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ABSTRACT 
Islamic star and rosette patterns have been extensively studied 

for their symmetry and aesthetic appeal. This paper presents 

several new construction methods for stars and rosettes using 

Turtle geometry and also presents new geometric shapes even 

more complex than stars and rosettes the construction of 

which is based on Turtle geometry. It also explores new 

Turtle geometry based tiling patterns that use these shapes. 
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1. INTRODUCTION 
Owing to their symmetry and aesthetic appeal, Islamic star 

and rosette patterns have been studied extensively by several 

researchers(Gr¨unbaum and Shephard [9], Abas and Salman 

[1], Bourgoin[3],Dewdney [6], Castera [4], Dunham[7]). The 

innate symmetry of these structures have led to geometrical 

constructions of these as well as tiling designs devised 

through putting such structures in contact(Castera [5], 

Gr¨unbaum and Shephard[8], Kaplan[16]. Kaplan[15] has 

devised an elaborate construction method for stars based on 

methods described originally by Henkin [14] and Lee [17]. In 

addition Kaplan[16] has also devised a number of interesting 

tiling methods by putting stars in contact. Most of these tiling 

styles use stars and rosettes with an even number of vertices. 

Tiling with stars having an odd number of vertices have been 

studied by Gangopadhyay([10],[11]). In yet another 

paper(Gangopadhyay[12]), a simpler method to construct a 

rosette is described. Gangopadhyay[13] has also developed 

several new generalized tiling methods which use rosettes 

with both even and odd number of vertices. Although simpler 

than previous construction methods, the construction of stars 

and rosettes in [10] and [12], are still somewhat involved in 

the sense that they use diverse trigonometric functions and a 

number of specialized functions based on co-ordinate 

geometry. In this paper, a new, much simpler construction 

method is presented. The new method uses Turtle geometry 

(Abelson and diSessa[2]) to construct stars and rosettes. In 

addition, new geometric shapes even more complex than stars 

and rosettes are constructed using simple methods involving 

Turtle geometry. Further, new Turtle geometry based tiling 

patterns using these shapes are also explored. These are the  

main distinguishing features of this paper. 

2. BASIC TURTLE GEOMETRIC 

FUNCTIONS 
Given below are the basic functions of Turtle geometry along 

with a brief description of the task that each function 

performs. 

Here px and py denote cursor positions and ang denotes the 

angle at which the cursor will move. Ps is a binary variable 

denoting whether pen is up(ps=1) or down(ps=0). 

void fd(float dist) 

{float hx=cos(ang*3.1415926536/180); 

float hy=sin(ang*3.1415926536/180); 

float nx=px-hx*dist; 

float ny=py-hy*dist; 

if(ps!=1)goto label; 

line(px,py,nx,ny); 

label:px=nx;py=ny; 

} 

The function ‘fd’ draws a line of length ‘dist’ from the present 

position of the cursor(px,py) at an angle ‘ang’. 

float rt(float l) 

{ang+=l; 

return ang;} 

The function ‘rt’ increases the angle ‘ang’ by l degrees. 

float lt(float l) 

{ang-=l; 

return ang;} 

The function ‘lt’ decreases the angle ‘ang’ by l degrees. 

void movexy(int x,int y) 

{px=x;py=y;ang=90;} 

The function movexy psitions the cursor at (x,y) at angle 90 

degrees. 

void pu() 

{ps=0;} 

The function pu disables the line drawing function ‘line’ in 

the function ‘fd’. 

void pd() 

{ps=1;} 

The function pd enables the line drawing function ‘line’ in the 

function ‘fd’. 

3. HOW TO DRAW A STAR 
The function star given below uses the Turtle geometric 

functions described in section 2 to construct an Islamic star 

for n vertices, where n is >7 and is a factor of 360. The 
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function has three arguments, viz, n – the number of vertices, 

a – the length of a side in the inner polygon of the star and 

angy – the angle supplementary to the external angle between 

two adjacent sides of the inner polygon. The function 

constructs an Islamic star in two steps. First the inner polygon 

is constructed; then the outer polygon is constructed after 

positioning the cursor appropriately through right rotation at 

an appropriate angle. 

 void star(int n, int a, float angy) 

{ float t=180+angy-(2*n-4)*90/n; 

 for(int i=0;i<n;i++) 

 {fd(a);rt(angy);fd(a);lt(t);} 

 rt(t); 

 for(int i=0;i<n;i++) 

{fd(a*sin((90-angy/2)*3.14/180)/sin((90-   

t+angy/2)*3.14/180)); lt(2*t-angy); 

fd(a*sin((90-angy/2)*3.14/180)/sin((90-

t+angy/2)*3.14/180)); rt(t);} 

} 

In figure 1, we illustrate the construction of a star with n=9, 

a=30 and angy =80. The inner polygon has been drawn in red 

color  to explain the construction.         

 

Fig 1 :  The output of star(9, 30,80) 

4. HOW TO DRAW A  ROSETTE 
To draw a rosette, first a star is drawn following the method 

described in section 3. Every rosette has a star inscribed 

inside. In fact, it is simply a symmetric outer polygon 

circumscribed on the star it inscribes. So the cursor is first 

moved to the nearest tip( a vertex in the outer polygon) of the 

star. Then the circumscribing poly gon is drawn. The entire 

method is codified below in the function rose. The function 

rose has five arguments, the first three of which are the three 

arguments –n, a and angy of the inscribed star. The remaining 

two arguments of the function rose refer to the circumscribing 

polygon. They are d – the length of the shorter side of the 

polygon and s, where 2s is the angle between two adjacent 

longer sides of the polygon. Here n is >7 and is a factor of 

360. 

Below the code for the function rose is presented. 

void rose(int n, int a, float angy, int d, float s) 

{ star(n, a, angy); 

float t=180+angy-(2*n-4)*90/n; 

fd(a*sin((90-angy/2)*3.14/180)/sin((90-t+angy/2)*3.14/180)); 

setcolor(3); 

float b=a*sin((90-angy/2)*3.14/180)/ 

sin((90-t+angy/2)*3.14/180); 

for(int i=1;i<=n;i++) 

 {lt(3*t/2-angy-90);fd(d);lt(s);fd(b*sin((180-

t)/2*3.14/180)/sin(s*3.14/180));lt(180-2*s); 

 fd(b*sin((180-

t)/2*3.14/180)/sin(s*3.14/180));lt(s);fd(d); 

 rt(90+t/2);} 

} 

In figure 2, we illustrate the construction of a rosetter with 

n=9, a=30, angy =60, d=30 and s=40. The circumscribing 

polygon has been drawn in cyan to explain the construction. 

 

Fig 2 :  The output of rose(9, 30,60,30,40) 

5. MORE COMPLEX CONSTRUCTIONS 
The function polygram, presented below, constructs 

symmetric shapes more involved than stars or rosettes. The 

function has two arguments, n – the number of vertices of the 

shape and a – the length covered by the function fd in every 

step. Here n is always greater than 7, but need not be a divisor 

of 360. 

Below the code for the function polygram is presented. 

void polygram(int n, int a) 

{ 

for(int i=0;i<n;i++) 

{ 

fd(a);lt(360./n);fd(a);rt(360./n); 
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for(int j=0;j<=n-2;j++)  

{fd(a);lt(360./n);fd(a);rt(360./n);fd(a);lt(360./n);} 

} 

} 

The output of the function for n=9 and a=30 is given in figure 

3. 

 

Fig 3 : The output of  polygram(9, 30) 

Another such symmetric construction is presented in the 

function polygram1, which is similar to the earlier function 

polygram, but has an additional argument, angy – which is an 

angle of deviation. 

Below the code for the function polygram1 is presented. Here 

n is greater than 7 and is not a multiple of 3. 

void polygram1(int n,int a,float angy) 

{float b=a*sin(360./n*3.14/180); 

for(int i=0;i<n;i++) 

{ 

{fd(a);lt(360./n-angy);fd(b);lt(720./n+angy);fd(b);lt(360./n-

angy);fd(a); 

} 

rt(360./n-angy); 

} 

}  

The output of the function polygram1 for n=11, a=70 and 

angy =-30 is given in figure 4 Figure 5 depicts the output of 

polygram1(8, 70, 20); 

                           

 

Fig 4 : The output of polygram(11, 70, -30) 

 

Fig 5 :  The output of polygram(8, 70, 20) 

6. TILING WITH STARS, ROSETTES 

AND OTHER SYMMETRIC 

STRUCTURES USING TURTLE 

GEOMETRY 
The main building block of the first tiling algorithm is the 

output of the simple function rose8 which constructs an 8-

vertex rosette. The function rose8 is presented below: 

void rose8(int a) 

{for(int j=0;j<8;j++) 

{for(int i=0;i<6;i++) 

{fd(a);rt(90);} 

rt(135);} 

} 

The output of rose8 for a= 70 is shown in figure 6. 
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Fig 6:   The output of rose8(70) 

Next, the function rose8 is embedded in a triple loop to 

generate the tiling. The code segment for this is given below 

and the output is shown in figure 7. 

for(int k=0;k<6;k++) 

for(int l=0;l<6;l++){ 

movexy(k*234,l*234); 

for(int i=0;i<8;i++) 

{star8(20);pu();fd(40);lt(45);fd(40);pd();}} 

 

Fig 7:  Tiling using the output of rose8(20) 

Another tiling algorithm that uses a more involved symmetric 

structure calls the simple function octagram that draws an 8-

vertex symmetric shape. The function octagram has a single 

argument a, which is the distance traversed every time the 

function fd is called. 

void octagram(int a) 

{for(int i=0;i<8;i++) 

{fd(a);rt(45); 

for(int j=0;j<6;j++) 

{fd(a);lt(45); 

} 

} 

} 

The output of the function octagram for a= 50 is given in 

figure 8. 

 

Fig 8 : The output of octagram(50) 

Next, the function octagram is embedded in a double  loop to 

generate the tiling. The code segment for this is given below 

and the output is shown in figure 9. 

for(int i=0;i<8;i++) 

for(int j=0;j<8;j++) 

{movexy(i*190,j*190); 

octagram(50); 

} 

 

Fig 9:  Tiling using the output of octagram(50) 

.ROSETTE WITH SIX VERTICES AND A TILING 

PATTERNS USING THEM 
The function rose6, presented below, generates a rosette on 

six vertices which is based on Turtle geometry. The function 

draws two symmetric polygons,. The inner polygon, drawn in 

black has 12 sides of length a, and the outer polygon, drawn in 
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red has 24 sides of length a, where ‘a’ is the single argument 

of the function. 

void rose6(int a) 

{for(int i=0;i<6;i++) 

{fd(a);lt(120);fd(a);rt(60); 

} 

fd(a);setcolor(4); 

for(int i=0;i<6;i++) 

{for(int j=0;j<3;j++) 

{fd(a);lt(60);} 

fd(a);rt(120); 

} 

} 

The output of the function rose6 for a=30 is given in figure 

10. 

 

Fig 10 : The output of rose6(30) 

Next, the function rose6 is embedded in a double loop to 

generate the tiling. The code segment for this is given below 

and the output is shown in figure 11 

for(int k=0;k<9;k++) 

for(int l=0;l<8;l++) 

{if(l%2==0)movexy(102*k,92*l); 

else movexy(102*k+51,92*l); 

rose6(30); 

}

 

Fig 11 : Tiling using the output of rose6(30) 

7. CONCLUSION 
Turtle geometry based constructions for stars and rosettes 

where the number of vertices is not a divisor of 360 are yet to 

be constructed.  These, as well as further new styles of tiling 

based on turtle geometry would be explored in detail in future 

work. 
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