Abstract

Speech processing (SP) is the latest trend in technology. An intelligent and precise human-machine interaction (HMI) is designed to engineer an automated, smart and secure application for household and commercial application. The existing methods highlight the absence of the speech processing in the under-resourced languages. The novelty of this work is that it presents a study of acoustic speech processing (ASP) using spectral components of Mel frequency cepstrum coefficient (MFCC) of Sanskrit language. A customized speech database is created as no generic database is available in Sanskrit. The processing method includes speech signal isolation, feature selection and extraction of selected features for applications. The speech is processed over a custom dataset consisting of Sanskrit speech corpus. The spectral features are calculated over 13 coefficients providing improved performance. The results obtained highlight the performance of the proposed system with the variation of the lifter parameter.

References
1. S. Dhonde and S. Jagade, “Significance of frequency band selection of mfcc for
text-independent speaker identification”, In Proceedings of the International Conference on Data
Engineering and Communication Technology, Springer International Publishing, pp 217 -224,
2017.
2. A. Benba, A. Jilbab, A. Hammouch, “Detecting patients with parkinson’s disease with mel
frequency cepstral coefficient and support vector machine”, International Journal on Electrical
3. D. Desai and M. Joshi, “Speaker recognition using mfcc and hybrid model of vq and
gmm”, Recent Advances in Intelligent Informatics, Springer International Publishing, pp. 53-63,
learning algorithms”, IEEE International Conference on Semantic Computing, Santa Monica,
5. M. Savargiv and A. Bastanfard, “Real-time speech emotion recognition by minimum
number of features”, IEEE conference on Artificial Intelligence and Robotics (IRANOPEN),
Qazvin , 2016, pp. 72-76.
reaction prediction”, 25th Signal Processing and Communications Applications Conference,
9. S. Ladake and A. Gurjar, “Analysis and dissection of sanskrit divine sound om using digital
signal processing to study the science behind om chanting”, 7th International Conference on
10. J. Yao, and Y. Zhang, “Bionic wavelet transform ;A new time-frequency method based
on an auditory model”, IEEE Transaction on Biomedical Engineering, vol. 48, pp. 856-863,
environments in telemedicine applications of speech therapy”, In IEEE Proceedings Engineering
12. R. Gamasu, “ECG based integrated mobile tele-medicine system for emergency health
13. P.Y. Oudeyer, “The production and recognition of emotions in speech: features and
15. N. Jamil, F. Apand, and R. Hamzah, “Influences of age in emotion recognition of
spontaneous speech a case of an under-resourced language”, International Conference on
16. B. Logan, “Mel frequency cepstrum coefficient for music modeling”, In Proceedings of
17. I. Trablesi and D. Ayad, “A multi-level data fusion for speaker identification on telephone
speech”, International Journal of Speech Processing, Image Processing and Pattern

Index Terms

Computer Science Signal Processing
Keywords

Speech processing; Human-machine interaction; Mel frequency cepstrum coefficient; Sanskrit language;