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ABSTRACT
Generally, the grade of a breast cancer is considered as an ”aggres-
sive potential” in the growth of a tumor. Breast cancer grading is
characterized by three important factors, gland formation, nuclear
pleomorphism, and mitosis count. In this research, an automated
detection of mitosis from histopathological images is presented.
From initial experiments, it has been observed that detection of mi-
tosis becomes challenging, due to the similarity in size and shape
compared to nonmitosis nuclei. Towards this end, several contribu-
tions have been made to automatically detect mitosis nuclei. From
an Exhaustive experimentation, it is clear that mitotic texture shows
discriminative features when compared to nonmitotic nuclei. To
validate the performance of mitosis detection, two datasets from
the MITOSIS-ATYPIA-14 challenge is considered. The proposed
method is able to achieve 97% overall accuracy after feature reduc-
tion.
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1. INTRODUCTION
Breast cancer(BC) is the top one, a major cause of cancer in fe-
males, in India. Statistics show an increasing number of BC pa-
tients, especially in urban regions [18]. Also, the statistics show
younger age female, most susceptible to BC. Therefore, early diag-
nosis would reveal prognostic factors that helps clinician plan suit-
able treatment. According to Nottingham grading system, pathol-
ogist grade tissue samples based on three important factors, (1)
tubule formation, (2) nuclear pleomorphism, and (3) mitotic count.
Amongst them, mitosis detection is an important feature in iden-
tifying the extent of tumor progression[1]. Traditionally, patholo-
gists look for morphological changes in the nuclei and determine
the mitotic count. This procedure is complicated and tedious for
pathologists due to two reasons, (1) the size and shape of some
of the mitotic nuclei are similar to nonmitotic nuclei, and (2) ev-
ery day pathologist would see a massive amount of histopatholog-
ical images. Clearly, there exist inter-observer variability leading
to many false positives [29]. Over last decade, digital pathology

has emerged as a promising field in the detection and progression
of cancer from the histopathological images. Recently, there ex-
ist many research contributions towards accurate mitosis detection
[14, 5, 21, 3, 27]. Accurate identification of mitotic nuclei poses a
great challenge due to irregular size and shape of the nuclei, im-
proper staining, and noise.

2. COMPLEXITIES IN HISTOPATHOLOGICAL
IMAGES

It is evident from the literature on histopathological image analysis,
that segmenting the nuclei is the fundamental step for an automated
grading system. Nuclear segmentation poses a great challenge al-
though there has been several attempts to solve it. Fig. 1 shows the
complexities present in raw histopathological images. Extraction of
nuclei from the histopathological images becomes challenging task
since the size and shape of the nuclei are irregular, color intensities
are non-homogenous, and texture variations across mitotic nuclei.

Fig. 1: Complexities in nuclei segmentation

3. RELATED WORKS
There exist several contributions towards nuclei detection and seg-
mentation from H&E stained histopathological images. Meftah et
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al [19] proposed spiking neural network for cell-microscopic detec-
tion. Kumar et al [16] proposed an adaptive eigenfilter based image
segmentation for microscopic nuclei. It is clear from the literature
that there exist few works on accurate detection of mitosis. Irshad et
al [14] proposed blue-ratio image and threshold method for the de-
tection of nuclei. Sommer et al [27] in their work, have used ilastik
software [28] to segment mitotic nuclei and then applied CellCog-
nition software [13] utilizing the global features of the cells such
as shape and texture for candidate classification. Beevi et al [5]
have used Localized Active Contour Model (LACM) to segment
candidate nuclei. Sertel et al[26] proposed a pixel-level likelihood
function and thresholding method for accurate detection of mitosis.
Anari et al [4] proposed a fuzzy C means clustering to detect mi-
totic nuclei from immunohistochemistry (IHC) images of menin-
gioma. Roullier et al[23] proposed a multi-resolution graph based
method for automated detection of mitotic nuclei. Recently, FCM
based nuclei segmentation[31] was proposed to detect and sepa-
rate Leukemia nuclei. Marker-controlled watershed-based nuclei
segmentation [30] for breast cancer tissue images were also pro-
posed. Color deconvolution and morphological operators were used
as preprocessing steps to remove irrelevant objects from the tissue
images. Dong et al [7] proposed a method to discriminate benign
from malignant in the intraductal proliferation of breast cancer. In
their research work, authors have used Fiji [25] tool to segment the
nuclei and then fine tuned using global thresholding approach.

Observations
From the literature, it is clear that identifying morphological
changes in the histopathological images is utmost important for
identifying mitosis. Some of the important findings from several
studies suggest that texture analysis is also one of the important
features in discriminating mitosis from nonmitosis. Also, on initial
experiments with nuclei extraction, we found that the number of
nonmitotic nuclei is higher compared to mitotic nuclei thus lead-
ing to imbalanced class. To address the above issues we propose
a new method for nuclei segmentation based on extracting patches
around the mitotic cell. Further, classification of mitotic nuclei is
performed based on the extraction of texture, shape, and color fea-
tures from these patches.

4. PROPOSED METHOD
Several methods [12, 22, 32, 6] have been proposed to identify
nuclei present in histopathological images. From the outcomes of
these research, it is evident that the existing methods perform well
for regularly shaped nuclei but fail when the shape and size of the
nucleus are varying. In the current research work, a simple ap-
proach to classifying mitosis nuclei is presented. Fig. 2 show the
process of nuclei segmentation.

4.1 Nuclei segmentation
In order to extract mitotic nuclei, a patch of 120 x 120 pixels is used
as bounding box to crop regions around the mitotic nuclei. Since
the quality of image acquisition and staining procedure affect the
segmentation accuracy, preprocessing of histopathological images,
prior to segmentation, becomes inevitable. In the current research,
the color normalization and color deconvolution [15] approaches
are used to extract hematoxylin channel. Further, nuclei from these
patches are segmented based on an Expectation-Maximization al-
gorithm (EM) [8]. EM algorithm determines the posterior prob-
abilities of each pixel p representing one of the C classes, ωc
= {1, 2, ..., C}, in a given image patch. In the current research

work, the number of classes are considered to be 3, ωc = { nu-
clei,stroma,background}. Given an image patch the EM algorithm
determines the posterior class probability densities, P(ωc|f(p))
given prior probability P(f(p)|ωc). The algorithm consists of two
steps, the expectation, and the maximization step. In the expecta-
tion step the algorithm determines the prior Gaussian mixture pa-
rameters, η = µ,Σ,P . In the current research work, we have used
K-means algorithm to identify the prior Gaussian mixture parame-
ters. In the maximization step, EM algorithm iteratively identifies
the posterior class densities and update the Gaussian mixture pa-
rameters. At each iteration, the algorithm assigns pixels to class C
that maximizes the posterior probabilities. In the current research
work, the calculation of E-step and M-step are given below. Ini-
tialization step: In this step, the Gaussian prior parameters are esti-
mated, η.

P(ωc|f(p)) =
PcN (f(p)|µc,Σc)

ΣCi=1PiN (f(p)|µi,Σi)
(1)

where,

N (f(p)|µc,Σc) = (2π)−
D

2
|Σ0.5
c |exp{

1

2
(f(p)−µic)TΣ−1c (f(p)−µic)}

In the current research work, D is set to 3, as the number of classes
is 3
M-step: In this step, we update the Gaussian mixture parameters.

µic =
1

nc
Σ
|C|
c=1P(Dc|f(p))f(p)

Σic =
1

nc
Σ
|C|
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After nuclei segmentation, the binary image contains unwanted
regions (noise) that must be removed before further processing.
Towards this end, Several well-established works on removing
noise/artifacts from the histopathological images exist. However,
after several experimentations on different histopathological im-
ages, it is found that the existing methods [7, 22] use fixed size
as a threshold to remove smaller objects. Because the shape of the
nuclei is not fixed, the existing methods fail to generalize on the
shape. Therefore, a model is proposed in the current research to
prune smaller objects as shown in Algorithm. 1.

Algorithm 1 Pruning small objects

1: procedure PRUNE SMALL OBJECTS(O)
2: A←

∑N
1=1 ai

3:
4: while !ECC do
5: . Iterate until the end of connected components(CC)
6: if Area < µ(Area) then
7: OI ← Area
8: . OI is the Area of all the set of CC.
9: else

10: continue
11: return OI
12: . Object of interest is returned
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Fig. 2: The proposed approach for an automated segmentation and classification of mitotic nuclei from histopathological images

4.2 Feature extraction
Histopathological image analysis can be charecterized by three
method. The first method is based on nuclei segmentation, that
represents cellular changes, while the second method captures the
texture properties, and the third method captures, the variations
of color densities. The following features extracted in the current
reearch work is shown in table 1.

Table 1. : Hand-crafted Features

Type Features

Shape Area, Perimeter, Solidity, circularity
Texture Co-occurrence matrix, run-length matrix

Local phase quantization.
Intensity Histogram of color densities

Shape features
Nuclear features, are also one of the important features that de-
scribes mitotis behaviour. [17]. The following set of features are ex-
tracted based on the morphological changes in the cellular structure
of each blob: Area, perimeter, solidity, and circularity. Finally, we
extract 4D shape features that best describes the mitotis behaviour.

Texture features
Texture features are extracted from each detected nuclei. Three
types of texture features are extracted, using co-occurrence matrix,
run-length matrix, and local phase quantization.

Gray-Level-co-occurrence matrices Gray-level co-occurrence ma-
trices(GLCM) are most commonly used method to extract texture
features. In the current research work, eight adjacent directions are
used to find GLCM, using this, 13 harlick features [10] are com-
puted: Angular Second Moment , Contrast, Correlation, Variance,

Inverse Difference Moment, Sum Average, Sum Variance, Sum En-
tropy,Entropy, Difference Variance, Difference Entropy, Informa-
tion Measure of Correlation I, Information Measure of Correlation
II, Maximal Correlation Coefficient for all the eight directions. Fi-
nally, we obtain 13D feature vector by averaging across all eight
directions.

Gray-Level-Run-Length matrices Adjacent pixel, with the same
gray level constitue a run in a given direction d = {0, π

4
, π
2
, 3π

4
, π }.

Run-length is a value that defines the number of time such a run oc-
cured. The gray-level run-length matrix (GRLM) defines a 2D ma-
trix, where each element x(i,j), in the matrix defines the run-length
j for ith pixel, along the direction d [9]. In the current research
work, the GRLM, is used to extract 10 features: Short run emphasis
(SRE), long run emphasis (LRE), grey level non uniformity (GLN),
run length non uniformity (RLN), low grey level runs emphasis
(LGLRE), high grey level runs emphasis (HGLRE), short run low
grey level emphasis (SRLGLE), short run high grey level emphasis
(SRHGLE), long run low grey level emphasis (LRLGLE), and long
run high grey level emphasis (LRHGLE). Finally, we obtain 10D
feature vector by averaging across all eight directions.

Local phase quantization The Local Phase Quantization (LPQ) is
a texture descriptor proposed by Ojansivu et al [20]. LPQ captures
the blur invariance from the discrete Fourier transform. A window
of M x M is used to extract the local phase information, using the 2-
D short-term Fourier transform (STFT). The quantized coefficients
are represented as integer values ranging from 0-255 using binary
coding described in []. A 256 bin histogram defines the values of
phase information. For more details, refer to [20]. Finally, a 256D
feature vector is obtained.

Intensity features
It is clearly evident from the Fig. 1, there exist intensity variations
across the mitotic and nonmitotic nuclei. Usually, the mitotic nuclei
take darker stains compared to nonmiotic nuclei [21]. Wang et al
[33] in their work, have considered several intensity features: mean,
median, variance, maximum/minimum ratio, range, interquartile
range, kurtosis and skewness of patch intensities at seven color
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channels, for the classifying task. Recently, the color deconvolution
[24] approach is used to extract hematoxylin channel. In the current
research work, we identify the absorption capacity of hematoxylin
stain at both miotic and nonmitotic nuclei using Eq 2. For rest of
the mathematics, refer [11].

A(λ) = −ln I(λ)

I0(λ)
(2)

where I(λ) = I0(λ) . e−δ(λ).c, I0(λ) is the spectral radiation inten-
sity, I(λ) is the transmitted spectral intensity, δ(λ) is the spectral
molar optical density for a unified layer thickness and c is the dye
concentration

Classifiers
Three different classifiers are used to measure the accuracy of mi-
totic detection: support vector machine (SVM), 5-nearest neigh-
bour (5-NN), and TreeBagger(TB). An SVM is a type of classifier,
that finds an optimal hyperplane that linearly separates all the fea-
tures vectors, by projecting onto higher dimensional space. K-NN
is a type of classifier that predicts the outcome of the unknown sam-
ple, by finding the distance between the unknown point and its near-
est neighbour. In the current research work, we have used 5 nearest
neighbours. From the literature, it is clear that single decision tree
tends to overfit the data. Also, it is a well-established fact that clas-
sification based on TreeBagger provides better generalization even
when there exit unbalanced classes. In our experimentations, we
have considered 20 decision trees.

5. DATA-SET DESCRIPTION
To illustrate the methodology of nuclei extraction and classifica-
tion, histopathological images from the Pathology Department at
Pitiè-Salpêtrière Hospital in Paris, France [2] is considered. The
slides are stained with standard hematoxylin and eosin (H&E)
dyes and they have been scanned by two slide scanners: Aperio
Scanscope XT and Hamamatsu Nanozoomer 2.0-HT. In the current
research work, all the images are taken from the Aperio Scanscope
XT. This data-set consist of 1,136 frames at 40×. The frames are
RGB bitmap images in TIFF format. In the current research work,
we have considered 2 dataset sample with different varying mito-
sis counts. Dataset 1 consists of 135 mitosis nuclei,and dataset 2
consists of 264 miotosis nuclei.

6. RESULT
In this section, we present the experimental analysis on segmenta-
tion and classification of histopathological images. Table 2 repre-
sents the quantitative results of classification for dataset 1, while
Table 3 show the classification accuracy for dataset 2. Table 4 the
performance evaluation of different classifier with feature reduc-
tion. The outcomes from this study show two important things: (1)
classification of mitosis nuclei showed improvements after feature
reduction, and (2) texture features played an important role in ac-
curately classifying mitosis nuclei.
In this research, 224 histopathological images are considered for
segmenting the nuclei. The dataset consists of 399 mitotic and 227
nonmitotic nuclei from the two datasets. To validate the nuclei seg-
mentation process, expert pathologist were consulted and mitotic
nuclei were marked. Also, the dataset itself had ground truth mi-
totic nuclei marked by two independent expert pathologists. The
qualitative analysis of the segmentation algorithms is presented in
Fig. 3.

6.1 Quantitative analysis of classifiers
The performance of the classifier is measured based on different
features extracted after nuclei segmentation. Table 2, Table 3, and
Table 4 show the comparative analysis of different classifiers with-
out and with feature reduction respectively. The results show im-
provements in the weighted harmonic mean, from 97% to 98% af-
ter feature reduction. From the performance table, it is evident that
the performance of SVM is better compared to other classifiers.

Table 2. : A performance measure of different classifiers for dataset 1 with
different descriptors

Descriptor Classifier Accuracy F-Measure PPV Sensitivity Specificity

SVM 0.90 0.92 0.91 0.94 0.85

Shape KNN 0.76 0.82 0.83 0.80 0.69

TB 0.70 0.76 0.75 0.77 0.58

SVM 0.91 0.93 0.94 0.92 0.90

GLCM KNN 0.80 0.84 0.84 0.84 0.73

TB 0.79 0.83 0.82 0.84 0.70

SVM 0.89 0.91 0.91 0.91 0.85

Intensity KNN 0.76 0.81 0.81 0.82 0.67

TB 0.79 0.83 0.83 0.84 0.71

SVM 0.90 0.92 0.90 0.94 0.84

Run-Length KNN 0.76 0.79 0.74 0.86 0.64

TB 0.76 0.81 0.79 0.83 0.66

SVM 0.96 0.96 0.95 0.98 0.93

LPQ KNN 0.64 0.71 0.70 0.72 0.53

TB 0.84 0.87 0.85 0.89 0.77

SVM 0.95 0.95 0.94 0.97 0.92

all features KNN 0.67 0.73 0.71 0.75 0.55

TB 0.81 0.85 0.83 0.87 0.73

SVM - Support vector machine, KNN - K nearest neighbor, TB - Tree
Bagger

7. CONCLUSION
In this research, a simple approach to classify mitosis based on
extracting different hand-crafted features is presented. Identifying
mitotic changes in a given area of histopathological images is ut-
most important in predicting the progression of the breast tumor
and hence, the present study assumes importance. Segmentation
of mitotic nuclei poses a great challenge owing to irregular size,
shape, and non-homogenous pixel intensity present in the nuclei.
Even though there exists a well-focused research on nuclei segmen-
tation by several researchers yet, they lack in accurately extracting
the nuclei. In this research, several types of features are extracted
from a segmented patch of 120x120 pixel and both quantitative and
qualitative performance are evaluated. The method presented in this
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Table 3. : A performance measure of different classifiers for dataset 2 with
different descriptors

Descriptor Classifier Accuracy F-Measure PPV Sensitivity Specificity

SVM 0.85 0.88 0.89 0.87 0.82

Shape KNN 0.72 0.77 0.76 0.78 0.63

TB 0.72 0.77 0.78 0.77 0.64

SVM 0.86 0.88 0.87 0.90 0.81

GLCM KNN 0.75 0.79 0.77 0.81 0.67

TB 0.75 0.79 0.78 0.81 0.67

SVM 0.86 0.89 0.90 0.88 0.83

Intensity KNN 0.76 0.80 0.78 0.83 0.68

TB 0.73 0.77 0.76 0.79 0.64

SVM 0.84 0.87 0.87 0.88 0.80

Run-Length KNN 0.71 0.76 0.76 0.76 0.62

TB 0.73 0.78 0.78 0.78 0.65

SVM 0.96 0.97 0.97 0.97 0.95

LPQ KNN 0.81 0.84 0.83 0.86 0.74

TB 0.82 0.85 0.83 0.87 0.75

SVM 0.94 0.95 0.95 0.96 0.93

all features KNN 0.84 0.87 0.86 0.88 0.79

TB 0.81 0.85 0.84 0.86 0.75

SVM - Support vector machine, KNN - K nearest neighbor, TB - Tree
Bagger

Table 4. : A performance measure of different classifiers for dataset 1 and 2
with feature reduction

Descriptor Classifier Accuracy F-Measure PPV Sensitivity Specificity

SVM 0.97 0.97 0.97 0.98 0.95

all features(dataset 1) KNN 0.78 0.83 0.83 0.82 0.71

TB 0.84 0.87 0.85 0.90 0.77

SVM 0.97 0.98 0.97 0.98 0.96

all features(dataset 2) KNN 0.86 0.89 0.86 0.91 0.80

TB 0.84 0.87 0.85 0.89 0.77

SVM - Support vector machine, KNN - K nearest neighbor, TB - Tree
Bagger

research showed 97% accuracy in identifying mitosis nuclei. Fur-
ther, the F-measure showed improved performance in nuclei clas-
sification after feature reduction.
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classification using local phase quantization. In International
conference on image and signal processing, pages 236–243.
Springer, 2008.

[21] Angshuman Paul and Dipti Prasad Mukherjee. Mitosis de-
tection for invasive breast cancer grading in histopatho-
logical images. IEEE Transactions on Image Processing,
24(11):4041–4054, 2015.

[22] Hady Ahmady Phoulady, Dmitry B Goldgof, Lawrence O
Hall, and Peter R Mouton. Nucleus segmentation in histol-
ogy images with hierarchical multilevel thresholding. In SPIE
Medical Imaging, pages 979111–979111. International Soci-
ety for Optics and Photonics, 2016.

[23] Vincent Roullier, Olivier Lézoray, Vinh-Thong Ta, and Ab-
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Fig. 3: Mitosis nuclei segmentation: column 1 represents patch extracted around the mitosis nuclei, column 2 represents the nuclei segmen-
tation by the proposed method, and column 3 represents the segmented nuclei mapped on the original image.
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