Abstract

Rainfall and solar irradiance are the two important factors determining the agricultural productivity, availability of drinking water and weather conditions of a region. Rainfall predictions are important to understand and manage the utilization of water, as the saying “without rain nothing grows”. A sudden storm or a cyclone can cause severe damages to crops and can endanger life of people. For people relying on fishing in the seas as a living hood an unpredicted cyclone or storm can be life threatening. The above mentioned natural phenomena are all predictable by analyzing the clouds in the regions atmosphere. The study of clouds, where they occur and their characteristics, play a key role in understanding of climatic changes. We have a number of geostationary satellites like KALPANA, INSAT etc, orbiting around the earth surface to monitor the Atmospheric Motion Vectors (AMV’s) and the optical flow of clouds. Cloud analysis using image processing techniques on satellite images is widely used to predict rainfall availability, cyclone, storm etc. Unlike traditional prediction methods that includes consideration of other climatic factors such as temperature, pressure, humidity etc which involves heavy calculations and speculations, cloud data analysis make the whole process simple and automated. This
paper is a survey of different techniques that are deployed over satellite images in order to
detect direction of clouds is studied and an evaluation of the accuracy of these methods is
done.

References

1. Matthew A. Lazzara and Jeffrey R. Key, High-Latitude Atmospheric Motion Vectors from
2. Vijay Garg and R.K. Giri, Atmospheric Motion Vectors (AMVs) and their forecasting
3. Chang Ki Kim, William F. Holmgren, Michael Stovern, and Eric A. Betterton, Toward
Improved Solar Irradiance Forecasts: Derivation of Downwelling Surface Shortwave Radiation
4. J. Alonso-Montesinos and F.J. Batilles, Solar radiation forecasting in the short- and
5. Zibo Dong, Dazhi Yang, Thomas Reindl, Wilfred M. Walsh, Satellite image analysis and a
hybrid ESSS/ANN model to forecast solar irradiance in the tropics. Energy Conversion and
based on an Irradiance Monitoring Network, Cloud Motion, and Spatial Averaging. j.solener,
2016.
7. Jia Liu, Chuancai Liu, Boyang Wang, Danyu Qin, A Novel Algorithm For Detecting Center
Of Tropical Cyclone In Satellite Infrared Image. The International Geoscience and Remote
Sensing Symposium, 2015.
8. Yu Zhang, Stephen Wistar, Jia Li, Michael Steinberg and James Z. Wan, Storm Detection
9. Lian Duan, Junjie Wu and Fan Liu, Research on Automatic Tracking of MCS Based on
pp 1089-1092.Trans Tech Publications.
Visualization and Tracking Framework for Analyzing the Inter/Intra Cloud Pattern Formation to
Study Their Impact on Climate. Proceedings of International Conference on Computer Vision
and Image Processing, Advances in Intelligent Systems and Computing459.

Index Terms

Computer Science Image Processing
Keywords