
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.31, April 2018

30

Construction of Islamic Stars and Rosettes using Turtle

Geometry and Tiling Patterns based on Them

T. Gangopadhyay
XLRI

C. H. Area(E), Jamshedpur,
India

ABSTRACT
Islamic star and rosette patterns have been extensively studied

for their symmetry and aesthetic appeal. This paper presents

several new construction methods for stars and rosettes using

Turtle geometry and also presents new geometric shapes even

more complex than stars and rosettes the construction of

which is based on Turtle geometry. It also explores new

Turtle geometry based tiling patterns that use these shapes.

General Terms
Islamic, Art, Pattern, Algorithm, Turbo C++, Program.

Keywords

Turtle Geometry, Rosette, Star, Symmetry, Trigonometric,

1. INTRODUCTION
Owing to their symmetry and aesthetic appeal, Islamic star

and rosette patterns have been studied extensively by several

researchers(Gr¨unbaum and Shephard [9], Abas and Salman

[1], Bourgoin[3],Dewdney [6], Castera [4], Dunham[7]). The

innate symmetry of these structures have led to geometrical

constructions of these as well as tiling designs devised

through putting such structures in contact(Castera [5],

Gr¨unbaum and Shephard[8], Kaplan[16]. Kaplan[15] has

devised an elaborate construction method for stars based on

methods described originally by Henkin [14] and Lee [17]. In

addition Kaplan[16] has also devised a number of interesting

tiling methods by putting stars in contact. Most of these tiling

styles use stars and rosettes with an even number of vertices.

Tiling with stars having an odd number of vertices have been

studied by Gangopadhyay([10],[11]). In yet another

paper(Gangopadhyay[12]), a simpler method to construct a

rosette is described. Gangopadhyay[13] has also developed

several new generalized tiling methods which use rosettes

with both even and odd number of vertices. Although simpler

than previous construction methods, the construction of stars

and rosettes in [10] and [12], are still somewhat involved in

the sense that they use diverse trigonometric functions and a

number of specialized functions based on co-ordinate

geometry. In this paper, a new, much simpler construction

method is presented. The new method uses Turtle geometry

(Abelson and diSessa[2]) to construct stars and rosettes. In

addition, new geometric shapes even more complex than stars

and rosettes are constructed using simple methods involving

Turtle geometry. Further, new Turtle geometry based tiling

patterns using these shapes are also explored. These are the

main distinguishing features of this paper.

2. BASIC TURTLE GEOMETRIC

FUNCTIONS
Given below are the basic functions of Turtle geometry along

with a brief description of the task that each function

performs.

Here px and py denote cursor positions and ang denotes the

angle at which the cursor will move. Ps is a binary variable

denoting whether pen is up(ps=1) or down(ps=0).

void fd(float dist)

{float hx=cos(ang*3.1415926536/180);

float hy=sin(ang*3.1415926536/180);

float nx=px-hx*dist;

float ny=py-hy*dist;

if(ps!=1)goto label;

line(px,py,nx,ny);

label:px=nx;py=ny;

}

The function ‘fd’ draws a line of length ‘dist’ from the present

position of the cursor(px,py) at an angle ‘ang’.

float rt(float l)

{ang+=l;

return ang;}

The function ‘rt’ increases the angle ‘ang’ by l degrees.

float lt(float l)

{ang-=l;

return ang;}

The function ‘lt’ decreases the angle ‘ang’ by l degrees.

void movexy(int x,int y)

{px=x;py=y;ang=90;}

The function movexy psitions the cursor at (x,y) at angle 90

degrees.

void pu()

{ps=0;}

The function pu disables the line drawing function ‘line’ in

the function ‘fd’.

void pd()

{ps=1;}

The function pd enables the line drawing function ‘line’ in the

function ‘fd’.

3. HOW TO DRAW A STAR
The function star given below uses the Turtle geometric

functions described in section 2 to construct an Islamic star

for n vertices, where n is >7 and is a factor of 360. The

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.31, April 2018

31

function has three arguments, viz, n – the number of vertices,

a – the length of a side in the inner polygon of the star and

angy – the angle supplementary to the external angle between

two adjacent sides of the inner polygon. The function

constructs an Islamic star in two steps. First the inner polygon

is constructed; then the outer polygon is constructed after

positioning the cursor appropriately through right rotation at

an appropriate angle.

 void star(int n, int a, float angy)

{ float t=180+angy-(2*n-4)*90/n;

 for(int i=0;i<n;i++)

 {fd(a);rt(angy);fd(a);lt(t);}

 rt(t);

 for(int i=0;i<n;i++)

{fd(a*sin((90-angy/2)*3.14/180)/sin((90-

t+angy/2)*3.14/180)); lt(2*t-angy);

fd(a*sin((90-angy/2)*3.14/180)/sin((90-

t+angy/2)*3.14/180)); rt(t);}

}

In figure 1, we illustrate the construction of a star with n=9,

a=30 and angy =80. The inner polygon has been drawn in red

color to explain the construction.

Fig 1 : The output of star(9, 30,80)

4. HOW TO DRAW A ROSETTE
To draw a rosette, first a star is drawn following the method

described in section 3. Every rosette has a star inscribed

inside. In fact, it is simply a symmetric outer polygon

circumscribed on the star it inscribes. So the cursor is first

moved to the nearest tip(a vertex in the outer polygon) of the

star. Then the circumscribing poly gon is drawn. The entire

method is codified below in the function rose. The function

rose has five arguments, the first three of which are the three

arguments –n, a and angy of the inscribed star. The remaining

two arguments of the function rose refer to the circumscribing

polygon. They are d – the length of the shorter side of the

polygon and s, where 2s is the angle between two adjacent

longer sides of the polygon. Here n is >7 and is a factor of

360.

Below the code for the function rose is presented.

void rose(int n, int a, float angy, int d, float s)

{ star(n, a, angy);

float t=180+angy-(2*n-4)*90/n;

fd(a*sin((90-angy/2)*3.14/180)/sin((90-t+angy/2)*3.14/180));

setcolor(3);

float b=a*sin((90-angy/2)*3.14/180)/

sin((90-t+angy/2)*3.14/180);

for(int i=1;i<=n;i++)

 {lt(3*t/2-angy-90);fd(d);lt(s);fd(b*sin((180-

t)/2*3.14/180)/sin(s*3.14/180));lt(180-2*s);

 fd(b*sin((180-

t)/2*3.14/180)/sin(s*3.14/180));lt(s);fd(d);

 rt(90+t/2);}

}

In figure 2, we illustrate the construction of a rosetter with

n=9, a=30, angy =60, d=30 and s=40. The circumscribing

polygon has been drawn in cyan to explain the construction.

Fig 2 : The output of rose(9, 30,60,30,40)

5. MORE COMPLEX CONSTRUCTIONS
The function polygram, presented below, constructs

symmetric shapes more involved than stars or rosettes. The

function has two arguments, n – the number of vertices of the

shape and a – the length covered by the function fd in every

step. Here n is always greater than 7, but need not be a divisor

of 360.

Below the code for the function polygram is presented.

void polygram(int n, int a)

{

for(int i=0;i<n;i++)

{

fd(a);lt(360./n);fd(a);rt(360./n);

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.31, April 2018

32

for(int j=0;j<=n-2;j++)

{fd(a);lt(360./n);fd(a);rt(360./n);fd(a);lt(360./n);}

}

}

The output of the function for n=9 and a=30 is given in figure

3.

Fig 3 : The output of polygram(9, 30)

Another such symmetric construction is presented in the

function polygram1, which is similar to the earlier function

polygram, but has an additional argument, angy – which is an

angle of deviation.

Below the code for the function polygram1 is presented. Here

n is greater than 7 and is not a multiple of 3.

void polygram1(int n,int a,float angy)

{float b=a*sin(360./n*3.14/180);

for(int i=0;i<n;i++)

{

{fd(a);lt(360./n-angy);fd(b);lt(720./n+angy);fd(b);lt(360./n-

angy);fd(a);

}

rt(360./n-angy);

}

}

The output of the function polygram1 for n=11, a=70 and

angy =-30 is given in figure 4 Figure 5 depicts the output of

polygram1(8, 70, 20);

Fig 4 : The output of polygram(11, 70, -30)

Fig 5 : The output of polygram(8, 70, 20)

6. TILING WITH STARS, ROSETTES

AND OTHER SYMMETRIC

STRUCTURES USING TURTLE

GEOMETRY
The main building block of the first tiling algorithm is the

output of the simple function rose8 which constructs an 8-

vertex rosette. The function rose8 is presented below:

void rose8(int a)

{for(int j=0;j<8;j++)

{for(int i=0;i<6;i++)

{fd(a);rt(90);}

rt(135);}

}

The output of rose8 for a= 70 is shown in figure 6.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.31, April 2018

33

Fig 6: The output of rose8(70)

Next, the function rose8 is embedded in a triple loop to

generate the tiling. The code segment for this is given below

and the output is shown in figure 7.

for(int k=0;k<6;k++)

for(int l=0;l<6;l++){

movexy(k*234,l*234);

for(int i=0;i<8;i++)

{star8(20);pu();fd(40);lt(45);fd(40);pd();}}

Fig 7: Tiling using the output of rose8(20)

Another tiling algorithm that uses a more involved symmetric

structure calls the simple function octagram that draws an 8-

vertex symmetric shape. The function octagram has a single

argument a, which is the distance traversed every time the

function fd is called.

void octagram(int a)

{for(int i=0;i<8;i++)

{fd(a);rt(45);

for(int j=0;j<6;j++)

{fd(a);lt(45);

}

}

}

The output of the function octagram for a= 50 is given in

figure 8.

Fig 8 : The output of octagram(50)

Next, the function octagram is embedded in a double loop to

generate the tiling. The code segment for this is given below

and the output is shown in figure 9.

for(int i=0;i<8;i++)

for(int j=0;j<8;j++)

{movexy(i*190,j*190);

octagram(50);

}

Fig 9: Tiling using the output of octagram(50)

.ROSETTE WITH SIX VERTICES AND A TILING

PATTERNS USING THEM
The function rose6, presented below, generates a rosette on

six vertices which is based on Turtle geometry. The function

draws two symmetric polygons,. The inner polygon, drawn in

black has 12 sides of length a, and the outer polygon, drawn in

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.31, April 2018

34

red has 24 sides of length a, where ‘a’ is the single argument

of the function.

void rose6(int a)

{for(int i=0;i<6;i++)

{fd(a);lt(120);fd(a);rt(60);

}

fd(a);setcolor(4);

for(int i=0;i<6;i++)

{for(int j=0;j<3;j++)

{fd(a);lt(60);}

fd(a);rt(120);

}

}

The output of the function rose6 for a=30 is given in figure

10.

Fig 10 : The output of rose6(30)

Next, the function rose6 is embedded in a double loop to

generate the tiling. The code segment for this is given below

and the output is shown in figure 11

for(int k=0;k<9;k++)

for(int l=0;l<8;l++)

{if(l%2==0)movexy(102*k,92*l);

else movexy(102*k+51,92*l);

rose6(30);

}

Fig 11 : Tiling using the output of rose6(30)

7. CONCLUSION
Turtle geometry based constructions for stars and rosettes

where the number of vertices is not a divisor of 360 are yet to

be constructed. These, as well as further new styles of tiling

based on turtle geometry would be explored in detail in future

work.

9. ACKNOWLEDGMENTS
The author wishes to acknowledge his debt to the referee(s)

for their constructive suggestions and encouragement

10. REFERENCES
[1] Syed Jan Abas and Amer Shaker Salman. Symmetries

of Islamic Geometrical Patterns. World Scientific, 1995.

[2] Harold Abelson and Andrea diSessa, Turtle

Geometry,The MIT press,1986.

[3] J. Bourgoin. Arabic Geometrical Pattern and Design.

Dover Publications, 1973. .

[4] Jean-Marc Castera. Zellijs, muqarnas and quasicrystals.

In Nathaniel Friedman and Javiar Barrallo,

editors,ISAMA 99 Proceedings, pages 99–104, 1999. l.

[5] Jean-Marc Castera et al. Arabesques: Decorative Art in

Morocco. ACR Edition, 1999.

[6] A.K. Dewdney. The Tinkertoy Computer and Other

Machinations, pages 222–230. W. H. Freeman, 1993.

[7] Douglas Dunham. Artistic patterns in hyperbolic

geometry. In Reza Sarhangi, editor, Bridges 1999

Proceedings, pages 139–149, 1999.

[8] Branko Gr¨unbaum and G. C. Shephard. Tilings and

Patterns. W. H. Freeman, 1987.

[9] Branko Gr¨unbaum and G. C. Shephard. Interlace

patterns in islamic and moorish art. Leonardo, 25:331–

339,1992.

[10] T. Gangopadhyay, On Tiling Patterns Involving Islamic

Stars with an Odd Number of Vertices, International

journal of computer applications, Vol. 65, number 8,

39-44.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.31, April 2018

35

[11] T. Gangopadhyay, Further Tiling Patterns Involving

Islamic Stars with an Odd Number of Vertices,

International journal of computer applications, Vol. 67,

number 1, 12-16

[12] T. Gangopadhyay, On Tiling Patterns Involving Islamic

rosettes with an Odd Number of Vertices, International

journal of computer applications, Vol. 69, number 9, 9-

14,

 [13] T. Gangopadhyay, Further Tiling Patterns Involving

Islamic rosettes with an Odd Number of Vertices,

International journal of computer applications, Vol. 71,

number 6, 36-41.

[14] E.H. Hankin. Memoirs of the Archaeological Society of

India, volume 15. Government of India, 1925.

[15] Craig S. Kaplan. Computer Generated Islamic Star

Patterns. In Bridges 2000: Mathematical Connections

in Art, Music and Science, 2000.

[16] Craig S. Kaplan and David H. Salesin. Islamic Star

Patterns in Absolute Geometry. ACM Transactions on

Graphics 23(2):97-119, April 2004.

[17] A.J. Lee. Islamic star patterns. Muqarnas, 4:182–197,

1995.

.

IJCATM : www.ijcaonline.org

