A Hybrid Technique for Assessment of Heart Sickness Forecast

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 180 - Number 40

Year of Publication: 2018

Authors:
Navdeep Singh, Sonika Jindal

10.5120/ijca2018917053

Abstract

The numbers of heart patients with numerous diseases are rising in India each year. The heart issues may be controlled in the initial stages once the on time detection. The on time detection of the heart diseases may be foreseen using the routine health check mechanism for the general public. It becomes a tedious task to investigate the information of heart data of thousands of thousands of patients each week or month. The prediction method needs the expert care professional persons that are terribly less in number. Additionally they kept busy with different route activities like patient checkups, operations, etc. within the many care centers across the country. The matter of in-time prediction may be resolved by using the correct heart prediction formula. The data is often obtainable within the heavier amounts, which may be optimized using the assorted optimization algorithms for the quick and correct process of patient's data. Information has been divided into training and Testing sets to get comparatively higher prediction accuracy. During this paper, the centre illness prediction formula has been designed exploitation the combination of genetic & Naïve Bayes formula for the aim of the data optimization and therefore the result generation. The results from the formula experimentation
are obtained exploitation the parameters like accuracy, precision and recall. The results have even the performance improvement of optimized cardiovascular disease prediction solution by using the genetic formula.

References

5. Carlos Ordonez, Edward Omiecinski, Mining Constrained Association Rules to Predict Heart Disease, IEEE. Published in International Conference on Data Mining (ICDM), p. 433-440, 2001.


Index Terms

Computer Science

Information Systems

Keywords

Classification, GA, Fuzzy Logic, Naïve Bayes