
International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.34, April 2018

A Combined Expectation Maximization and Marker
Controlled Watershed Driven Distance Regularized

Level Sets for Nuclear Segmentation in
Histopathological Images

P. M. Shivamurthy
Sri Jayachamarajendra College of Engineering

Mysuru, India

T. N. Nagabhushan
Sri Jayachamarajendra College of Engineering

Mysuru, India

Vijaya Basavaraj
JSS Medical College and Hospital

Mysuru, India

ABSTRACT
Detection of significant biomarker has been a major issue in the
pathological study of cancerous tissue. The microscopic observa-
tion of H&E stained histopathological slides involves the study of
various tissue objects and their significant traits influencing the can-
cer grading. The change in shape and size of the nuclei objects
(nuclear pleomorphism) contributes much significantly in grading
the cancer. With the advent of various imaging studies over a dig-
itized Histopathological image, Active contour based segmenta-
tion approaches are considered to be much potential scheme in
detecting the nuclei within occlusions and extracting their irreg-
ular boundaries. In this research, a novel approach of driving the
contours of distance regularized level sets using an improved wa-
tershed transformation, has been presented. An Expectation Maxi-
mization based morphologically precomputed shape prior is used to
extract the foreground markers, which controls the watershed trans-
formation. The result of watershed transformation is used com-
pute the centroid of nuclei to serve the initialization of the con-
tour and the proposed gradient to drive the same efficiently. The
study performed over the Benign and Malignant tissue images from
BreakHis dataset has shown the efficacy of the methodology in
terms of object detection accuracy and overlap resolution. The seg-
mentation accuracy is compared to that of Geodesic active con-
tours, based on the ground truth generated by expert pathologist.
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Keywords
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1. INTRODUCTION
The advent digital pathology has immensely motivated the signif-
icant explorations in pathological studies involved in disease di-
agnosis and prognosis. Cancer grading is one such unsolved and
challenging issue, which has resulted in many interesting findings
through digital histopathology and its study involving various im-
age processing approaches. Among the many biomarkers used in
grading, nuclear pleomorphism is an important geometric feature
which indicates the change in shape and size of the nuclei objects
in the tissue. The rate of pleomorphism helps in exploring the pro-
gression of cancer through relative grading. Since the study of nu-
clear pleomorphism in a H&E stained slide at microscopic level
is a laborious process, it often leads to wrong diagnosis due to its
complex morphological structure and also due to variabilities dur-
ing the microscopic observation over the entire slide. Major task is
to manually delineate the boundary of nuclei objects and segment
out them for further studies. Due to high irregularity and missing
boundary information the process of delineation is highly challeng-
ing and overlapped nuclei objects further enhances the complexity
of the process.

Digitization of the histopathological slides have reduced the risk
of misdiagnosis caused due to variabilities in the microscopic ob-
servation. A digitized image is obtained at different zooming level
considering the pixel intensities as the source of data over a 2-D
scene defined as I = (P,ψ(x, y)), where P represents the ma-
trix of pixels corresponding to RGB components and ψ(x, y) is
the function of pixel intensities w ∈ P . w is a vector representing
intensity levels of red, green, and blue channels of each pixel. Var-
ious computational transformations over pixel elements provides
enough scope for detection of objects and extraction of the bound-
ary.

2. EARLIER WORK
Earlier works proposed in many literature have emphasized two
major aspects of extracting the nuclear objects. First, the object de-
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tection in a overlap resolution and the second, segmentation of the
irregular boundary with missing information. To achieve these ob-
jectives, significance of various features and similarity measures
have been presented in most of the earlier works. Segmentation
based on a similarity measure computed using object based texture
analysis was proposed by [29]. Cooccurence similarity among the
tissue objects was adapted as an useful measure of object extrac-
tion by [25, 28]. The method proposed by [21] has adapted various
structural features to segment the tissue objects. In the work pre-
sented by [5, 31], a combination of intensity, gradient and shape
features have been adapted to drive the watershed segmentation to-
wards the extraction of regions of interest. Integration of low, high
and domain specific features was found to be useful combination
to extract the object of interest in [19, 20]. Most of the features
extracted were either based on edge information or region informa-
tion. A detailed summary on histopathological imaging techniques
adapting both the set of features have been presented and a high-
light on their deficiencies have been made in [9, 12]. It has been
summarized that edge based methods lack in efficiency due to ir-
regular and discontinuous boundary information and the same with
region based approaches which results in over/under segmentation.
Hence, most of the literature emphasizes on the need for an high
level approach addressing both the objectives listed earlier.

3. SYSTEM OVERVIEW
The research work proposed here has been able to detect the object
under overlapped resolution and also extract the boundary infor-
mation of the nuclei effectively from a 2-D digitized image grid P .
The following section provides the description of dataset used in
this research.

3.1 Dataset and Notations
The dataset used is a collection of digitized images extracted from
the sections of H&E stained histopathological slides of beast can-
cer tissue sample. The source of dataset is from the collection pro-
vided by [27] and few live samples obtained from the pathologists
involved in this research. It has been indicated in [27] that the col-
lection is an extract from the samples obtained from surgical open
biopsy(SOB) of both benign and malignant samples with different
clinical representation. A total of 200 images extracted from tis-
sue samples showing adenosis of benign and ductal carninoma of
malignant have been chosen for experimentation. The resolution of
images are chosen at a zooming level of 400x.

It is observed from the images shown in Figure 1 that the ac-
tual challenge for the pathologists lies in identifying the occluded
objects and extracting the shape information by delineating the
boundary of each objects. The proposed research has been able
to achieve this by considering the 2-D image grid representation
P (x, y) of the image scene I at a resolution of 700X460 and per-
forming marker controlled watershed transformation Wt to gen-
erate the foreground regions. The marker controlled foreground
regions thus obtained serves two purposes. First, the detection of
centroids Co, which provides the count of objects present and sec-
ond,the watershed gradient Ig computed on the foreground region
serves as the driving force for the active contour initialized at the
centroid towards extraction of the object boundary.Throughout this
research various notations are used as listed in Table. 1.

3.2 The Phases of proposed method
There are two major phases of the proposed research. First, detec-
tion of object centroid to obtain the actual count of nuclei objects in
an occluded region. Second, segmentation of the irregular boundary
of each detected nuclei using a deformable model which is initial-
ized at the centroid detected for each object. Figure 2 shows the
flow diagram depicting the overview of the entire procedure.

Fig. 2. Flow diagram showing the various phases of the proposed method.

A brief overview of these phases are given in the following sections

3.3 Centroid detection
Detecting centroids of each object is an important task in providing
the count of nuclei in a overlapped region. This also serves as the
seed point for the initialization of the contour evolution to further
assist the segmentation of the object boundary. It is the geometrical
center of the object at the position xc and yc in the 2-D image grid
P . Centroids of all the objects in a occluded region is generated as
Co = {ci = P (xi, yi) ∈ I}. A review on various centroid detec-
tion schemes based on Euclidean distance map, Hough transform,
and H-maxima transform has been made in [13, 32]. A ground
truth based seed point detection methods have been presented in
[30, 10] considering nuclei size as the biomarker. A centroid pre-
diction based on support vector machine(SVM) has been proposed
by [17] and a deep learning based approach has been presented in
[26]. All these methods employ a complex scheme of computation
and hence necessitates a need for less complex method.

3.4 Contour Evolution
Ever since the idea proposed by [14], the active contours serves
as the most promising energy minimizing deformable models to
segment the objects with irregular boundaries. Hence, it is able to
address the deficiencies of most of the edge and region based seg-
mentation approaches.The energy is represented as the sum of the
gradient information of the boundary region EI and the energy of
the contour Eu. The contour u, is a polynomial, whose evolution
towards the object boundary is controlled by the gradient informa-
tion derived out of EI and Eu. This energy diminishes gradually
towards null value as the contour evolve towards the object bound-
ary. The contour is modeled with a partial differential equation rep-
resented by a level set function φ(u) as shown in Eq. 1.

φ(u) =
∂u

∂t
+ f(|∇u|, |∇I|) = 0 , (1)
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Fig. 1. H&E stained image samples of both benign and malignant tissue at 400X zoom level.

Table 1. List of symbols used in this research
Symbol Description Symbol Description

I 2-D Image scene Wt Watershed transform

Ig Watershed gradient If foreground image

P 2-D image grid w Intensity value of each pixel component

Co Set of centroids ci centroid of each object

Td topographical distance dpv Diffusion rate

Fm Foreground marker εext External energy gradient

ψ Intesity function ∇ gradient function

EI Energy gradient of Image Eu Energy gradient of contour

u contour represntation φ level set function of the contour

α Image signal component Tk clusters of tissue regions

PP Posterior probability pi prior probability

Cb Catchment basin of watershed pv potential value

∂ Partial differential f distance function

where f is the function which computes the edge or region based
gradient information using ∇, depending on the approach of con-
tour evolution. Most of the previous works on active contours have
laid a major emphasis on gradient computation based on the shape
features. A multiple level set implementation based on both edge
and region gradient has been presented by[2]. An active shape
model was proposed by [1] to segment overlapped objects, which
is based on a statistical model constrained by point distribution
proposed by [7]. A novel approach of integrating shape, region,
and boundary features and an adaptive energy computation, were
presented by [3] and [4] respectively. Though, the edge based ap-
proaches have their own limitations of initialization and gradient
computations, the Geodesic active contour presented by [6] is quite
promising, as shown in [11]. An improved approach based on Dis-
tance Regularized Active Contour (DRLS), was proposed by [15].
Another approach, which combines both the edge and region gradi-
ent information for evolving the contours was presented by [8]. The

energy minimizing model presented by [18] is adapted to compute
the gradient for the same.

In this research, the DRLS based active contour model pre-
sented by [15] is adapted for an efficient segmentation of the ob-
jects. This model is controlled by a distance regularization term,
which works based on forward and backward diffusion effects dur-
ing evolution. This reduces the reinitialization at every iterations
and hence results in fewer iterations and lesser reinitialization er-
rors. The mathematical model is as shown in Eq. 2.

∂φ

∂t
= µdiv(dpv(∇φ)∇φ)− ∂εext

∂φ
(2)

The first term is the distance regularization term as shown in Eq. 3.

∂φ

∂t
= µdiv(dpv(∇φ)∇φ) (3)
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The term dpv = µdpv(∇φ), is the diffusion rate, which takes either
a positive or negative potential value pv. The positive and negative
values represent forward and backward diffusion respectively. The
second term is the derivative of the external energy functional εext
with respect to φ.

The efficacy of the DRLS technique has been exploited by
using an improved method of gradient computation and the cen-
troid based contour initialization. The basic idea is to obtain the
watershed transform Wt of the original RGB image grid P , which
is controlled by the foreground markers Fm generated using the
precomputed shape prior. The foreground scene If is obtained by
applying expectation-maximization on the enhanced original im-
age. The transform Wt can be used for finding out the object cen-
troids Co considering the watershed regions corresponding to the
foreground markers Fm as well as to compute the energy gradient
Ig that corresponds to, εext, the external energy component of the
DRLS. The following section presents a detailed algorithm descrip-
tion of the proposed research. Further, Sections 4 and 5 discuss the
experimentation and result analysis respectively, followed by con-
clusion.

4. THE PROCEDURE
In this section, the various phases of the proposed methodology
discussed in the previous section are elaborated in detail. An algo-
rithmic illustration of each stages has been presented in Algorithm
1.

Algorithm 1: Nuclei Segment

INPUT : Input RGB Image
OUTPUT: Segmented objects of interest

1 begin
2 // Enhancement of Image quality using filtering
3 DWT-wiener-filter();
4 // Extraction of Region of Interest and

Morphological enhancement
5 Expectation-Maximization();
6 Erosion-Dilation();
7 Watershed-transform();
8 // Centroid detection
9 Foreground-region();

10 centroid-computation();
11 // gradient computation
12 Watershed-gradient();
13 // Contour Initialization and evolution
14 DRLS-intialization();
15 while contour == objectboundary do
16 DRLS-evolution();
17 end
18 end

4.1 Image denoising
It is evident from the fact that, due to staining errors and also due
to the zooming errors, the digitized 2-D image P (x, y) of the H$E
stained slide suffers from both high and low frequency noise com-
ponents. Hence, both the components has to be separated to per-
form filtering. The discrete wavelet transform (DWT) of the image
splits the signal into different frequency sub bands at various spatial
resolutions. Both low and high frequency components represented

as αlow and αhigh respectively are computed as shown in Eq. 4
and Eq. 5

αlow(n) =

∞∑
i=−∞

α(i)lp(2n− i) (4)

αhigh(n) =

∞∑
i=−∞

α(i)hp(2n− i) , (5)

where α(i) is the signal component and the functions lp and hp are
the low and high pass filter functions respectively. The significant
role of DWT in reducing the over segmentation is shown in [22].
In a work presented by [24], it has been shown that Wiener filer
integrated with DWT performs effective filtering of both the noise
components. Using this idea, the denoised signal coefficient can be
computed as shown in Eq. 6

D(i, j) = µ+
σ2 −N
σ2

(s(i, j)− µ) (6)

N is the noise component and the parameters µ and σ2 are the
mean and variance respectively, as shown in Eqs. 7 and 8.

µ =
1

n2

n∑
i=1

n∑
j=1

s(i, j) (7)

σ2 =
1

n2

n∑
i=1

n∑
j=1

s2(i, j)− µ2 , (8)

where s(i, j) is the sub-band generated by DWT.

4.2 Expectation-Maximization and Watershed
transformation

The next task is to obtain the region of interest from the denoised
image with a suitable clustering approach. Keeping the four dif-
ferent tissue components viz., nuclei, stroma, cytoplasm and gland
sections, as the reference, a set of four clusters of image pixels, Tk
is generated using Expectation-maximization techniques. Initially,
the E-step computes the posterior probabilities PP (Tk|f(c)) of
pixel components from each class in Tk for the k values ranging
from 1 to 4. The prior probabilities for the same is obtained tak-
ing Gaussian distribution of four randomly chosen classes. In the
M-step, the model parameters mean,covariance and mixture coef-
ficients denoted as γik = {µik, σik, pik} are updated iteratively. The
computation of posterior probabilities is given by Eq. 9

PP (Tk|f(c)) =
pikη(f(c)|µik,Σik)

ΣKj=1p
i
jη(f(c)|µij ,Σij)

(9)

for all c ∈ I(x, y) and η is the D-dimensional Gaussian distribution
considering D as three for RGB dimensions as shown below.

η(f(c)|µik,Σik) =

(2π)−D/2|Σ−1/2k |exp{− 1
2
(f(c)− µik)TΣ−k1(f(c)− µik)}

The rest of the computations of model coefficients of M-step and
finally the convergence evaluation is performed as per the [11].
After obtaining the region of interest corresponding to nuclei ob-
jects Tk=n, where n is the class corresponding to object of interest,
the foreground markers Fm are generated using morphological op-
erations based on the shape model presented in [23]. These mark-
ers are going to drive the watershed transformationWt(Tn, Fm) of
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the regions of interest. The water source is flooded from a regional
minima mi until the barriers are found using the floods of others
sources. The catchment basin Cbmi

of each regional minima is the
set of all pixels points topographically closer to mi as shown Eq.
10.

Cbmi
= {x ∈ I : Td(x,mi) < Td(x,mj)} (10)

∀ j ∈ P \ {i}
The Td is the topopraphical distance between two points p and q
considering the steepest descent distance of the all the paths γ(s)
between those points as shown in Eq. 11.

Td(p, q) = infγ

∫
‖∇Ic(γ(s))‖ds (11)

Further, the watershed transform serves the dual purpose, first, to
generate the region centroids using the foreground regions gener-
ated and second, to compute the gradient information of the regions
as discussed in the following section.

4.3 centroid detection and contour evolution
In the last stage of the algorithm, the centroids of the regions, which
are obtained using watershed transform, is computed and each cen-
troid serves as the count for number of objects in the occluded re-
gion and also as the initialization point for the evolution of contour
φ(u) towards segmentation of the object boundary. The DRLS con-
tour evolution is controlled by the energy gradient information Ig
computed from the transform obtained in the previous section. It
corresponds to εext, which represents the external energy, whose
derivative with respect to φ is the second term, which represents
the external gradient term of the DRLS formulation as shown in
section 3.

5. EXPERIMENTATION AND RESULTS
The proposed method has been experimented over 200 images from
the BreakHis data set discussed in section. 3. The resolution of
the images selected here is 700X460 captured at 400x zoom level.
Figure 3 shows the outcomes of various stages in the methodology.
It is clearly evident from the results that the proposed method is
able to extract the individual objects even if they are occluded. In
the next section, a qualitative and quantitative analysis of the re-
sults by comparing it with the ground truth and with that of results
obtained using Geodesic active contour respectively are presented.

6. QUALITATIVE AND QUANTITATIVE ANALYSIS
In this section, both qualitative and quantitative analysis of the re-
sults are performed. In Figure. 4 a comparison of the results ob-
tained for few images using both DRLS with watershed initializa-
tion and without initialization is shown. The results show that the
watershed transformation with foreground markers has been suc-
cessful in extracting the overlapped objects with a higher degree as
compared to that of without transformation.
According to [11], the following two types of quantitative measures
are very suitable for the evaluation of the segmentation based on ac-
tive contours. First, object detection and overlap metrics and, sec-
ond, segmentation accuracy using boundary error metrics. The ob-
ject detection measures are sensitivity (SN), specificity (SP), posi-
tive predictive value (PPV), and the overlap resolution (OR). These
are computed using the direct measures extracted from the results,
such as true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). The formulation are as given in [11].

As the task of ground truth generation performed manually by an
expert pathologist is very tedious, only 30 selected images out of
200 images are chosen for quantitative analysis. The above listed
measures are computed over the images chosen and the compara-
tive results of both the approaches are presented in Table. 2. The

Table 2. Object Detection Measures for
DRLS-WT and DRLS

SN SP PPV OR

DRLS 0.91 0.83 0.90 0.86

DRLS-WT 0.96 0.68 0.93 0.90
s

other measures are the actual count (AC) of the number of nuclei
and the overlaps present in the image, and the detected count (DC)
obtained by the method proposed. The formulations of these mea-
sures are as presented in [11].
The above measures are computed by considering the average val-
ues derived out of 20 randomly chosen objects out of the sample
images. A chart showing the AC and DC of both nuclei detection
and overlap resolution is shown in Figure 5.The DC measures are
computed and compared among both DRLS-WT and DRLS tech-
niques.

Fig. 5. Charts showing the comparative study of object detection and over-
lap resolution accuracy of DRLS and DRLS-WT with AC

This indicates that the DRSL-WT outperforms DRLS with respect
to all the measures of object detection and overlap resolution.
Second, the segmentation accuracy is the measure of accuracy of
extracting the nuclei boundary. They are measured using two met-
rics as proposed by [16]: (i). Hausdorff Distance (HD) and (ii).
Mean Absolute Distance (MAD), as given in Eqs. 12 and 13.

HD = max
ω

[min
χ
‖ cω − cχ ‖] (12)

MAD =
1

M

M∑
ω=1

[min
χ
‖ cω − cχ ‖] (13)

Since the manual delineation is a very tedious task, the pathologists
have randomly chosen only 20 nuclei objects for generating ground
truth. Considering the ground truth as reference, these measures are
computed for the objects extracted using the proposed method. As
a comparative study, the results are compared with that of geodesic
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Fig. 3. The result of each stage is shown in Figures (a)-(f)

active contour with watershed transforms (GAC-WT) as plotted in
the charts shown in Fig. 6 and 7. The pixel difference between
the contour and the manual delineation is the key factor during the
computation of HD and MAD. The distance computed for DRLS-
WT has been measuring a very low pixel count of utmost 3 pixels,
considering segmentation of all the objects. In contrast, the GAC-
WT has the pixel difference ranging between 2 to 12, demonstrating
the efficiency of the proposed approach over the other.

Fig. 6. Charts showing the Hausdorff distance (HD) comparison between
DRLS-WT and GAC-WT with reference to ground truth
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Fig. 4. (a) and (b) show the results with Watershed initialization (DRLS-WT) (c) and (d) show the results without Watershed initialization (DRLS).

Fig. 7. Charts showing the Mean Absolute distance (MAD) comparison
between DRLS-WT and GAC-WT with reference to ground truth

7. CONCLUSION
The challenging task of diagnosing and grading the cancer based on
nuclear pleomorphism has been addressed effectively in this pro-
posed research. The detection and segmentation of nuclei based
DRLS, an edge based active contour, has been adapted to over-
come most of the limitations faced by the pathologists. This has
also been able to address various shortcomings of the existing low
level approaches as presented in the literature survey. This method
adapts a novel contour initialization and gradien computation tech-
niques based on marker controlled watershed transformation. The
methodology involves extraction of foreground regions from a wa-
tershed transform. This transformation is performed on the fore-
ground marker obtained morphilogically using the regions of inter-
est extracted by expectation maximization approach. These fore-
ground regions assist in the computation of centroids of hidden
nuclei in occluded region and computation of watershed gradient
for effectively driving the DRLS towards the object boundary. The

efficiency of the approach has been studied with respect to ob-
ject detection and overlap resolution accuracy followed by the seg-
mentation accuracy computed using boundary based metrics. The
accuracy of the results have been presented in comparison with
other techniques, keeping the ground truth generated by the expert
pathologist as the reference. The results can be extended in future
work to support further classification.
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