
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

11

An Efficient Text Database Compression Technique

using 6 Bit Character Encoding by Table Look Up

Md. Ashiq Mahmood
Department of Computer
Science & Engineering

Khulna University of
Engineering & technology

Tarique Latif
Department of Computer

Science & Engineering

Khulna University of

Engineering & Technology

Md. Riadul Islam
Department of Computer

Science & Engineering

North Western University,

Khulna

ABSTRACT

Character encoding determines a term which represents a

repertoire of characters by some kind of encoding technique.

It covers a huge area of applications such as data

communication, storage of data, textual data transmission and

database technology. In this paper, a new technique of

compression for text data is proposed which encodes a

character by 6 bits namely 6 - Bit Encoding (6BE). Actually

the working method of this technique is encoding an 8 bit

character by 6 bits. This technique works with the characters

which are printable. For encoding a character to 6 bit, it uses a

lookup table. Firstly, it divides the characters into 4 sets and

then it uses the location of characters uniquely to encode by 6

bits. By this procedure 8 bit characters are converted into 6

bits by this 6BE technique. At First, this technique on simple

text. It is found that, the 6BE technique can able to compress

the original text by 25%. After that this 6BE technique is used

in proper database technology by compressing the text data in

a table of a database. The 6BE is able to compress as well as

decompress the original data with the help a lookup table. The

reverse technique is also detailed for decompression to get

back the original table. The outcome of 6BE technique is also

applied to compress again by the known algorithm Huffman

and LZW. The experimental result shows promising

performance. The technique is further discussed by some

examples and descriptions.

General Terms

Database Technology, Data Compression, Algorithm etc.

Keywords

Encoding, Compression, Decompression, 6-bit encoding,

Compression ratio.

1. INTRODUCTION
In Data science applications, database compression actually

defines the compaction of data in shorter memory space

including the actual representation of main database data

remaining unchanged. Data compression is a quite promising

issue because of requirement of storage and different

network’s bandwidth. In recent years, data compression

becomes a vastly used concept in computer science. Reducing

bandwidth and storage requirement, encoding fewer no. of

bits, less time requirement for transmission, effective

utilization of channel, can be achieved by the compression of

data or obvious benefits of data compression. Encoding a

character by less bits is very vital for having an effective

compression scheme [1]. By using fewer bits, the original

representation is compressed in a less storage space [1][2].

Because of the vast importance of data compression, it is

essential to found a befitting encoding technique for the

presentation of a source of information as accurate as possible

using the less number of bits putting the meaning of data

being unharmed and unchanged [1][2][3]. In this paper a

compression scheme is presented by encoding a character by

6 bits instead of usual 8 bits. It is named 6BE (6 Bit

Encoding). The restoration of the information to its original

format for the compressed form is quite necessary for most of

the cases. For the purpose of doing this, a decoding algorithm

is developed, and the performance of this technique is quite

promising relevant to that operation. Actually, there are two

categories of data compression algorithms are available which

includes lossless and lossy data compression. Lossy

compression is a kind of data compression system where file

size is reduced by discarding some unimportant data that

won’t compression are the main examples of lossy data

compression on the contrary, Lossless compression

transforms each bit of data to reduce the size without losing

any data after decoding. Actually the importance of lossless

data compression is it doesn’t allow any data loss. Even if a

single bit of data is lost after decoding, that determines the file

is corrupted [3][4].The most attractive part of data

compression is compressing data in a database system. The

performance is immensely improved because smaller size of

physical data are needed to be moved for any operation on the

database [1][2]. By Text compression, it can be understood

that it is the technique of transforming an original symbol of

the source data to a small symbol which must assure that the

same information should contain as the original data and

shorter representation[5][6][7]. A lossless technique named

6BE algorithm was proposed. The algorithm both encoding

and decoding techniques. 8 bit characters are converted to 6

bits by this 6BE technique which divides the characters into 4

sets and using them in a single table. The characters are put in

the 6BE table according to their frequency of use in English

language. Then it use the location of characters uniquely to

encode by 6 bits. By putting together the same set code

characters, it creates smaller bit code sequence. It can

successfully compress the printable characters and promising

compression ratio is achieved by this logical compression [9].

2. RELATED WORKS
A lossless algorithm which uses entropy [12] is the known

Huffman algorithm. Here the code is found from the binary

trees. It is called variable length encoding as it gives variable

length encoding. But 6BE is fixed to a size of 6 bits. Here a

fewer number of bits uses more frequent words which is its

main principle. JPEG files uses Huffman coding. A wavelet-

based compression standard [12][13] for image is JPEG

2000.Huffman Encoding has two families which are:

Adaptive Huffman Algorithms & Static Huffman Algorithms

given in the literature [13][14]. In Adaptive Huffman

algorithms the tress are created by calculating the frequencies.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

12

And in Static Huffman Algorithms, firstly the frequencies are

calculated & a common tree for both compression &

decompression is created [13][14]. So, there will be two trees

[13]. Instead of statistical models Dictionary based

compression algorithms uses dictionaries [16]. A dictionary

lookup-based algorithm is the Lempel-Zev Welch algorithm

[16][17] which creates a string αK by using string α and with

a K from dictionaries. In the dictionary the string α is also

pushed. While ending the character string is also again

replaced. The dictionary is not static as it is built from the

dynamic data. While decoding raw dictionary it is recovered

from the decoded data. At the time of compression and

decompression, the dictionary can be accurately built, and is

discarded after compressing or decompressing process. As

LZW Algorithm [16] is simple and as it has efficient

compression ratios it is very famous. The 6BE that is

proposed uses a static table look up and even if new data

items arrives need not change. The table i.e. the dictionary is

fixed and so it can be used when we need to do compression

and decompression.

3. PROPOSED METHOD
Actually we proposed 2 methods by using this 6BE technique.

 Efficient Text Compression with 6 Bit Character

Encoding(T_6BE)

 Efficient Text Database Compression with 6 Bit

Character Encoding(TD_6BE)

For the purpose of encoding a character in memory, 8 bit

memory is needed. The proposed idea is actually a scheme of

6 bit character encoding namely 6BE which is represented by

a character 6 bits instead of 8 bits. This algorithm mainly

works with the general printable characters that has in normal

keyboards so the scope is limited to printable characters only.

A table is built to look up for representing the characters by 6

bit where it is found that there can be 26=64 combinations

possible. From the 64 combinations 28 combinations were

used and rest of the combinations has been avoided because

the following sequences were produced by those

combinations

Four consecutive 1 bits (1111)

Or

Four consecutive 0 bits (0000)

Correspond to the nonprintable characters such as BEEP,

DEL and BACK SPACE and so on. But, at the time of

performing the 5 bit character encoding scheme, it was found

that 25 =32 combinations are available. But after avoiding

above these two bit sequences usable combinations are less

than 20. So 6BE is performed because it gives more usable bit

sequences.

The target character sets are divided into 4 sets namely Set -

1, Set-2, Set-3 and Set-4. The look up table for 6BE Table is

showed in Table1. Then the 6BE table is optimized. In the

Optimized table,

 Capital Letters are put in Set-1

 Small letters in Set-2

 Digits are in Set-3

 Other printable characters in Set-3 & Set-4

Which are as shown in table 1. Since the scope is limited to

afford only 28 characters for each Set hence the characters

need to be redistributed. According to their frequency of use,

the characters are distributed to sets [21]. According to the use

of frequency, the less frequency characters such as Q, q, X, x,

Z, z are placed in Set-4. Each of the characters of the table are

represented by 6 bits as shown in Table 1

Table 1: Look up table for 6BE

Serial

no.

Decimal

value

Binary

value

Set-1 Set-2 Set-3 Set-4

1 05 000101 A a ! <

2 09 001001 B b “ =

3 11 001011 C c # >

4 17 010001 D d $?

5 18 010010 E e % @

6 19 010011 F f & [

7 21 010101 G g ‘ \

8 22 010110 H h (]

9 23 010111 I i) ^

10 25 011001 J j * _

11 26 011010 K k + {

12 27 011011 L l , |

13 30 011110 M m - }

14 34 100010 N n / `

15 35 100011 O o 0 :

16 38 100110 P p 1 ;

17 39 100111 R r 2 .

18 41 101001 S s 3 Q

29 43 101011 T t 4 q

20 46 101110 U u 5 X

21 47 101111 V v 6 x

22 49 110001 W w 7 Z

23 50 110010 Y y 8 z

24 51 110011 space 9 ~

25 54 110110 Set-1

26 55 110111 Set-2

27 57 111001 Set-3

28 59 111011 Set-4

3.1 Efficient Text Compression with 6 Bit

Character Encoding (T_6BE)

3.1.1 Compression Technique
Input: Original Text

Step1: Representing the text by by adding set change

Step2: Representing the text by its corresponding 6 bits

value using the 6BE table.

Let the text contain bits.

Step3: If then jump to Step5

Step4: If then

If bit is 1 then sum up m bits in the form 0101….Bits

such that

If bit is 0 then sum up m bits in the form 1010 …. Bits

such that

Step5: Taking 8 bits from bits and representing

the text to compressed text using corresponding ASCII

text.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

13

Example 1:

Input Sentence: I am happy

Set Representation: I set2 space am space happy.

Decimal Representation: 23 55 51 05 30 51 22 05 38 38 50

6 bit representation: 010111 110111 110011 000101 …

8-Bit representation: 01011111 01111100 11000101 …….

Compressed String:

3.1.2 Decompression Technique
Input: Compressed text

Step1: Representing the text by its corresponding 8 bits

Binary value from the ASCII character.

Tc contain K bits

Step2: Dividing the binary set by 6 for determining 6BE

(Corresponding 6 bit representation) as follows

If then jump to the step3.

If then,

 Remove the last m bits such that

Step3: Taking 6 bits from the bits stream and

representing it by the character set of 6BE table.

Step4: excluding the set number to find the original string.

Example 2:

Compressed string:

_ --- 95 --- 01011111

|--- 124 --- 01111100

┼--- 197 --- 11000101 ………….

After dividing it by 6

The 6-Bit Representation: 010111 --- 23 --- I

110111 --- 55 --- set2

110011 --- 51 --- space …………..

Decompressed String:

I set2 space am space happy

Original text: I am happy

The 6-Bit Representation: 010111 --- 23 --- I

110111 --- 55 --- set2

110011 --- 51 --- space …………..

Decompressed String:

I am space happy

3.2 Efficient Text Database Compression

with 6 Bit Character Encoding (TD_6BE)

3.2.1 Compression Technique
Input: Normal string

Step1: By adding set change, representing the string by
Step2: By using the 6BE table, representing the string by

it”s corresponding 6 bits representation. Let, the

representative string contain bits.

Step3: If then jump into Step5

Step4: If then

While bit is 1 then sum up m bits

In the formation of 0101… bits suchlike , Or

While bit is 0 then sum up m bits in the formation of

1010… bits suchlike

Step5: By taking 8 bits from , the string is

represented to compress string by applying corresponding

ASCII text.

3.2.2 Decompression Technique
Input: Compressed String

 Step1: Representing the string by its corresponding 8 bits

binary value from the ASCII table. Let, contain K bits.

Step2: For determining 6BE (corresponding 6 bit

representation), dividing the binary representation as

While then Jump to step 3

While then,

 Crop the last m bits such like

Step3: From the bits stream, taking 6 bits and

representing it by the character set of the table of 6BE.

Step4: After excluding the set number, the original string can

be found.

Example 3:

For Left join query,

Select Id, Name, Dep from left Join on

Then got the input Table

T3

Id Name Dep

2015 Ragibillah khan CSE

2016 Imdad hosain EEE

2017 Parvage rahman null

2018 Kamrul hasan Null

2019 Abir Hosain IICT

After Compressing Table using Compression Technique

Id Name Dep

æxæº Ÿq|\•ÛlU³iabª .”ª

æxæ½ _w‘Ö�‘WŠ I$ª

æxæÅ ›qg¼_ÎqVxXª Null

æxæÊ kq^�æóXZEŠ Null

æxæÍ rWŸ=–Þ:E^*]rëU

Selection, projection & join operations are applied on original

table ().After performing the above 3 operations, table

 is derived.. Then the 6BE compression is applied on table

 and the compressed table is derived.

4. ANALYTICAL ANALYSIS
Using 6BE technique, each of the 8 bits is represented by 6

bits and saved 2 bits. So 6BE best efficiency is
 In this section, A theory is developed to determine the

Id Name DepId

2015 Ragibillah

khan

1

2016 Imdad hosain 2

2017 Parvage

rahman

3

2018 Kamrul hasan 4

2019 Abir Hosain 5

DepId Dep

1 CSE

2 EEE

5 IICT

6 ECE

7 CE

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

14

efficiency in a more precise way. Table 2 shows the

parameters considered for analytical evaluation. Let Input text

T has length . After adding set code becomes and

become where

Table 2: Parameters for analytical evaluation

Parameter Description

 Input text

 Input text including set code

 Length of the set code

 Length of T

 Length of

 Total bytes for T

 Total bytes for T′

 Length of extra bits need to be added

 Compressed text

 Total bytes for including m

Length of

 Efficiency

Let Input text has length . After adding set code

becomes and become where
Total bytes for

Total bytes for

Let bits bits needs to be added for the

compressed bit.

Total bytes for

Length of
Where,

 Compression ratio,

For large , m can be ignored,

So then the efficiency would be

For usable compression, η<= 1 then,

Actually it is the ratio between original length and set code

length. It shows that the scheme is usable until the set code

length is equal or less than to of the original length. A

positive efficiency is acquired by applying these analysis in

this algorithm. But if this ratio is greater than the

efficiency would be negative.

5. EXPERIMENTAL RESULT
Two types of experimental result is observed for the

2 methods.

5.1 T-6BE Method
A completely different string is found by using this 6BE

technique. The common known algorithm Huffman and

LZW is applied to the string which is get from the 6BE

technique. Hence the experimental result actually show the

comparison between 5 schemes namely, 6BE, Huffman,

LZW, and . 2 types of data

set is taken which are detailed below:

Distinct characters: All the distinct characters (95) in

various lengths are applied into these 5 techniques.

Standard Data set: Some standard (general text) data in

various lengths are applied in to this 5 techniques.

5.1.1 Compression Ratio
Figure 1 & 2 actually shows the compression ratio for

distinct data set & standard data set respectively.

Fig 1: Compression Ratio for distinct data set

Figure 1 shows that, Huffman algorithm provides very good

efficiency. The 6BE technique shows an average

compression ratio but LZW shows a poor efficiency. But the

important fact is that after combining these two techniques

with 6BE, Compression Ratio has reduced gradually for

 as well as goes to more

than 1 which is negative but 6BE provides some constant

efficiency.

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O

CHARACTER LENGTH

C O M P R E S S I O N R A T I O F O R D I S T I N C T
D A T A S E T

6BE Huffman LZW

6BE+Huffman 6BE+LZW

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

15

Fig 2: Compression Ratio for Standard Data Set

From figure 2, it is found that Huffman algorithm & LZW

shows very promising Compression ratio. 6BE technique

shows an average compression ratio. But after combining it

with Huffman and 6BE it improves the performance.

5.1.2 Compression time
Figure 3 and 4 provides the compression time for distinct

data set and standard data set respectively. From figure 4,

the Huffman provides very bad result but 6BE gives better

result than Huffman. shows the best

performance. From figure 5, the 6BE and LZW provides

promising performance.

Fig 3: Compression Time for Distinct data set

Fig 4: Compression Time for Standard Data Set

5.2 TD_6BE Method
Since 6BE produces some text in printable format. It is further

compressed by applying them in Huffman and LZW

compression technique. Hence the experimental result shows

the comparison between 5 schemes namely, 6BE, Huffman,

LZW, and . The following

important database operation is applied and the generated

result is analyzed in this section.

 Selection Operation: The selection

operation is applied in various sizes of

table data.

 is the column name

and is the value to retrieve.

 Join Operation: The join operation of

database is performed in various sizes of

table data.

 Selection with Projection (SP) Operation: The

Selection with Projection (SP) operation is

performed of database in various sizes of table

data.

5.2.1 Compression Ratio:
Figure 5 shows the compression ratio for selection operation.

The Huffman algorithm & LZW shows very promising

efficiency. The 6BE technique provides an average

compression ratio. But the important fact is that if these two

techniques are combined with 6BE, it shows excellent

efficiency far better than 6BE.This is because Huffman

algorithm derives the table from the estimated probability or

frequency of occurrence (weight) for each possible value of

the source symbol. So more common symbols are generally

represented using fewer bits than less common symbols. As

well as LZW compression replaces strings of characters with

single codes. It adds every new string of characters it

performs to a table of strings. Compression occurs when a

single code is output instead of a string of characters.

0

0.5

1

1.5

0 200 400 600 800 1000 1200

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O

CHARACTER LENGTH

C O M P R E S S I O N R A T I O F O R S T A N D A R D
D A T A S E T

6BE Huffman LZW

6BE+Huffman 6BE+LZW

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200

TI
M

E

CHARACTER LENGTH

C O M P R E S S I O N T I M E F O R D I S T I N C T

D A T A S E T
6BE Huffman LZW

6BE+Huffman 6BE+LZW

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200

TI
M

E

CHARACTER LENGTH

C O M P R E S S I O N T I M E F O R S T A N D A R D
D A T A S E T

6BE Huffman LZW

6BE+Huffman 6BE+LZW

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

16

Fig 5: Compression Ratio for Selection Operation

Fig 6: Compression Ratio for Join Operation

Figure 6 shows the compression ratio for join operation. By

this graph it is found that Huffman algorithm & LZW

provides very good Compression ratio. 6BE technique

provides an average compression ratio. But when Huffman

and 6BE are combined it improves the performance.

Fig 7: Compression Ratio for Selection with Projection

Operation

Figure 7 shows the compression ratio for selection with

projection operation. By this graph it is found that 6BE

technique provides an average compression ratio. But after

combining with Huffman and 6BE the performance improves.

5.2.2 Compression time:
Figure 8, 9 and 10 shows the time required for the

compression schemes for selection operation and cross join

operation respectively. From figure 8, 6BE gives better

performance. gives the best result.

Fig 8: Compression Time for Selection Operation

Fig 9: Compression Time for Join Operation

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O

TABLE SIZE(KB)

C O M P R E S S I O N R A T I O F O R J O I N
 O P E R A T I O N

6BE Huffman LZW

6BE+Huffman 6BE+LZW

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O

TABLE SIZE(KB)

C O M P R E S S I O N R A T I O F O R S L E C T I O N
 O P E R A T I O N

6BE Huffman LZW

6BE+Huffman 6BE+LZW

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O

TABLE SIZE(KB)

C O M P R E S S I O N R A T I O F O R P R O J E C T I O N
D A T A S E T

6BE Huffman LZW

6BE+Huffman 6BE+LZW

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500

TI
M

E(
M

IN
U

TE
)

TABLE SIZE(KB)

C O M P R E S S I O N T I M E F O R S L E C T I O N
 D A T A S E T

6BE Huffman LZW

6BE+Huffman 6BE+LZW

0

2

4

6

8

10

12

0 2000 4000 6000 8000

TI
M

E(
M

IN
U

TE
)

TABLE SIZE(KB)

C O M P R E S S I O N T I M E F O R C R O S S J O I N
 D A T A S E T

6BE Huffman LZW

6BE+Huffman 6BE+LZW

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

17

Fig 10: Compression Time for Selection with Projection

Operation

5.2.3 Retrieval performance:
Query:

A range key query for retrieval performance is

used,

This query is applied to a table of size 466 kb and observe the

retrieval time of this above 5 algorithms in figure 11.

It is found that the retrieval time for 6BE algorithm is quite

promising. Huffman & LZW provides good result.

6BE+Huffman & 6BE+LZW provides excellent result

because after compressing by 6BE the string is quite shorter

than the original text .So when this compressed text is again

compressed by Huffman and LZW the performance improves.

Fig 11: Retrieval Time for Selection with Projection

Operation

6. CONCLUSION AND FUTURE WORK
An encoding scheme for all general characters is described

here. Very little time is needed for encoding if this

encoding scheme is used and when the compression ratio

with performance is compared, it gives a great result. Text

data of huge amount can be compressed by using this

algorithm. Both forward & backward mapping can be done

using this compression so it can be called it mapping

complete. If the frequent set change is less, it gives a very

promising performance. If parallel environment or load

balancing or both is applied, better encoding time can be

obtained. In future, there is a scope to improve this encoding

scheme. This technique can be made more efficient by

increasing the efficiency more than by using 5 bit

encoding technique. The set change can also be handled in an

efficient way so that it does not affect the efficiency. If this

encoding scheme is used as text compression scheme the

sequence of 1111 bits and 0000 bits may also be included in

the input pattern.

7. REFERENCES
[1] Ashiq Mahmood , Tarique Latif and K. M. Azharul

Hasan, “An Efficient 6 bit Encoding Scheme for

Printable Characters by table look up”, International

Conferenceon Electrical, Computer and Communication

Engineering (ECCE), pp. 468-472, 2017.

[2] DwiSuarjaya. “A New Algorithm for Data Compression

Optimization,”(IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 3(8),

14- 24, 2012.

[3] Senthil Shanmuga sundaram, and Robert Lourdusamy,

“A Comparative Study Of Text Compression

Algorithms,”International Journal of Wisdom Based

Computing, Vol.1 (3), pp. 68-76, 2011

[4] Hussein Al-Bahadili, and Shakir M. Hussain, “A Bit-

level Text Compression Scheme Based on the ACW

Algorithm,” International Journal of Automation and

Computing, 7(1), pp.123-131,2010.

[5] A Carus, and A Mesut, “Fast text compression using

multiple static dictionaries,” Information Technology

Journal, 1013-1021, 2010.

[6] Alessio Langiu. “On parsing optimality for dictionary-

based text compression,” Journal of Discrete

Algorithms, 65-70, 2013.

[7] Capo-chichi, E. P., Guyennet, H. and Friedt, J.

K-RLE, “a New Data Compression Algorithm for

Wireless Sensor Network,” In Proceedings Third

International Conference on Sensor Technologies

and Applications, pp.502-507, 2009.

[8] Muthukumar Murugesan, T. Ravichandran, “Evaluate

Database Compression Performance and Parallel

Backup,” International Journal of Database

Management Systems (IJDMS) Vol.5(4), 17-25, 2013.

[9] Amit Jain, Kamaljit I. Lakhtaria, “Comparetive Study

of Dictionary Based Compression Algorithms on Text

Data”, Proceedings of the Data Compression

Conference, IEEE Computer Society, 2009.

[10] Ahmad Affandi, Saparudin, and Erwin, “The application

of text compression to short message service using

huffman table”Vol.6 No.1 Journal Generic, 19-24, 2011.

[11] Asadollah Shahbahrami, Ramin Bahrampour, Mobin

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500

TI
M

E(
M

IN
U

TE
)

TABLE SIZE(KB)

C O M P R E S S I O N T I M E F O R P R O J E C T I O N
D A T A S E T

6BE Huffman

LZW 6BE+Huffman

6BE+LZW

0

0.5

1

1.5

2

2.5

3

3.5

TI
M

E(
M

IN
U

TE
)

Table Size(466 KB)

Retrieval Time

6BE LZW Huffman 6BE+LZW 6BE+Huffman

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ashiq%20Mahmood.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tarique%20Latif.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.K.%20M.%20Azharul%20Hasan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.K.%20M.%20Azharul%20Hasan.QT.&newsearch=true

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.4, December 2017

18

Sabbaghi Rostami, Mostafa Ayoubi Mobarhan,

“Evaluation of Huffman and Arithmetic Algorithms for

Multimedia Compression Standards,” International

Journal of Computer Science, Engineering and

Applications (IJCSEA) Volume 1, Number 4, 2011.

[12] Mamta Sharma, “Compression Using Huffman Coding”,

IJCSNS International Journal of Computer Science and

Network Security, VOL.10 No.5, May 2010.

[13] SR Kodituwakku, US Amarasinghe, “Comparison of

lossless data compression algorithms for text data,” S.R.

Kodituwakkuet. al. / Indian Journal of Computer

Science and Engineering ,2012,Vol 1 No 4 416-426.

[14] Si-huiShu, Yi Shu, “A Two-Stage Data Compression

Method For Real-time Database”, 3rd

International Conference on System Science,

Engineering Design and Manufacturing, DOI

10.1109/ICSSEM.2012.6340844, 2012.

[15] R Naqvi, RA Riaz, F Siddiqui, “Optimized RTL design

and implementation of LZW algorithm for high

bandwidth applications,” Electrical Review, 279-285,

2011.

[16] Zhou Yan-li, Fan Xiao-ping, Liu Shao-qiang, XiongZhe-

yuan,“Improved LZW algorithm of lossless data

compression for WSN”, 3rd IEEE International

Conference on Computer Science and

Information Technology, 2010 DOI

10.1109/ICCSIT.2010.5563620, 2010.

[17] SushilaAghav, “ Database compression techniques for

performance optimization, 2nd International Conference

on Computer Engineering and Technology

(ICCET),10.1109/ICCET.2010.5485951, 2010”.

[18] Md. Abul Kalam Azad, Rezwana Sharmeen, Shabbir

Ahmad and S. M. Kamruzzaman, “An Efficient

Technique for Text Compression” The 1st

International Conference onInformation Management

and Business, pp. 467-473, 2005.

[19] Pujar, J.H.; Kadlaskar, L.M. "A New Lossless Method

of Image Compression and Decompression Using

Huffman Coding Techniques", Journal of Theoretical

and Applied Information Technology. 15 (1), pp.18–23,

2010.

[20] M Garcia, P Gamallo, “Dependency-based text

compression for semantic relation extraction” The 8th

International Conference on Recent Advances in Natural

Language Processing, 21-28, 2011.

IJCATM : www.ijcaonline.org

