
International Journal of Computer Applications (0975 – 8887) 

Volume 180 – No.37, April 2018 

31 

Performance of Parallel RSA on IMAN1 Supercomputer 

Areej Al-Shorman 
PhD Student 

Department of Computer Science, King Abdullah II 
School for Information Technology, University of 

Jordan, Amman, Jordan 

Mohammad Qatawneh 
Professor 

Department of Computer Science, King Abdullah II 
School for Information Technology, University of 

Jordan, Amman, Jordan 

 
 

ABSTRACT 

Numerous decryption and encryption algorithmic methods 

have been proposed and applied in prior research, including 

RSA, DES, etc. Such methods are normally assessed in their 

performance in accordance with the growth rates of their 

algorithms, based on key and input sizes. With RSA public-

key security algorithms, primary operations feature modular 

exponentiations and reductions. As a result, sequential 

implementations of RSA become more computing-time, and 

energy-intensive. Several parallelization methods are 

therefore recommended in order to improve the speed of RSA 

algorithms. In this paper, parallel RSA algorithmic methods 

are assessed and then compared, based on decryption and 

encryption running times, speedup, and efficiency. The 
experimental results show that the runtime of parallel RSA 

algorithmic method outperform those of sequential RSA 

algorithmic methods. 

General Terms 

Computer Science, Security, Parallel Computing. 

Keywords 
Cryptography, RSA, MPI, Supercomputer, Public Key, 

Private Key, Parallel algorithm 

1. INTRODUCTION 
The goal of cryptographic algorithms is to securely transmit 

data along open channels of communication while preserving 

the CIA triad (confidentiality, integrity, availability) of 

informational resources, including information content and 

telecommunication data) [1]. Various methods of 

cryptographic algorithmic methods can be applied, namely 

DES, RSA, BLOWFISH and AES, towards rendering highly-

sensitive information inaccessible to all but for intended 

recipients. Among the more important methods is RSA, which 

proposes to increase network transmission security through 

the application of key pairs. Encryption keys are termed 

public keys, while decryption keys are termed private keys 

[2]. However, the RSA algorithmic method presents 

numerous performance-limiting issues, including challenging 

mathematical problems (modular multiplications and 

exponentiations) and execution times [5]. 

Among other means of reducing RSA algorithm runtimes is 

the use of parallel computing [11], which involves 

computation wherein multiple calculations are conducted 

concurrently. This operates on the principle that larger 

problem sets can usually be partitioned into smaller sets that 

are then resolved simultaneously [12]. 

Parallel and distributed computing systems are high-

performance computing systems that spread out a single 

application over many multi-core and multi-

processor computers in order to rapidly complete the task. 

Parallel and distributed computing systems divide large 

problems into smaller sub-problems and assign each of them 

to different processors in a typically distributed system 

running concurrently in parallel [14][15] [16] [17] [18][19]. 

The aim of this paper is to evaluate the performances of 

parallel and sequential RSA algorithms. The result is 

conducted using IMAN1 supercomputer which is Jordan's 

first and fastest supercomputer. It is available for use by 

academia and industry in Jordan and the region and provides 

multiple resources and clusters to run and test High 

Performance Computing (HPC) codes [10]. 

The rest of the paper is organized as follows: Section 2 

presents the related works. RSA algorithmic method is 

presented in Section 3, while RSA parallelization is featured 

in Section 4. Section 5 presents the Experimental results, and 

Section 6 presents the conclusion. 

2. RELATED WORKS 
Parallel cryptographic algorithmic methods comprise a hot 

area of security research, as a result of increasing 

requirements for speedy and efficient security-based methods 

that can be applied concurrently. In [4, 8] the researchers’ 

proposal is for effective parallel RSA algorithmic methods 

performed on GPUs and applied in CUDA frameworks. This 

method further compares CPFA (CPU-based Pollard's p-

1 Factorization Algorithms) and GPFA (GPU-based 

Pollard's p-1 Factorization Algorithms); with results 

demonstrating that GPFA offers faster performance than 

CPFA. In [5], various techniques present the standard 

Crypto++ Library, involving sequential RSA with the 

Montgomery multiplication algorithmic method, parallel RSA 

on many-core CPUs, and parallel RSA on many-core GPUs. 

Results demonstrated the speed increases of GPU 

implementations are superior to those of many-core CPU 

implementations, which in turn exceeds those of sequential 

CPU implementations. The researchers in [6] have applied a 

parallel algorithmic method for calculating d from e, wherein 

e is a prime number derived without resort to Euclidean 

algorithms. In [7], an additional RSA method is implemented 

in terms of multi-prime numbers p, q, and r, so as to reduce 

1024-bit integers to 342-bit numbers 

3. IMPLEMENTATION SEQUENTIAL 

RSA 
RSA was initially developed in 1977 by Rivest, Shamir, and 

Adleman [2, 3, 5, 8, 9] and is among the most critical 

algorithms applied in the authentication and encryption of 

data for secure transmission on open networks. RSA 

represents the critical public-key cryptographic structure that 

is utilised in multiple online applications, including e-

commerce and credit card processing over networks, key 

exchanges, and digital signatures [3, 8]. The RSA algorithmic 

method is considered to be slower than symmetric-key 

algorithmic methods for it relies on modular exponentiations. 

https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing


International Journal of Computer Applications (0975 – 8887) 

Volume 180 – No.37, April 2018 

32 

Where RSA is used to decrypt ciphertext and generate 

signatures, additional computing capacity and time is typically 

needed. RSA features a very high computing burden in 

comparison to the numerous and very fast private key systems 

that are available. Therefore, multiple solutions were 

recommended to quicken RSA decryption, particularly when 

dealing with huge files. One of them is parallel computers and 

algorithmic methods. 

 

RSA encryption applies in terms of the factorisation of very 

large numbers. In the instance of the utilisation of key lengths 

of 1024 bits or longer, it becomes difficult to defeat the 

security of this method, even with the use of high-

performance computers [2]. Overall, RSA comprises the 

following trio of steps:  

Step 1: Key Generation 

The key generation step of RSA algorithm is a multi-step 

procedure: 

1. Choose two quite large random prime integers' p 

and q and compute RSA modulus by multiplying 

them together. 

2. Compute Toitent Function-            
      

3. Choose value for public key e. e must be smaller    

than φ (n), and is coprime to φ (n). coprime means  

the two integers do not share any factors other than 

1. 

4. Compute the decryption key as our private key d 

using this equation:                

The result of this e and n is termed as the public key 

(encryption key) and d and n as the private key (decryption 

key). 

 

Step 2: RSA Encryption 

For encrypting the plain text data M to the cipher text data C 

by this equation: 

                 ……………………………. (1) 

Step 3: RSA Decryption 

For reversing the cipher text data C to the plain text data M 

using this equation: 

                 ………………………….….. (2) 

 Fig 1 shows the overall organization of RSA cryptography 

algorithm. 

 

 

 

 

 

Fig 1: Sequential RSA Algorithm Execution 

3.1 RSA Example 
In this section, we feature examples with solutions that 

compute both plaintext blocks (M) and ciphertext blocks (C), 

in order to understand better the RSA algorithmic method [8].  

Example: Consider encryption and decryption using the RSA 

algorithm, for the following: p = 11; and q = 5. 

1. Calculate       ,           

2. Calculate                        
  . 

3. Select e, e < φ (n) and coprime to 40. e may be   3, 

7, 9,11,13,17, 19……. 

4. Calculate               , suppose we choose 

e=7.  

i. d(7)=1 mod 40, then applying 

Euclidean Algorithm 

ii. 40= 5(7) +5 

iii. 7=1(5) +2 

iv. 5=2(2) +1, Next extended 

Euclidean 

v. 1=5- 2(2) 

vi. 1=5-2(7-1(5)) 

vii. 1=5-2(7) +2(5) 

viii. 1=3(5)-2(7) 

ix. 1=3(40-5(7))-2(7) 

x. 1=3(40)-15(7)-2(7) 

xi. 1=3(40)-`17(7)   

In this example, -17 is in front of our encryption key 

7.  This number is negative, so apply 

               
                 

5. Encrypt each plaintext letter by applying equation 

#1. Suppose we want to encrypt "HI". First, we 

encrypt H, where the numerical representation for H 

is 7 (m=7).So, c= 77 mod 55, then c =28 mod 55. 

The ciphertext of H is 28. Second, we encrypt I, 

where the numerical representation for I is 8 (m=8). 

So, c= 87 mod 55, then c =2 mod 55. The ciphertext 

of I is 2. The ciphertext: 28, 2. 

 

6. Decrypt each cipher letter by applying equation # 2. 

.Suppose we want to decrypt "28, 2". First, we 

decrypt 28, so, m= 28 23 mod 55, then m =7 mod 

55. The plaintext of 7 is H. Second, we decrypt 2, 



International Journal of Computer Applications (0975 – 8887) 

Volume 180 – No.37, April 2018 

33 

so, m = 2 23 mod 55, then m =8 mod 55. The 

plaintext of 2 is I. The plaintext: HI. 

4. IMPLEMENTATION OF PARALLEL 

RSA 

Cryptographic algorithms are considered to be compute-

intensive algorithmic methods. The key concept is to therefore 

instrument more efficient parallel RSA algorithms of RSA, 

for execution on the IMAN Zaina supercomputing cluster. To 

provide for parallel RSA implementations, it is desirable that 

the data features no dependencies. Original data or files are 

split into varied blocks, with each assigned to separate 

processors. The steps of the encryption method are stated in 

Table 1 and Fig2 and those of the decrypted method are stated 

in Table 2. 

Table 1. Steps of Parallel RSA Encryption Method 

Steps 

numbe

r 

Parallel RSA Encryption Method 

1 
The master processor Splits the text file to N 

blocks; where N is number of processor 

2 Sent N-1 block to separated processor. 

3 
Each processor will encrypt the block by 

using encryption key e and sent it back 

4 

The master processor gets all ciphertext 

blocks from all worker processors and put 

them in one text file and store it in the output 

file 
 

 

Fig 2: Block Diagram for Parallel Fig Implementation of 

RSA Algorithm 

 

 

 

 

 

 

 

Table 2. Steps of Parallel RSA Decryption Method 

Steps 

number 
Parallel RSA Decryption Method 

1 

The master processor will send the ciphertext 

blocks to another or the same process that 

encrypt it by using decryption key (d) to be 

decrypted r 

2 
Sent decrypted block back again to master 

processor 

3 

The master processor gets all decrypted blocks 

from all worker processors and put them in one 

text file and store it in the output file 

 

The proposed parallel RSA is implemented using C++ 

programming language and MPI library. 

5. EXPERIMENTAL RESULTS AND     

DISCUSSION 
In this section, the findings are discussed and assessed based 

on decryption and encryption times. The IMAN1 Zaina 

cluster is utilized to run the experiments, with the MPI library 

applied in our implementations of parallel RSA algorithms. 

This algorithmic method is assessed based on varying input 

sizes and varying numbers of processors. Averages across 

multiple runs are then considered in the recording of 

outcomes. Software and hardware specifications and also the 

application parameters utilized are presented in Table 3. 

Table 3.  The Hardware and Software Specifications 

Specification Type Description 
Hardware 

specification 
Intel(R) Core (TM) I5-6200U 

CPU @ 2.30GHz 2.40 GHz, 

8.00 GB RAM 

 

Software 

Specification 

 

Scientific Linux 6.4 with open 

MPI 1.5.4, C and C++ compiler 

File size 
128 KB, 265 KB, 512KB,1MB, 

2MB, 3MB 
Number of 

Processors 

 

1,2,4,8,16,32,64 

 

5.1 Encryption and Decryption Time  

Evaluation 
Experiments were carried out so as to enhance the 

performances of parallel RSA, which demonstrated certain 

encouraging outcomes. We applied MPI in combination with 

the GCC infrastructure in order to apply parallel RSA 

operations that decrease runtimes and enhance performances. 

The duration of execution of various test cases is recorded 

though the timing utility of UNIX.  

To enhance the performance of decryption and encryption 

implemented by parallel RSA across the sequential RSA, 

operations were run on 1, 2, 4, 16, 32, and 64-core processes. 

Every experiment was carried out 5 times and duration 

averages were recorded as final values for each test case. 

Duration is measured according to two operational classes, 

encryption times (durations recorded for encryption), and 



International Journal of Computer Applications (0975 – 8887) 

Volume 180 – No.37, April 2018 

34 

decryption times (durations recorded for decryption). 

For these experiments, we utilized test cases to validate and 

confirm the robustness of our proposed version of parallel 

RSA. This is implemented by specifying fixed key sizes and 

also file sizes, which vary from 128KB up to 3MB, as 

depicted in Table 3. All cases are implemented repeatedly 

with 1, 2, 4, 8, 16, 32, and 64 processor runs over 5 cycles, 

with the averages of all readings recorded as final times. 

Results are presented in Table 4. 

Table 4 presents improvement and performance comparisons 

of parallel runtimes on 2, 4, 8, and 16-core configurations, 

against sequential implementations on single processors for 

various test cases, which demonstrated superior load 

distribution between numerous processors. Then again, 

improvements and performances decrease when the numbers 

of processors increase with particular file sizes. This results 

from increases in communication overheads; where the 

advantages of parallelism are consequently diminished - 

particularly when elevating processor counts from 16 to 32 

cores. As a result of this emergent behavior, we disabled 

processor counts greater than 32 cores in the experiments. 

5.2 Speed up evaluation  
Speed up represents the ratios between sequential and parallel 

runtimes. Table 4 and Fig 4 show the increasing speed ups 

using parallel RSA algorithms corresponding to 2, 4, 8, 16, 

32, and 64-core computation, on files that are 128KB up to 

3MB in size. Findings demonstrate that the parallel RSA 

achieves the best speed ups values, up to 30%, particularly 

with large processor counts. 

5.3 Parallel Efficiency Evaluation  
Parallel efficiency denotes ratios between speed up values and 

processor counts. Fig 5 demonstrates parallel efficiencies for 

RSA algorithms, based on various numbers of processors and 

on files ranging from 128KB up to 3MB in size. With dual 

processors, parallel RSA attains up to 99% efficiency with 

3MB files sizes. Furthermore, parallel RSA attains its highest 

efficiencies with large processor counts involving 16 and 32 

processor cores, as RSA generates superior speed up values 

once implemented on 16 or more cores. 

 
Fig 3: Execution Time for parallel RSA with varied file 

sizes 

 

Fig 4: Speedup for parallel RSA with varied file sizes 

 

Fig 5: The efficiency for parallel RSA with varied file sizes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 180 – No.37, April 2018 

35 

Table 4. Test Case: Comparative Results Obtained using Fixed Key Size with Different File Sizes 

S.No 
File 

Size 

Program 

Segment Type 

Time (in second) taken the serial and parallel execution of the same code on 

Different number of processor 

Serial 

code 

(1  CPU) 

2 CPU 4 CPU 8 CPU 16 CPU 32 CPU 64 CPU 

1 
128 

KB 

Encryption  & 

Decryption Time 

0.00376 0.0027 0.00268 0.00697 0.02028 0.05641 0.06304 

2 
256 

KB 

Encryption  & 

Decryption Time 

0.00369 0.00268 0.00354 0.00508 0.0169 0.019881 0.03989 

3 
512 

KB 

Encryption  & 

Decryption Time 

0.01178 0.00773 0.0122 0.00652 0.01208 0.017 0.03431 

4 1MB 
Encryption  & 

Decryption Time 

0.02269 0.01394 0.01329 0.01502 0.01115 0.00478 0.03394 

5 2MB 
Encryption  & 

Decryption Time 

0.0443 0.02569 0.02258 0.022985 0.01230 0.004681 0.03319 

6 3MB 
Encryption  & 

Decryption Time 

0.06577 0.03268 0.026 0.0256 0.01118 0.00224 0.02142 

 

Table 5.  Speedup for Parallel RSA with Different File sizes 

S.No File Size 
Speed up of the  parallel execution of the same code on different number of processors 

2CPU 4CPU 8CPU 16CPU 32CPU 64CPU 

1 128 KB 
1.39259 1.40298 0.53945 0.185404 0.06665 0.05964 

2 256 KB 1.37686 1.04237 0.72637 0.218343 0.18560 0.09250 

3 512 KB 1.52393 0.96557 1.80674 0.975165 0.69294 0.34334 

4 1MB 1.62769 1.70729 1.51065 2.034977 4.74686 0.66853 

5 2MB 1.72440 1.96130 1.92734 3.601333 9.46378 1.33445 

6 3MB 2.01255 2.52961 2.56914 5.882826 29.3616 3.07049 

 

6. CONCLUSION 
In this research, we present performance evaluations of the 

parallel RSA algorithmic method according to decryption and 

encryption. This method is applied with MPI library and 

experimental runs are carried out on the IMAN1 

supercomputing cluster. Assessments of parallel RSA are 

always in terms of different numbers of processors in relation 

to input file sizes. 

Overall, our findings demonstrate that parallel RSA features 

shorter running times for various file sizes and with limited 

numbers of processors, which is due to the observation that 

the processor counts increase with particular file sizes.  

Future research will involve efficient parallel implementation 

of key generation in RSA algorithmic methods and will be 

carried out on the IMAN1 supercomputing cluster in order to 

reduce the execution times. 

7. ACKNOWLEDGMENTS 
Our thanks to Eng. Zaid Abudayyeh Who have contributed 

towards produce this work 

8. REFERENCES 
[1] Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. 

(1996). Handbook of applied cryptography. CRC press. 

[2]  Saxena, S., & Kapoor, B. (2014, February). An efficient 

parallel algorithm for secured data communications using 

RSA public key cryptography method. In Advance 

Computing Conference (IACC), 2014 IEEE 

International (pp. 850-854). IEEE. 

[3] Lakkadwala, M., & Valiveti, S. (2017, January). Parallel 

generation of RSA keys—A review. In Cloud 

Computing, Data Science & Engineering-Confluence, 

2017 7th International Conference on (pp. 350-355). 

IEEE. 

[4] Lin, Y. S., Lin, C. Y., & Lou, D. C. (2012, May). 

Efficient parallel RSA decryption algorithm for many-

core GPUs with CUDA. In International Conference on 

Telecommunication Systems, Modeling and Analysis 

(ICTSM2012). 



International Journal of Computer Applications (0975 – 8887) 

Volume 180 – No.37, April 2018 

36 

[5] Fadhil, H. M., & Younis, M. I. (2014). Parallelizing RSA 

algorithm on multicore CPU and GPU. International 

Journal of Computer Applications, 87(6). 

[6]  Chang, C. C., & Hwang, M. S. (1996). Parallel 

computation of the generating keys for RSA 

cryptosystems. Electronics Letters, 32(15), 1365-1366. 

[7] Rao, B. S., & Ramesh, M. An Efficient Parallel 

Algorithm for Secure Data Communication Using RSA 

Algorithm. red, 100111(11101000), 11001001. 

[8] Asaduzzaman, A., Gummadi, D., & Waichal, P. (2015, 

April). A promising parallel algorithm to manage the 

RSA decryption complexity. In SoutheastCon 2015 (pp. 

1-5). IEEE. 

[9] Tan, X., & Li, Y. (2012, March). Parallel analysis of an 

improved RSA algorithm. In Computer Science and 

Electronics Engineering (ICCSEE), 2012 International 

Conference on (Vol. 1, pp. 318-320). IEEE. 

[10] Saadeh, M., Saadeh, H., & Qatawneh, M. (2016). 

Performance Evaluation of Parallel Sorting Algorithms 

on IMAN1 Supercomputer. International Journal of 

Advanced Science and Technology, 95, pp. 57-72. 

[11] Bruce, S. (1995). Applied cryptography: protocols, 

algorithms, and source code in C, Second Edition. John 

Wiley & Sons. 

[12] Ananth, G., Anshul, G., George,  K,.  & Vipin, K. 

(2003). Introduction to Parallel Computing, Second 

Edition, Addison Wesley. 

[13] Kasahara, H., & Narita, S. (1984). Practical 

multiprocessor scheduling algorithms for efficient 

parallel processing. IEEE Transactions on Computers, 

33(11), pp. 1023-1029. 

[14] Qatawneh Mohammad. (2005). Embedding Linear Array 

network into the Tree-Hypercube Network. European 

Journal of Scientific research, 10(2), pp. 72-77. 

[15] Mohammad Qatawneh, Ahmad Alamoush, Ja’far 

Alqatawneh. (2015). Section Based Hex-Cell Routing 

Algorithm (SBHCR). International Journal of Computer 

Networks & Communications (IJCNC), 7(1), pp. 167-

177. 

[16] Azzam Sleit, Wesam AlMobaideen, Mohammad 

Qatawneh, Heba Saadeh. (2008). Efficient processing for 

binary submatrix matching. American Journal of Applied 

Sciences, 6(1), pp. 78-88. 

[17] Mohammad Qatawneh (2011). Embedding Binary Tree 

and Bus into Hex-Cell Interconnection Network. Journal 

of American Science.  7(12), pp.367-370. 

[18] Qatawneh Mohammad, Hebatallah Khattab 2015. New 

Routing Algorithm for Hex-Cell Network. International 

Journal of Future Generation Communication and 

Networking. 8(2), pp. 295-306. 

[19] Mohammad Qatawneh 2016. New Efficient Algorithm 

for Mapping Linear Array into Hex-Cell Network. 

International Journal of Advanced Science and 

Technology. 90, pp. 9-14. 

 

IJCATM : www.ijcaonline.org 

http://scholar.google.com/scholar_url?url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FAzzam_Sleit%2Fpublication%2F26625199_Efficient_Processing_for_Binary_Submatrix_Matching%2Flinks%2F02bfe5125c3f50c983000000%2FEfficient-Processing-for-Binary-Submatrix-Matching.pdf&hl=en&sa=T&ei=pLIjWvvvLZexmAGUhZfgBg&scisig=AAGBfm15kJJlgNPrR550wP-qJaZhfPgo8Q&nossl=1&ws=1600x754
http://scholar.google.com/scholar_url?url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FAzzam_Sleit%2Fpublication%2F26625199_Efficient_Processing_for_Binary_Submatrix_Matching%2Flinks%2F02bfe5125c3f50c983000000%2FEfficient-Processing-for-Binary-Submatrix-Matching.pdf&hl=en&sa=T&ei=pLIjWvvvLZexmAGUhZfgBg&scisig=AAGBfm15kJJlgNPrR550wP-qJaZhfPgo8Q&nossl=1&ws=1600x754
http://scholar.google.com/scholar_url?url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FMohammad_Qatawneh%2Fpublication%2F275963698_New_Routing_Algorithm_for_Hex-Cell_Network%2Flinks%2F5550808a08ae93634ec8e000.pdf&hl=en&sa=T&ei=VqkiWriOKMK0mQGq27SQBA&scisig=AAGBfm29o_fNqQDJaZ5ovaGtyupBP2HdUA&nossl=1&ws=1600x754
http://scholar.google.com/scholar_url?url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FMohammad_Qatawneh%2Fpublication%2F275963698_New_Routing_Algorithm_for_Hex-Cell_Network%2Flinks%2F5550808a08ae93634ec8e000.pdf&hl=en&sa=T&ei=VqkiWriOKMK0mQGq27SQBA&scisig=AAGBfm29o_fNqQDJaZ5ovaGtyupBP2HdUA&nossl=1&ws=1600x754
http://scholar.google.com/scholar_url?url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FMohammad_Qatawneh%2Fpublication%2F303664519_New_Efficient_Algorithm_for_Mapping_Linear_Array_into_Hex-Cell_Network%2Flinks%2F57fb2fb008ae280dd0bf9877.pdf&hl=en&sa=T&ei=_KgiWrvJBZexmAGUhZfgBg&scisig=AAGBfm3RgtTux2iq_mBFetDkUkSvS5SrBw&nossl=1&ws=1600x754
http://scholar.google.com/scholar_url?url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FMohammad_Qatawneh%2Fpublication%2F303664519_New_Efficient_Algorithm_for_Mapping_Linear_Array_into_Hex-Cell_Network%2Flinks%2F57fb2fb008ae280dd0bf9877.pdf&hl=en&sa=T&ei=_KgiWrvJBZexmAGUhZfgBg&scisig=AAGBfm3RgtTux2iq_mBFetDkUkSvS5SrBw&nossl=1&ws=1600x754

