme support.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.30, April 2018

40

6. REFERENCES
[1] Bernd Bruegge, Allen H. Dutoit. “Object Oriented

Software Engineering, Using UML, Patterns, and Java”,

Second Edition, Pearson Education, 2010

[2] Craig Larman. “Applying UML and Patterns”, 3rd
Addition, Pearson Education Inc 2005

[3] Civello F, “Roles for composite Objects in Object

Oriented Analysis and Design”, OOPSLA, ACM

SIGSOFT Vol. 28 No. 10, pp 376-393

[4] Desmond Francis D’ Souza and Alan Cameron Wills,
“Objects, Components, and Framework with UML”, 2nd

Addition, Addition-Wesley Object Technology Series

1999

[5] G. Kotonya and I. Somerville, “Requirements

Engineering”, Processes and Techniques, John Wiley

Sons

[6] Geri Schneider, Jason P. Winters. “Applying Use Cases”,

2nd Addition, Addition-Wesley Object Technology

Series 1998

[7] Grady Booch. “Object Solutions”, 2nd Addition,

Addition-Wesley Object Technology Series 1996

[8] Ian Somerville, “Software Engineering”, 6th Edition,
Pearson Education, 2005

[9] Juhani Livari, “Object Oriented as Structural, Functional

and behavioral Modeling”: A comparison of six methods

for Object Oriented Analysis, Department of Computer

Science and Information science, University of

Jyvdskyla

[10] Jim Arlow, Ila Neustadt. “UML and the Unified

Process”, 2nd Addition, Addition-Wesley, Object

Technology Series, 2002

[11] M. Mattsson and J Bosch “Object oriented frameworks”

Composition problems, causes and solutions In Building
Application Frameworks: Object-Oriented Foundations

of Framework Design, pp. 467-487, M. Fayad, D.

Schmidt, R. Johnson editors, Wiley Press, 2000

[12] M. Davis, “Software Requirements”: Objects, Functions,

& States, Prentice Hall, Englewood Cliffs, 1993

[13] Meyer B., “Applying Design by Contract”, IEEE

Computer, Oct 1992

[14] N. Bouassida, H. Ben-Abdallah, and F. Gargouri, A.

Ben-Hamadou:” A stepwise Framework Design

Process”, IEEE International Conference on Systems
Man and Cybernetics, 07-09 October, Hammamet,

Tunisia, 2002

[15] P. Loucopoulos and V. Karakostas, “System

Requirements Engineering”, McGraw-Hill 3rd Addition

2007

[16] R. H Thayer and M Dortman “System and Software

Requirements Engineering”, Tutorial, IEEE Computer

Society Press

[17] Yun-Tung Lau, “The Art of Objects” Object-oriented

Design and Architecture, Addison-Wesley object

technology series, Addison-Wesley, 2001

[18] Wirfs - Brock, R. and Wilkerson, B. “Object Oriented

Design” A Responsibility- Driven Approach. In

Proceedings of OOPSLA '89 Conference, SIGPLAN Not

(ACM) 24, 10, (New Orleans, Louisiana, October 1989),

pages 71-76

[19] R. H Thayer and M Dortman “System and Software
Requirements Engineering”, Tutorial, IEEE Computer

Society Press

[20] Sonar Sanjay Bhagwan, “Object Identification for Pure

Object Oriented Cross Languages Software

Development”. International Journal of Applied

Information Systems Vol. 9, No.3, pp 42-48, June 2015.
Published by Foundation of Computer Science, ISSN

2249-0868, New York, USA.

IJCATM : www.ijcaonline.org

