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ABSTRACT
Hashtags are one of the trendiest methods to label content on
the internet. They are used to cluster data which in turn, re-
sults in its easier retrieval. Twitter is the main source from where
the use of hashtags rocketed [1]. With the generation of large
amounts of microposts, there is a need for effective categoriza-
tion and search of the data. In this paper, we aim to propose a
new method of recommending hashtags for a given message in a
tweet so that hashtags can be effectively used by both data an-
alysts and common users of the twitter platform. We will use
various machine learning and deep learning concepts, and later
combine them all together in one model to obtain a set of rel-
evant hashtags for tweets fetched at real time. The results ob-
tained by this new model resulted in far better recommenda-
tion than when each of the models were implemented separately.
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1. INTRODUCTION
The use of hashtags has accelerated in the recent times. Everyday,
a topic which is of pivotal importance to the society, becomes a
trending hashtag. The use of hashtags has not only taken over
Twitter, but now is also expanding over to other social media
outlets like Facebook and Instagram. Of the above mentioned
microblogging services, Twitter has emerged out to provide a
dominant service with estimates of 250 million registered users
who post up to 500 million Tweets per day [11]. With the increase
in the popularity of Twitter, the need for an organizational strategy
to manage its contents is also increased, hence the use of hashtags.
They give a conglomeration of numerous text, pictures and videos
about the topic to which it is related. There is no limit to the
type of hashtag a user can create, unless and until it is a single
alphanumeric string of text.

Now, we shall briefly introduce the three different classification
techniques used by our model. The task of recommendation is
converted into a task of classification over three classifiers, namely,
Naive Bayes Classifier, Support Vector Machines, and Deep Neural
Networks.

A Deep Neural Network (DNN) is an artificial neural network
(ANN) with multiple hidden layers between the input and output
layers.[6] [7] DNNs can model complex non-linear relationships.
DNN architectures generate compositional models where the
object is expressed as a layered composition of primitives. The
extra layers enable composition of features from lower layers,
potentially modeling complex data with fewer units than a simi-
larly performing shallow network [8]. The deep neural network is
a great learning algorithm which offers a great deal of accuracy
with non-linear data, but, it does have its own set of limitations.
The amount of data needed to train, so that it can classify its input
correctly, is enormous, and for the task at hand, which comprises
of a classification task involving more than 1000 classes, the
enormity of the amount of data required becomes ten-fold. With
the drawback of the requirement of data comes another drawback
of training time. If we would have to recommend hashtags which
have been created recently due to a particular real-time event, we
must not wait for the neural network to train and then suggest.
Therefore, we have to introduce another classifier which can work
with less amount of data but can be trained in a short period of time.

The Naive Bayes classifier is a straightforward and powerful
algorithm for the classification task. Based on the Bayes Theorem.
it predicts membership probabilities for each class such as the
probability that given record or data point belongs to a particular
class. This algorithm is fast and highly scalable, as it’s compu-
tations are based on a bunch of counts. Therefore, this algorithm
would perfectly introduce real-time capabilities to our model. But,
due to the Bayes Theorem, the naive bayes classifier assumes that
all the features are unrelated to each other. Presence or absence of
a feature does not influence the presence or absence of any other
feature. This poses a lot of problems when it comes with text data,
as a few words may be clubbed together in a text to represent a
feature. By not considering the relationship between features in
the input (words in our case), we will lose out on accuracy. The
second disadvantage of the naive bayes classifier is that it does not
work efficiently on a large amount of data with several classes.
The resulting accuracy in mapping tweet messages to the hashtag
used reduces dramatically when the number of tweets enter the
model. Therefore, we need to find another classifier which can
bridge the gap between the naive bayes classifier and the deep
neural network, so that while the neural network trains, the load of
incoming tweets need not be applied on the naives bayes classifier.

The Support Vector Machine acts like this bridge for us. Support
vector machines are supervised learning models that analyze data
used for classification. It can be coupled with various kernels which
offer us the non-linearity we require. Due to this non-linearity in
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the required hypothesis function, the amount of data needed to
train the SVM would be on the higher side, but not as much as
the deep neural networks require. The classification task by the
SVM is done by find a curve which can divide the data points
between the classes of data given to it. Now, this is slightly more
computationally expensive than the naives bayes classifier, and
therefore it would take more time to train. But the advantage the
SVM offers is a more accurate classification of hashtags for more
number of hashtags.

The Naive Bayes Classifier is analogous to the L1 Cache on the
CPU and the Support Vector Machine is analogous to the L2 Cache
on the CPU. If we were to compare the Deep Neural Networks to
the other classifiers in terms of memory units in a computer, the
Deep Neural Network is the hard disk, or a solid state disk at best.
Capable of forming very complex functions, but time consuming.

2. PROBLEM STATEMENT
The main advantage of using hashtags is enhancing Twitter search.
There is a vast pool into which information can be grouped and
accessed. But it is seen that only 10% of the tweets are tagged with
hashtags, which somehow destroys their purpose [3]. Thus, if there
is a system in which hashtags can be suggested to the users based
upon his tweet, more data will end up getting tagged and clustered
together. With this dramatic increase of the usage of hashtags,
the audience of the content that is put on the web also increases,
resulting in better content delivery systems.

We seek to address the problem of making the data more avail-
able to the users of Twitter, by increasing the scope of the content
provided to them. This should be achieved effortlessly and be as
accurate as possible. The simplest way to bring about this mod-
ification is to use relatable hashtags for a tweet, such that it can
be associated with as many topics as possible, without losing its
sense. In this project we provide a platform for the users to get a
list of suggested hashtags for the tweets entered by them. Hence,
we have build a ‘New Recommendation System for Hashtags’. The
implementation is done in real time, using Tweepy, the Twitter’s
API, to fetch real time tweets.

3. LITERATURE SURVEY
3.1 Godin, Frderic, Viktor Slavkovikj, Wesley De

Neve, Benjamin Schrauwen, and Rik Van de Walle.
Using topic models for twitter hashtag
recommendation. In Proceedings of the 22nd
International Conference on World Wide Web, pp.
593-596. ACM, 2013

3.1.1 Approach. Using the Twitter streaming API, 18 million
tweets were collected. The dataset was preprocessed by removing
URLs, special HTML entities, digits etc. Slang words were con-
verted into proper english words. An unsupervised language classi-
fier was used because the language of the tweet may or may not
be the same as the locale. For Hashtag Recommendation, a bi-
nary classifier, based on Naive Bayes technique was implemented,
which discriminated between English and non-English language
tweets. Latent Dirichlet Allocation (LDA), which is a hidden topic
model, was used for retrieving information from a document by
finding out the general topics in it. Gibbs Sampling Algorithm was
used to find the undelying topic of a new tweet. From this topic
distribution, keywords were selected and later used as hashtags.

3.1.2 Results. The language classification algorithm converges
to a local maxima and therefore the training set depends upon the
starting conditions. Thus, while training, multiple versions of the
classifier were fed with different starting parameters. The language
classifier gave an acccuracy of 97.4%. For 80% of the tweets, at
least one suitable hashtag could be suggested out of five recom-
mended hashtags.

3.2 Kywe, Su, Tuan-Anh Hoang, Ee-Peng Lim, and
Feida Zhu. On recommending hashtags in twitter
networks. Social Informatics (2012): 337-350

3.2.1 Approach. The dataset was collected on Singapore users
over a period of thee months, comprising of a total of 44M tweets.
Users were represented by their preference weights for each hash-
tag. The hashtag weightage is given by TF-IDF method. Tweets
were also represented as a weighted vector of words using the same
technique. The probable hashtag that can be recommended for a
user u and tweet t was obtained by taking the union of hashtags
from top-X similar users and top-Y similar tweets. This new list
of suggested hashtags was ranked by frequency and the top ranked
ones were recommended.

3.2.2 Results. The results depend upon the value of X and Y.
40% of the hashtags generated per day are fresh and stable usage
patterns were observed over the time span of 3 months.

4. MODEL ARCHITECTURE
4.1 Data Source
NLTK tweets are taken as our dataset. The NLTK dataset contains
tweets of General Elections 2015, which are only used for training
purposes because its specific to a particular topic. Since we aim
to generate hashtags in real time, Tweepy, the Twitter’s API is
used for testing purposes. Tweets in their raw form becoming very
difficult to analyze, and therefore they need to be preprocessed
and then given to our models. The metadata of the tweet consists
of many fields, like location, timestamp, user details, URLs
mentioned in the tweet etc. However, all this is not required for our
model. We are only concerned with the text of the tweet written
by the user and no other details. Therefore, we take care that only
the tweet, i.e., the text in the tweet is recorded in the dataset and
nothing more, just to reduce the complexity.

4.2 Preprocessing
Various techniques of Natural Language Processing have been
used to preprocess the data for the contents in the tweet. Post
using the word tokenizer and tweet tokenizer, a lot of changes
are applied to the tweets in order to standardize them so that
the models can easily classify to give an appropriate result.
Contraction words like cant, dont, etc have been replaced by their
original words like can not and do not respectively. The words
are then lemmatized, aiming to remove inflectional endings and
to return the base or dictionary form of a word. Next, stopwords
are removed because they are not at all relevant and should not
be taken into consideration while recommending hashtags. Any
forms of URLs present in the tweet are also removed. Lastly,
slang language, which mostly consists of abbreviated words, is
replaced by complete, meaningful words. Another of the methods
used in preprocessing, is correcting the misspelled words. Spelling
corrector, made by Peter Norvig has been adopted for the same
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[9] - an edit to a word is carried out by deletion, transposition
(swapping), replacement or insertion. Words are restricted to a
limited vocabulary defined for this method and the number of edits
made to a misspelled word, to convert it into a meaningful word
from the vocabulary is taken into account. Corrections that require
two simple edits are also taken into consideration, generating
a much bigger set of probabilities, but not necessary all words
formed are known words. P(word) is estimated by its occurance in
a text file containing a million words, big.txt. It is a concatenation
of public domain book excerpts from Project Gutenberg and lists
of most frequent words from Wiktionary and the British National
Corpus. This model gives around 68-75% accuracy.

Additionally for the deep neural network, there is a requirement
of converting the message into a vector. For this purpose, we
used a one-hot encoded vector where each vector is the size of
the number of words in the GloVe dictionary, where the position
of ‘1’ represented that the word, relative to the position in the
GloVe dictionary, is present in the message. We chose the GloVe
dictionary as there is a partial ordering of words, based on their
semantics [10].

4.3 Naive Bayes Model
The input to the Naive Bayes classifier is a file containing a
dictionary, wherein the keys are the hashtags and the values are
words of the corresponding cleaned tweet (stored in the form of a
list). Tweets that do not contain a hashtag in the training set are
omitted.

Naive Bayes Theorem states : P (A|B) = P (B|A)P (A)
P (B)

Where,

1)P(A) represents the prior probability, or initial belief of
A

2)P (A|B) represents the conditonal probability of A given
B.

3)P (B|A)
P (B)

represents the support B provides for A

We are examining the following conditional probability :
P (hashtag/tweet) = P (hashtag)∗P (tweets/hashtags)

P (tweets)

The algorithm makes a naive assumption that all features are
independent, given the hashtag :

P (hashtag|tweets) = P (hashtag)∗P (t1|hashtag)∗...∗P (tn|hashtag)
P (tweets)

Rather than computing P(tweet) explicitly, the algorithm just
calculates the numerator for each label, and normalizes them so
they sum to one :

P (hashtag|tweet) = P (hashtag)∗P (t1|hashtag)∗..P (tn|hashtag)
SUM [h](P (h)∗P (t1|h)∗..P (tn|h)

If the classifier encounters an input with a feature that has
never been seen with any label, then rather than assigning a
probability of 0 to all labels, it will ignore that feature. Hence, all
tweets having no hashtags, are ignored.

Training is performed on the feature set and while testing, the most
probable hashtag is returned.

4.4 Support Vector Machine
The text is converted into vectors for SVM predictions. Its
implementation is somewhat similar to that of Naive-Bayes. The
input again, is taken in the form of a dictionary, where the keys are
the hashtags and the values is a list containing the words of the
corresponding cleaned tweet. While forming the dictionary from
the tweets and their hashtags, if hashtag(s) is absent from a tweet,
that tweet is ignored, for simplicity purposes. SVM was trained
by Linear as well as Radial Basis Functions(RBF). It turns out
that Linear SVM gave an accuracy of 35%. On the contrary, RBF
resulted into an accuracy of 13%. Thus, Linear SVM is adapted for
further computations.

4.5 Combined Model
We know that a deep neural network takes a lot of time to train,
and for every new hashtag, a new class is to be created, and
all the tweets need to be trained yet again. This is not feasible
computationally and is very time-consuming. There, we decided to
use smaller classifiers to train for fewer tweets which can be trained
repeated with very little cost of time. Our idea involves combining
three models of classifiers and running them simultaneously. The
classifiers are Naive Bayes, Support Vector Machines, and a Deep
Neural Network. Each model has a buffer which indicates as to
how many tweets it can train at a time. The buffers are set for
all the three models : Naive Bayes - 100 tweets, Support Vec-
tor Machine - 1,000 tweets, Deep Neural Network - 100,000 tweets.

The number of tweets chosen in accordance to the time they take
to train, corresponding to the accuracy given by each model. Naive
Bayes takes the minimum time for training so it is executed first,
with the least buffer. It also gives us a higher accuracy for smaller
amount of tweets. Support Vector Machine, which takes more time
than Naive Bayes to train, is kept second, having medium buffer.
Lastly, Deep Neural Network, being the most accurate model,
takes the most time to train, and hence is executed at the last,
having a huge buffer size. The Deep Neural Network does give us
a much higher accuracy, but it does require a lot of data.

A tweet enters the listeners process and it is added to the naive
bayes, support vector machine, and deep neural network buffers.
When a threshold for training the naive bayes model is reached
(currently set to 100) ,the tweets in the naive bayes buffer are
trained. The training process ends, but the buffer is not cleared, yet.
It is theoretically not possible to retrain a classifier for new classes,
therefore this imposes a restriction. Another 100 tweets come into
the listener process, and the naive bayes classifier is re-trained
for all the 200 tweets. The threshold kept for the support vector
machine is 1,000 tweets, therefore, when the number of tweets
received reaches 1,000, the support vector machine starts to train,
and after its training process, it will be able to predict hashtags that
were being predicted by the naive bayes model (since it already
consisted of the tweets that were previously been trained by the
naive bayes classifier). Therefore, the buffer of the naive bayes
(the first 1,000 tweets in the buffer) can now be deleted. Now, the
naive bayes model will be trained for the next 900 tweets. The
same logic is extended for the deep neural network. The threshold
set for the deep neural network model is 100,000, because it takes
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Fig. 1. Flowchart for the Listener Process

a lot of time to train it, therefore adequate time should be given to
it to train and be constantly used taking into the accuracy decrease
of support vector machines when the number of classes increase.
When the number of tweets increase to 100,000, the tweets in
the buffer for the deep neural network are used to train the neural
network, whilst the naive bayes model and the support vector
machine model continue to work as before. After the completion
of the training process of the neural network, the buffer of the
support vector machine (first 100,000) and the buffer of the naive
bayes (first 1,000) are cleared, since the deep neural network
model is now able to predict the hashtags for the tweets contained
in both naive bayes and SVM model. Therefore, after clearing their
respective buffers, they can work on newer tweets more efficiently.

5. RESULTS
The results obtained are on random tweets taken from the NLTK
Tweets dataset. The accuracy shown is based on the testing data
chosen using the K-Fold splitting of tweets. The split value taken
for K-Fold is 3, which would mean that, 2 folds (67% of the
tweets) will be used for training and 1 fold (33% of the tweets)
will be used for testing.

Fig. 2. Flowchart for the Advisor Process

Fig. 3. Naive Bayes

The graph shown in the figure 3 shows the accuracy of the
naive bayes model on testing data. We can observe an increase
in the accuracy till 1000 tweets. This can be reasoned with the
availability of hashtags for the model to chose from. With only
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100 tweets, the number of hashtags available will be limited, and
this would fair rather poorly with the test tweets. Now, with the
availability of more number of tweets, the number of hashtags
will also increase giving the classifier more number of classes to
choose from. At about 1000 tweets, the naive bayes classifier has
a relatively higher accuracy. But at this point of time, the number
of tweets that must be used for training the naive bayes classifier
is high. Computationally, this becomes very expensive, as naive
bayes has a Big-O complexity O(Nd), where ‘N’ is the number
of training examples and ‘d’ is the dimensionality of the features
which is the number of words in a tweet (maximum 140 words due
the character limit). The computation increase amounts to increase
in training time, and at the 1000 tweets mark, the classifier takes
too much time to train (about 15 minutes), resulting in loss of
real-time capabilities. We can also observe a steep decrease in
accuracy past 1500 tweets. Therefore, by setting the threshold as
1000 for the SVM model, the naive bayes classifier will train only
for 900 tweets.

Fig. 4. Support Vector Machine

Figure 4 shows the accuracy of the support vector machine
classifier on testing data. It can be observed that, from the 2000
tweets mark, the accuracy steadily increases. The complexity of
the training of support vector machine is O(Nr), where ‘N’ is the
number of training examples and ‘r’ is the number of iterations
(sklearn set 1000 as default). Since the SVM classifier involves
linear vector multipliers, it can be highly vectorized, leading to
lower training time. Taking the relative performance of Naive
Bayes and SVM, it can be observed that the SVM classifier, even
after 1000 tweets, is able to train much faster than the Naive Bayes
Classifier.

Therefore, we can conclude that SVM makes a perfect bridge be-
tween the Naive Bayes Classifier and the Deep Neural Network.
Accuracies shown in the graphs are relatively low due to the
fact that tweets can contain more than one hashtag, whereas the
classifiers are tested for only one hashtag.

Just like the support vector machine outperforms the naive bayes
at when the dataset is higher, similar logic can be employed
for the training of the deep neural network. The deep neural
network requires a massive amount of data before it can be trained

efficiently, but once trained it performs very well.

The results achieved are above satisfactory, as all the models work
well with each other, and the architecture of the overall machine
learning model is complex but enables us to give results in real
time, i.e., it helps us identify the events that are happening around
the world in real time. The accuracy achieved by each model is
quite satisfactory, as we are trying to classify over 5000 hashtags.
If we were to randomly pick one hashtag, the probability of picking
a correct recommendation would be 1/5000 = 0.0002, or 0.02%.
But we are achieving an accuracy in the high 70s with the neural
network. Similarly, we are able to achieve accuracies of 40% with
the naive bayes model for about 50 classes, and about 50% for
over 200 classes with the support vector machine.

6. CONCLUSION
Three models combined and executing in parallel gives us better
recommendations on the hashtags that could be used, as it rec-
ommends both newer and older hashtags. The buffering system
is threaded, which takes care of the speed too. We need not wait
indefinitely for a process to complete and waste time. This method
takes into account its actual implementation in the real world.

This approach on building a recommender system to show users
the possible hashtags that may be appropriate for the content of the
tweet is highly time efficient. It can be used in the long run to give
trending tweets providing social media admins an effective way to
learn about trending hashtags that they could use with respect to
their field, or in general, the current happenings about the world.
Although this may be a very efficient method to give out recom-
mendations, it could tend to be computationally very expensive,
and must be run on a separate server, but it is definitely feasible in
the real world.
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