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ABSTRACT 

Most of the approaches suggested during the last decades for 

solving life testing problems are markedly different from 

those used in the related but wider area of Laplace transform 

technique. In this paper, it is demonstrated that applying the 

Laplace transform technique makes sense also for solving life 

testing problems and that result in simpler procedures that are 

asymptotically equivalent or better than standard ones. A new 

test statistics for testing exponentiality against used better than 

age in the Laplace transform order aging class of life 

distribution (UBAL) is proposed. Pitman’s asymptotic 

efficiencies of this test are calculated and compared with other 

tests. The percentiles of this test statistic are tabulated for 

censored and non-censored data. Finally, examples in 

different areas are used as practical applications of the 

proposed test.  

Keywords 
UBA and UBAL classes of life distributions; Testing 

hypothesis; Right censored data; Makeham, Weibull, Linear 
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1. INTRODUCTION 
Statistical inferences are used to project the data from the 

sample to the entire population. Statistical inference based on 

two main branches one of them the estimation and the other is 

testing hypotheses. In general, we do not know the true value 

(claim) of population parameters they must be estimated. 

However, we do have hypotheses about what the true values 

(claims) are. The hypothesis actually to be tested is usually 

given the symbol H0, and is commonly referred to as the null 

hypothesis. The other hypothesis, which is assumed to be true 

when the null hypothesis is false, is referred to as the 

alternative hypothesis, and is often symbolized H1. Both the 

null and alternative hypothesis should be stated before any 

statistical test of significance is conducted.  

In the last decade, various classes of life distributions have 

been proposed in order to model different aspects of aging. 

We get the well-known classes of increasing failure rate 

(IFR), increasing failure rate on average (IFRA), and used 

better than aged (UBA), used better than aged in expectation 

(UBAE). Properties and applications of these aging notions 

can be found, for instance, in Bryson and Siddiqui (1969), 

Barlow and Proschan (1981), Ahmad (2004). 

In this paper, we interest in the used better than aged in 

Laplace transform order aging class of life distribution UBAL 

which introduced by Abu-Youssef and Bakr (2018).  

A real data is given and we desire to test H0: data is 

exponential versus the alternative hypothesis  H1: data is not 

exponential. To choose between H0 and H1 or to make a 

decision we need to define test statistic. The test statistic is a 

random variable used to determine how close a specific 

sample result falls to one of the hypotheses being tested. 

In reliability theory, aging life is usually characterized by a 

nonnegative continuous random variable X ≥ 0  representing 

equipment life with distribution function F and survival 

function F  t = 1 − F(t) such that F 0 − = 0. One of the 

most important approaches to the study of aging is based on 

the concept of the residual life. For any random variable  X, let 

Xt =  X − t X > 𝑡 ,   t ∈  x: F x < 1 , denote a random 

variable whose distribution is the same as the conditional 

distribution of X −  t given that X >  𝑡 and has survival 

function 

F t x =  

F (x+t)

F (t)
      F  t > 0

     0          F  t = 0

 . 

When X is the lifetime of a device which has a finite 

mean μ = E X =  F  u du
∞

0
, the mean of  Xt  is 

called mean residual life (MRL) and is given by  

μ t = E Xt =
 F  u du

∞

t

F  t 
.     

Further, the hazard rate of X is defined by 

h t = −
d

dt
ln F  t =

f t 

F  t 
, t ≥ 0, F  t > 0, 

where f(t) = F′(t) is the probability density of X assuming it 

exist. Note that if limt→∞ h(t) = h(∞) it exists and is positive, 

then (Willmot and Cai (2000)) 

μ ∞ = limt→∞ μ(t) =
1

h(∞)
. 

We review some common notions of stochastic orderings and 

aging notions are considered in this paper (see Barlow and 

Proschan (1981)). 

 If X and Y are two random variables with distributions F and 

G (survivals F  and G ), respectively, then we say that X is 

smaller than Y in the: 

a) Usual stochastic order, denoted by 

X ≤st Y if  

F (x) ≤ G (x) for all x. 

b) Increasing convex order, denoted by 

X ≤icx Y if 

 F (u)
∞

x

du ≤  G  u 
∞

x

du. 

c) Increasing concave order, denoted by 

X ≤icv Y if 

 F (u)
x

0

du ≤  G  u 
x

0

du. 
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Another important ordering that has come to use in reliability 

and life testing is the following: 

A random variable X is smaller than a random variable Y with 

respect to Laplace transform order (denoted by X ≤Lt  Y ) if, 

and only, if  

    e−sx dF(x)
∞

0

≥  e−sx dG x 
∞

0

,   s ≥ 0    (1.1) 

        It is easy to check that (1.1) is equivalent to 

 e−sx F (x)
∞

0

dx ≤  e−sx G  x 
∞

0

dx               (1.2) 

Two classes of life distributions were introduced by Alzaid 

(1994) which are used better than aged (UBA) and used better 

than aged in expectation (UBAE) classes of life distribution. 

Precisely we have the following 

definitions:  

Definition (1.1): The df F is said to be used better than aged 

(UBA) if 0 < 𝜇 ∞ < ∞ and for all x, t ≥ 0, (See Ahmad 

(2004)) 

F  x + t ≥ F  t e−x/μ(∞), x, t ≥ 0                   (1.3) 

Definition (1.2): The distribution function F is said to be 

used better than aged in expectation (UBAE) if 0 < 𝜇 ∞ <
∞ and for all  x, t ≥ 0,          

μ t ≥ μ ∞                                                          (1.4) 

Note that,  F is UBA (UBAE) if and only if Xt  converges in 

distribution to a random variable XA  (say) exponentially 

distributed with failure rate 1 μ  and  

 𝑿𝒕  ≤𝒔𝒕 𝑿𝑨,  𝑬  𝑿𝒕 ≤𝒔𝒕 𝑬 𝑿𝑨  . 

According to the above definitions (1.1), (1.2) and (1.3) we 

can deduce the following new definition for used better than 

aged in the Laplace transform order as follows. 

Definition (1.3): The distribution function F is said to be used 

better than aged in the Laplace transform order (UBAL) if 

0 < 𝜇 ∞ < ∞ and for all x, t ≥ 0, 

 e−sx F (x + t)
∞

0

dx ≥
μ ∞ 

1 + sμ ∞ 
F  t , s ≥ 0     (1.5) 

 It is obvious that (1.3) is equivalent to  𝑿𝒕  ≤𝑳𝒕 𝑿𝑨   for all t ≥ 

0. 

To introduce the definition of the discrete UBAL, let  X  be a 

discrete non-negative random variable such that 

 P X =  k =  pk , k =  0, 1, 2, . .. . Let 

 P 𝒌 = 𝑷 𝑿 >  𝑘 , 𝒌 ≥ 𝟏, P 0 = 1 denote the corresponding 

survival function. 

The discrete non-negative random variable X is said to be 

discrete used better than aged in Laplace transform order 

(discrete UBAL) if, and only, if 

 P 𝑘+𝑖𝑧
𝑘 ≥∞

𝒌=𝟎 P 𝑖  𝑧𝑘∞
𝒌=𝟎 , 𝒇𝒐𝒓 𝒂𝒍𝒍 𝟎 ≤ 𝒛 ≤ 𝟏 𝒂𝒏𝒅  𝒊 =

𝟎, 𝟏, … . 

Now, 

𝑿 ≤𝒔𝒕  𝑿𝑨  ⇒  𝑿 ≤𝑳𝒕  𝑿𝑨. 

Then, we have the following implication: (Abu-Youssef and 

Bakr (2014, 2018) and Abu-Youssef et al (2015, 2017)). 

IFR   UBA   UBAL 

  


 
 

 

  
UBAE  

 

Applications, properties and interpretations of the Laplace 

transform order in the statistical theory of reliability, and in 

economics can be found in Denuit (2001), Klefsjo (1998) and 

Ahmed and Kayid (2004). 

The main object in this paper is to deal with the problem of 

testing H0 ∶ F is exponential against H1 ∶ F is the largest class 

of life distribution UBAL. The paper is organized as follows: 

in section 2, we give a test statistic based on Laplace 

Transform technique for complete data. Selected critical 

values are tabulated for sample sizes 5(5)100 is investigated 

using mathematica 8 programme in section 3. The Pitman 

asymptotic efficiency for common alternatives is obtained in 

section 4. In section 5; a proposed test is presented for right 

censored data. Finally, we discuss some applications 

(numerical examples) to show the importance of the proposed 

test in section 6. 

2. TESTING FOR COMPLETE DATA 
This section is concerned with the construction of the 

proposed statistic as a Laplace Transform technique and 

discussing its asymptotic normality. 

Here, we hope to test the null hypothesis 𝐻0 ∶  𝐹 is 

exponential, against 𝐻1 ∶  𝐹 is UBAL, and is not 

exponential. Non-parametric testing for classes of life 

distributions has been considered by many authors (see 

Mahmoud and Abdul Alim (2008); Abu-Youssef and Bakr 

(2014, 2018); Abu-Youssef et al (2015)). 

According to Eq. (1.5) we may use the following as a measure 

of departure from 𝐻0. 

δ𝐿 s, β =      𝑒−𝛽𝑡 𝑒−𝑠𝑥 F  𝑥 + 𝑡 
∞

0

d𝑥
∞

0

−
𝜇(∞)

1 + 𝑠𝜇(∞)
𝑒−𝛽𝑡 𝐹  𝑡    d𝑡         

=   𝑒−𝛽𝑡 𝑒−𝑠𝑥 F  𝑥 + 𝑡 𝑑𝑥𝑑𝑡

∞

0

−
𝜇(∞)

1 + 𝑠𝜇(∞)
 e−βtF  t 𝑑𝑡

∞

0

∞

0

. 

The following theorem is essential for the development of our 

test statistic.  

Theorem 4: Let X be the UBAL random variable with 

distribution function F; then based on the previous technique, 

δ𝐿 s, β =
1

𝑠 β − s 
 1 −  φ s  

−  
1 + 𝛽 + 𝑠 1 − 𝜇 ∞  

β β − s  1 + s𝜇 ∞  
  1 −  φ β  (2.1) 

 

Where φ s =  e−sx dF(x)
∞

0
. 

Proof: Since 
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δ𝐿 s, β =   𝑒−𝛽𝑡 e−su F  u + t 
∞

0

dudt
∞

0

−
𝜇(∞)

1 + 𝑠𝜇(∞)
 𝑒−𝛽𝑡 F  𝑡 

∞

0

d𝑡. 

= 𝐼 −
𝜇(∞)

1 + 𝑠𝜇(∞)
𝐼𝐼.  

Where,  

𝐼 =   𝑒−𝛽𝑡 e−su F  u + t 
∞

0

dudt
∞

0

                        

=   𝑒−𝛽𝑡 e−s(x−t)F  x 
∞

t

dxdt
∞

0

                      

 =
1

𝛽 − 𝑠
 𝑒−𝑠𝑡(1 − e−(β−s)t)F  t dt

∞

0

               

 =
1

𝛽 − 𝑠
 

1

s
 1 − φ s  −

1

β
 1 − φ β   .          

And 

𝐼𝐼 =  𝑒−𝛽𝑡 F  𝑡 
∞

0

d𝑡     

=
1

𝛽
 1 − φ β  .     

Hence, the result follows. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be a random sample from the distribution 

function F. 

For generality, we assume 𝜇(∞) is known and equal one. The 

empirical estimator 

δ  s, β  of our test statistic can be obtained as follows: 

δ 𝐿𝑛
 s, β =

1

𝑛(𝛽 − 𝑠)
  

1

𝑠
 1 − e−sX i  

i

−
β + 1

β(1 + s)
 1 − e−βX i   . 

To make the test is invariant, let 

∆ 𝐿𝑛
 s, β =

δ 𝐿𝑛
 s, β 

X 
. 

Let us rewrite δ 𝐿 as follows,  

∆ 𝐿𝑛
 s, β =

1

X 𝑛
 ∅(Xi)

i

 

where  

∅ Xi =
1

𝛽 − 𝑠
 
1

𝑠
 1 − e−sX i  −

β + 1

β(1 + s)
 1 − e−βX i   . 

To find the limiting distribution of δ (s, β) we resort to the U-

statistic theory and practice (Lee (1990)). 

Set 

∅ X1 =
1

𝛽 − 𝑠
 
1

𝑠
 1 − e−sX 1 −

β + 1

β(1 + s)
 1 − e−βX1  . 

Then, ∆ 𝐿𝑛
 s, β  is equivalent to U-statistic given by: 

𝑈𝑛 =
1

 𝑛
1
 
 ∅(Xi)

i

. 

The following theorem summarizes the asymptotic normality 

of δ 𝐿𝑛
 s, β . 

Theorem 5.  

i- As n → ∞, (δ 𝐿𝑛
 s, β − δ𝐿(s, β))  is asymptotically 

normal with mean 0 and variance σ2 s, β  where,  

σ2 s, β = Var δ 𝑛 s, β  =

= E  
1

𝛽 − 𝑠
 
1

𝑠
 1 − e−sX i  

−
β + 1

β(1 + s)
 1 − e−βX i    

2

 

ii- Under 𝐻0, the variance is given by 

σ0
2 s, β =

2

(2b + 1)(2𝑠 + 1) 𝑠 + 1 2(𝑠 + 𝑏 + 1)
. 

Proof: 

i- Using standard U-statistic theory, 

Lee (1990) and direct calculations, we get  

𝐸 δ 𝑛 s, β  = 𝐸  
1

𝛽 − 𝑠
 
1

𝑠
 1 − e−sX i  

−
β + 1

β(1 + s)
 1 − e−βX i    ; 

σ2 s, β = Var δ 𝑛 s, β  =

= E  
1

𝛽 − 𝑠
 
1

𝑠
 1 − e−sX i  

−
β + 1

β(1 + s)
 1 − e−βX i    

2

. 

ii- Under 𝐻0, the parameter 𝑠 = 0.6,
𝛽 = 0.1 say, and 

𝜇0 = 𝐸 δ 𝑛 s  = 0; 

σ0
2 0.6, 0.1 =

2

(2b + 1)(2𝑠 + 1) 𝑠 + 1 2(𝑠 + 𝑏 + 1)
= 0.17. 

3. MONTE CARLO NULL 

DISTRIBUTION CRITICAL POINTS 
Based on 10000 generated samples from the standard 

exponential distribution the Monte Carlo null distribution 

critical values of our test δ 𝐿𝑛 (0.6, 0.1) are simulated and 

tabulated, where n = 5(5)100 in Table 1. Mathematica 8 

programme is used. 

n 90% 95% 99% 

5 0.178107 0.22842 0.307209 

10 0.129312 0.166508 0.227719 

15 0.121644 0.151435 0.202949 

20 0.0973733 0.132505 0.191256 

25 0.0835908 0.107235 0.145443 

30 0.0870262 0.112839 0.171846 

35 0.0806331 0.106212 0.145184 

40 0.0767111 0.137902 0.137902 
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45 0.0690628 0.0903939 0.124415 

50 0.067212 0.0888034 0.127334 

55 0.0649281 0.0839744 0.117099 

60 0.0627974 0.0787144  0.111644 

65 0.058578 0.0778206 0.0998889 

70 0.062877 0.0755414 0.113515 

75 0.0522209 0.0693114 0.101782 

80 0.0537328 0.0711821 0.101084 

85 0.0522313 0.066287 0.0913245 

90 0.0548479 0.0691084 0.0937278 

95 0.051652 0.0672995 0.0880698 

100 0.046207 0.0604187 0.0856818 

Table 1: The Upper Percentile Points of 

𝛅 𝑳𝒏(𝟎. 𝟔, 𝟎. 𝟏)  with 10000 Replications. 

 

Fig. 1: The Relation Between Sample Size and Critical 

Values. 

From Table 1 and Fig. 1, the critical values decrease as the 

sample size increases and they increase as the confidence 

level increases. 

4. PITTMAN ASYMPTOTIC RELATIVE 

EFFICIENCY  

Since the above test statistic ∆ 𝐿 s, β =
δ 𝐿

X
  is new and no other 

tests are known for this class (UBAL). We may compare our 

test to the other classes. Here we choose the test ∆θ,(1)   

presented by Mugdadi and Ahmad (2005) and δFn

(2)
 presented 

Mahmoud and Abdul Alim (2008) for (NBAFR) class of life 

distribution. Then comparisons are achieved by using Pitman 

asymptotic relative efficiency PARE, which is defined as 

follows: 

Let T1n  and T2n  be two statistics, then PARE of T1n   relative 

to T2n  is defined by 

e T1n , T2n =
μ

1

\ θ0 

σ1 θ0 

μ
2

\
(θ0)

σ2(θ0)
 . 

Where  μ
i

\ θ0 = limn→∞
 ∂
∂θ

E(Tn i
) 

θ→θ0

,  and 

σi
2 θ0 = lim

n→∞
var(Tn i

). 

Three of the most commonly used alternatives they are: 

(i) Linear failure rate family  

F 1 x = e−x−
x2

2
θ,     θ, x ≥ 0.                                           (4.1) 

(ii) Weibull family: 

F 2 x = e−xθ

,     θ ≥ 1, , x ≥ 0.                                        (4.2) 

(iii) Makeham family: 

F 2 x = e−x−θ(x+e−x −1),     θ, x ≥ 0.                              (4.3) 

Note that H0 (the exponential distribution) is attained at θ = 0  

in (i), (iii) and θ = 1 in (ii). The Pitman's asymptotic 

efficiency (PAE) of δ𝐿 s, β  is equal to 

PAE δ𝐿 s, β  =

 
∂
∂θ

δ𝐿 s, β  
θ→θ0

σ0 s, β 
= 

=
1

σ0 s, β 
 

1

s(β − s)
 e−sx dFθ0

\
 x 

∞

0

−
β + 1

𝛽(1 + 𝑠)(𝛽 − 𝑠)
 e−βxdFθ0

\
 x 

∞

0

  

Where Fθ0

\
 x =  d

dθ
Fθ(u) 

θ→θ0

  

This leads to: 

(i) PAE in case of the linear failure rate distribution: 

PAE δ𝐿 0.6, 0.1  =
1

σ0 0.6, 0.1 
 
−1

0.3
 e−0.6xd  −

x2

2
e−x 

∞

0

−
−1.1

0.08
 e−0.1x

∞

0

d(−
x2

2
e−x) = 1.77 

(ii) PAE in case of the Weibull distibution: 

PAE δ𝐿 0.6, 0.1  =

=
1

σ0 0.6, 0.1 
 
−1

0.3
 e−0.6xd(−xln x e−x)

∞

0

−
−1.1

0.08
 e−0.1xd(−xln x e−x)

∞

0

 = 0.98 

 (iii) PAE in case of the Makeham distribution. 

PAE δ 0.6, 0.1  =
1

σ0
 
−1

0.3
 e−0.6xd( 1 − x − e−x e−x)

∞

0

−
−1.1

0.08
 e−0.1x

∞

0

d( 1 − x − e−x e−x) 

= 0.58 

Direct calculations of PAE of  ∆θ,(1)  , δFn

(2)
 and δ𝐿 s, β  are 

summarized in table (2), the efficiencies in table shows clearly 

our test δ𝐿 s, β  perform well for  F1, F2 and F3. 

0

0.1

0.2

0.3

0.4

0    20    40    60    80    100    

Sa
m

p
le

 S
iz

e

Critical Values

percentage

90%

95%

99%
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Distribution ∆θ,(1) δFn

(2)
 δ𝐿 s, β  

LFR 0.408 0.217 1.77 

Weibull 0.170 0.050 0.98 

Makeham 0.0395 0.144 0.58 

Table 2: PAE of  ∆𝛉,(𝟏)  , 𝛅𝐅𝐧

(𝟐)
  and 𝛅𝑳 𝐬, 𝛃  

In table (3), we give PARE's of  δ𝐿 s, β  with respect to ∆θ,(1) 

and δFn

(2)
 whose PAE are mentioned in table 2. 

Distribution e(δ𝐿 s, β , ∆θ,(1)) e  δ𝐿 s, β , δFn

(2)
  

LFR 4.3 7.8 

Weibull 5.76 19.6 

Makeham 14.68 4.03 

Table 3: PARE of 𝛅𝑳 𝐬, 𝛃  with respect to ∆𝛉,(𝟏) and 𝛅𝐅𝐧

(𝟐)
. 

It is clear from table (3) that the statistic δ𝐿 s, β  perform well 

for F 1, F 2 and F 3 and it is more efficient than both  ∆θ,(1) and 

δFn

(2)
 for all cases mentioned above. Hence our test, which 

deals the much larger UBA is better and also simpler. 

5. TESTING FOR RIGHT CENSORED 

DATA 
In this section, a test statistic is proposed to test: H0 (F  is 

exponential distribution with mean μ) versus H1 (F  is UBAL 

and not exponential distribution); with randomly right-

censored data.  

It is known that a censored data is usually the only 

information available in a life testing model or in a clinical 

study where patients may be lost (censored) before the 

completion of a study. We can describe the experimental 

situation as follows. Suppose n units are put on test, and 

X1, X2, … , Xn  denote their true life time. Let that 

X1, X2, … , Xn  be independent and identically distributed (i.i.d.) 

according to a continuous life distribution F. 

Let Y1, Y2, … , Yn  be (i.i.d.) according to a continuous life 

distribution G. Also we assume 

that X,s and Y,s are independent. In the randomly right 

censored model, we observe the pairs 

(Zi , δi), 𝑖 = 1, … , 𝑛 where Zi = min(Xi , Yi) and we assume 

𝜇 ∞  is known and equal one. and 

δi =   
1       if     Zi =  Xi  (i th observation is uncensored)

0          if     Zi =  Yi   i th observation is censored .
  

Let Z(0) <  Z 1 <  … <  Z(n) denoted the ordered of Z’s and 

δi is the δ corresponding to Z(i), respectively. Using the 

Kaplan and Meier estimator in the case of censored data 

(Zi , δi), i = 1, … , n as follows: 

δc 𝑠 =
1

 𝛽 − 𝑠 
   

1

𝑠
 1

𝑗−1

𝑘=1

𝑙

𝑗 =1

−  𝑒−𝑠𝑍 𝑚  [ 𝐶𝑝

𝛿𝑝 − 

𝑚−2

𝑝=1

 𝐶𝑝

𝛿𝑝

𝑚−1

𝑝=1

]

𝑙

𝑚=1

 

−
𝛽 + 1

𝛽(1 + 𝑠)
 1

−  𝑒−𝛽𝑍 𝑚  [ 𝐶𝑝

𝛿𝑝 − 

𝑚−2

𝑝=1

 𝐶𝑝

𝛿𝑝

𝑚−1

𝑝=1

]

𝑙

𝑚=1

  . 

Where   

φ s =  e−sx dF x 

∞

0

, 

φ  s =  𝑒−𝑠𝑍 𝑚  ( 𝐶𝑝

𝛿𝑝 − 

𝑚−2

𝑝=1

 𝐶𝑝

𝛿𝑝

𝑚−1

𝑝=1

𝑙

𝑚=1

) 

d𝐹𝑛 𝑍𝑖 =   𝐶𝑖
𝛿𝑖 − 

𝑗−2

𝑞=1

 𝐶𝑖
𝛿𝑖

𝑗−1

𝑞=1

, 

𝐹 𝑛 𝑡 =   𝐶𝑚
𝛿𝑚

𝑚<𝑡

, 

𝐶𝑚 =
𝑛 − 𝑚

𝑛 − 𝑚 +  1
 ,    𝑡 ∈  0, 𝑧 𝑚  . 

n 95% 98% 99% 

5 0.0486062 0.0639535 0.0778679 

10 0.0326447 0.0399905 0.0447338 

15 0.0312726 0.035816 0.0396453 

20 0.0287089 0.0315818 0.0342952 

25 0.0259153 0.027619 0.0293663 

30 0.0254728 0.0277263 0.0294407 

35 0.0250413 0.026873 0.0281711 

40 0.0240957 0.0262975 0.0273122 

45 0.0235821 0.0254789 0.0268156 

50 0.0234395 0.0247306 0.0258166 

55 0.0233212 0.0253982 0.026503 

60 0.0232044 0.0245652 0.0250577 

65 0.0225061 0.0240242 0.0249353 

70 0.0229756 0.0241366 0.0247014 

75 0.0223271 0.0233298 0.0239314 

80 0.0219044 0.0235257 0.0239446 

85 0.0221512 0.0229988 0.0235409 

90 0.0220748 0.0228619 0.0235677 
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95 0.0216011 0.0225204 0.02321 

100 0.0215823 0.0224034 0.0231377 

Table 4: The Upper Percentile Points of 𝛅 𝒄(𝟏𝟎, 𝟏𝟎𝟎)  with 10000 

Replications 

 

Fig. 2: The Relation Between Sample Size and Critical Values. 

From Table 4 and Fig. 2, the critical values decrease as the 

sample size increases and they increase as the confidence 

level increases. 

6. APPLICATIONS 
Here, we introduce some of real examples to elucidate the 

applications of our test in the two cases (censored and non-

censored data) of no censored data at 95% confidence level. 

a- Case of complete data 
In this section, two examples are presented considering 

 s = 0.6, b=0.1. 

 Example 1: Consider the data in Abouammoh et al. (1994) 

these data represent set of 40 patients suffering from blood 

cancer (leukemia) from one of ministry of health hospitals in 

Saudi Arabia and the ordered values in years are: 

0.315 0.496 0.616 1.145 1.208 1.263 1.414 

2.025 2.036 2.162 2.211 2.370 2.532 2.693 

2.805 2.910 2.912 3.192 3.263 3.348 3.348 

3.427 3.499 3.534 3.767 3.751 3.858 3.986 

4.049 4.244 4.323 4.381 4.392 4.397 4.647 

4.753 4.929 4.973 5.074 4.381   

It was found that δ 𝐿(0.6, 0.1) = 0.31 which is greater than the 

critical value of Table 1. Then we conclude that this data set 

have UBAL property and not exponential. 

Example 2:  Consider the well-known Darwin data Fisher 

(1966) that represent the differences in heights between cross 

and self-fertilized plants of the same pair grown together in 

one pot: 

4.9 −6.7 0.8 1.6 0.6 

2.3 2.8 4.1 1.4 2.9 

5.6 2.4 7.5 6.0 −4.8 

It was found that δ 𝐿(0.6, 0.1) = 0.069 which less than the 

critical value of Table 1. Then, we accept the null hypotheses 

which states that the data set has exponential property. 

b- Case of censored data 
In this section, an example is presented considering s = 10, 

b=100. 

Example 3: Consider the data in Mahmoud and Abdul Alim 

(2008) which represent 51 liver cancers patients taken from 

Elminia cancer center Ministry of Health { Egypt, which 

entered in (1999). Of them 39 represent whole life times (non-

censored data) and the others represent censored data. The 

ordered life times (in days) are The ordered non-censored data 

are 

10 14 14 14 14 14 15 17 18 

20 20 20 20 20 23 23 24 26 

30 30 31 40 49 51 52 60 61 

67 71 74 75 87 96 105 107 107 

107 116 150       

The ordered censored data are: 

30 30 30 30 30 60 

150 150 150 150 150 185 

One can calculate  δ 𝑐 10, 100 = 0.11 which is greater than 

the critical value of Table 4. Then we conclude that this data 

set have UBAL property and not exponential. 
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