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ABSTRACT
In this paper, AR-HMM on mel-scale with power and Mel-LPC
based time derivative parameters has been presented for noisy
speech recognition. The mel-scaled AR coefficients and mel-
prediction coefficients for Mel-LPC have been calculated on the
linear frequency scale from the speech signal without applying bi-
linear transformation. This has been done by using a first-order all-
pass filter instead of unit delay. In addition, Mel-Wiener filter has
been applied to the system to improve the recognition accuracy in
presence of additive noise. The proposed system is evaluated on
Aurora 2 database, and the overall recognition accuracy has been
found to be 80.02% on the average.
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1. INTRODUCTION
The speech recognition processes have been investigated by many
researchers [1], [2], [3], [4], [5], [6] in the framework of autoregres-
sive hidden Markov model (AR-HMM) [7]. In all of these works
researchers have not tried to incorporate power and/or time deriva-
tive parameters of speech signal.

It has been found that the AR-HMM is a useful method to repre-
sent clean speech [1], [2]. In conventional AR-HMM, all the states
are assumed to be stationary stochastic sequences whereas speech
signal reveals the most notable nonstationary nature. Although the
AR-HMM is suitable for LPC based front-end, it cannot deal with
frequency dependent spectral variation and dynamic property of
spectra. Consequently, AR-HMM based recognition system has in-
ferior performance as compared to MFCC based system [6].

To overcome all these limitations, the pdf of Gaussian AR source
for the static spectra and the Gaussian pdf for both energy and
delta cepstrum have been combined in the proposed system. Fur-
thermore, as in MFCC or PLP, auditory-like frequency resolution
has been incorporated into AR-HMM by Mel-LPC [8], [9].

Though, the AR-HMM is suitable for clean speech as mentioned
above, its performance severely degrades with noisy environments.
Consequently, we have incorporated a filtering scheme along with
the Mel-LPC based AR-HMM. Previously we have proposed a
time-domain Mel-Wiener filter [10] on the linear frequency scale

by using a first-order all-pass filter instead of unit delay. This Mel-
Wiener filter has been efficiently applied in the autocorrelation do-
main to enhance mel-autocorrelation function of noisy speech.

The rest of the paper is organized as follows. Section 2 comprises
of three subsections− subsection 2.1 introduces an overview of
Mel-LPC analysis, subsection 2.2 deals with AR-HMM for bilinear
transformed signal and subsection 2.3 describes the inclusion tech-
nique of power and time derivative parameters into autoregressive
hidden Markov model. Section 3 gives a short description of pre-
viously proposed Mel-Wiener filter. System overview is introduced
in section 4. Experimental setup for the proposed system is given
in section 5. The performance of the proposed system is illustrated
in section 6. Finally, conclusion is presented in section 7.

2. AR-HMM FOR MEL-LPC BASED FRONT-END
2.1 Mel-LPC Analysis
In the Mel-LPC analysis, the following all-pole model is defined
for frequency warped speech signal x̃[n] (n = 0, 1, ..,∞) which
is bilinear transformed [11] from a windowed input speech signal
x[n] (n = 0, 1, ..,N − 1):

H̃α(z̃) =
σ̃e

1 +
∑p

k=1
ãkz̃−k

(1)

where z̃−1 is a first-order all-pass filter,

z̃−1 =
z−1 − α

1− α · z−1
(2)

The phase response of z̃−1 is given by

λ̃ = λ+ 2 · tan−1
{

α sinλ

1− α cosλ

}
(3)

This phase function determines a frequency mapping. As shown in
Figure 1, α = 0.35 and α = 0.40 can approximate the mel-scale
and bark-scale at the sampling frequency of 8 kHz respectively.

Actually, in Mel-LPC analysis, the spectral envelope of X̃(z̃)W̃ (z̃)
is approximated by the all-pole model given in Equation (1), where
the frequency weighting function W̃ (z̃) is given by

W̃ (z̃) =

√
1− α2

1 + α · z̃−1
(4)
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Fig. 1. Frequency mapping by bilinear transformation.

which is derived from

dλ

dλ̃
=
∣∣W̃ (z̃)

∣∣2 (5)

The mel-prediction coefficients {ãk} can be calculated directly
from the input speech signal without applying bilinear transforma-
tion as shown in [8], [9].

2.2 AR-HMM for Bilinear Transformed Signal
Let x̃[n] be the bilinear transformed and gain normalized signal
of x[n], that is, in the LPC terminology this is equivalent to the
normalization by the square root of average residual energy. It is
assumed that x̃[n] is generated by an M th order zero mean autore-
gressive process. Therefore

ẽn =

M∑
i=0

ãix̃[n− i] (6)

where ẽ[n] are Gaussian i.i.d. random variables with zero mean and
unity variance, and {ãi} are the mel-scaled AR coefficients with
ã0 = 1. It should be noted that the mel-scaled AR coefficients can
be calculated from the gain normalized signal of x[n] in the same
way as mel-prediction coefficients are calculated.

Now, for large N , the probability density function for x can be
approximated by [7]

fa(x) ≈ (2π)−N exp{−1

2
δ(x; ã)} (7)

where

δ(x; ã) = Rã[0]r̃x[0] + 2

M∑
i=1

Rã[i]r̃x[i] (8)

Rã[i] is the autocorrelation function of AR coefficients and r̃x[i] is
the mel-autocorrelation function [8], [9] of x.

2.3 Inclusion of Energy and Time Derivative
Parameters

Energy and time derivative parameters of Mel-LPC can be included
by estimating the joint probability of AR coefficients, energy and
time derivative Mel-LPC parameters, which is given by

f(x, y) = fa(x)fg(y) (9)

where fa(x) is the autoregressive probability density function,
given by Equation 7, and fg(y) is the Gaussian probability density
function, given by

fg(y) =
1√

(2π)N |Σ|
exp{−1

2
(y − µ)′Σ−1(y − µ)} (10)

and y = [c0,∆c0,∆c1, ...,∆cp].

3. MEL-WIENER FILTER
It has been found form the recognition experiment that the perfor-
mance of AR-HMM is satisfactory for clean speech only. On the
contrary, its performance severely degrades against SNRs irrespec-
tive of noise types. Consequently, an effective enhancement system
is required to improve the performance of AR-HMM in different
SNR conditions.

To improve the performance of the proposed system, we have used
the previously implemented Mel-Wiener filter (MWF) [10] which
was formulated on the linear frequency scale by using a first-order
all-pass filter instead of unit delay and a remarkable improvement
has been obtained.

The transfer function of the Mel-Wiener filter on z domain is de-
fined as

H̃w(z̃) =

p−1∑
n=0

h̃w[n]z̃−n (11)

Now, the estimated clean speech ŝw[n] based on filter H̃w(z̃) is
given by

ŝw[n] =

p−1∑
k=0

h̃w[k]xk[n] (12)

where xk[n] is the output signal of k cascaded all pass filter z̃−k.

It should be noted that filtering is done in the autocorrelation do-
main as follows:

ˆ̃rs[m] =

p−1∑
k=−p+1

rh̃[k]r̃x[m− k] (13)

where rh̃[m] is the autocorrelation function of filter coefficients
{h̃w[m]}.

4. SYSTEM OVERVIEW
The block diagram of the proposed system is shown in Figure 2.
The filtering is done in autocorrelation domain to obtain the mel-
autocorrelation function of the enhanced speech. From the esti-
mated mel-autocorrelation function the energy and time derivative
mel-cepstra have been calculated. The mel-scaled AR coefficients
have been obtained by using gain normalized mel-autocorrelation
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Fig. 2. Mel-LPC based AR-HMM system with energy and time derivative
parameters.

function. Finally, the autoregressive hidden markov model (AR-
HMM) for each word has been created by using the joint proba-
bility of AR coefficients, energy and time derivative Mel-LPC pa-
rameters which is given by Equation (9).

5. EXPERIMENTAL SETUP
The order of AR process and Mel-LPC analysis were set to 12. The
speech signal was windowed using Hamming window of length 20
ms with 10 ms frame period. As the frequency weighting function
W̃ (z̃) defined by Equation (4) acts like a preemphasis, the speech
signal was not preemphasized. The warping factor was set to 0.4.
Each feature vector consists of 13 AR coefficients, one energy term
and 14 delta mel-cepstral coefficients.

The reference recognizer was based on HTK (Hidden Markov
Model Toolkit) software package. The HMM was trained on clean
condition. The digits are modeled as whole word HMMs with 16
states per word and a mixture of 3 to 10 Gaussians per state using
left-to-right models. In addition, two pause models ‘sil’ and ‘sp’
are defined. The ‘sil’ model consists of 3 states. This HMM models
the pauses before and after the utterance. A mixture of 6 Gaussians
models each state. The second pause model ‘sp’ is used to model
pauses between words. It consists of a single state, which is tied
with the middle state of the ‘sil’ model.

Table 1. Performance of AR-HMM on word
accuracy as a function of mixture components

for subway noise in set A.
No. of mixture SNR [dB]

clean 20 15
3 90.3 74.2 54.5
6 91.3 76.2 56.2
10 91.3 75.0 55.0

Table 2. Effect of power term and delta
parameters on recognition accuracy for subway

noise in test set A.
Parameters SNR [dB]

clean 20 15
with c0 94.2 41.7 17.8

with c0 & ∆c 99.2 81.5 67.5

Table 3. Recognition accuracy for
AR-HMM with c0 and ∆c0 for test set A.

Noise SNR [dB]
clean 20 15

Subway 99.2 81.5 67.5
Babble 99.1 81.4 52.1
Car 98.9 80.3 57.2
Exhibition 99.3 83.0 65.9

Table 4. Recognition accuracy for Mel-LPC
with c0 and ∆c0 for test set A.

Noise SNR [dB]
clean 20 15

Subway 98.9 97.3 93.8
Babble 98.8 91.1 64.9
Car 98.6 97.6 87.3
Exhibition 99.1 97.3 94.4

6. PERFORMANCE EVALUATION
The performance of the proposed system was evaluated on Aurora
2 database [12], which is a subset of TIDigits database [13] con-
taminated by additive noises and channel effects.

At first, the effect of mixture components on recognition accuracy
has been examined for the AR-HMM system using test set A and
noise kind subway. As shown in Table 1, the increase of mixture
components does not improve the recognition accuracy as in [6]
rather the optimum accuracy is obtained for 6 mixture components.
So, in the subsequent recognition experiment the mixture compo-
nents were set to 6.

Effect of power and time derivative parameters is shown in Ta-
ble 2. Incorporation of power term improves the accuracy for clean
speech and degraded performance is observed for noisy speech as
expected. On the contrary, inclusion of power and delta parameters
improves the accuracy for all cases. As shown in Table 3 and 4, for
clean speech, AR-HMM with power and delta parameters attains
slightly better performance than that of Mel-LPC cepstral parame-
ters. However, for noisy speech, performance is very weak against
SNRs.

As the AR-HMM with power and delta parameters outperforms
Mel-LPC for clean speech only, an enhancement scheme is re-
quired to obtain the better performance in noisy conditions. There-
fore, from this viewpoint, Mel-Wiener filter (MWF) has been used
to speech signal before estimating the AR-HMM and the overall
recognition performance for all three test sets A, B and C of Aurora
2 database is presented in Table 5. In this table it has been shown
that a remarkable improvement has been achieved for all three sets
and on the average, recognition accuracy has been improved from
44.66% to 80.02%.

7. CONCLUSION
In this work, auditory-like frequency resolution has been achieved
for AR-HMM by estimating mel-AR coefficients. Since AR-HMM
cannot deal with power and time derivative parameters, the power
and Mel-LPC based delta parameters have been effectively incor-
porated. Thus the significant improvement is obtained in word ac-
curacy. Furthermore, Mel-Wiener filter has been applied to the sys-
tem to improve the recognition accuracy in different noisy condi-
tions. The overall recognition accuracy has been obtained with the
proposed system is 80.02%.
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Table 5. Overall recognition accuracy for Mel-LPC based AR-HMM (including c0 & ∆c0) w/ and w/o MWF.
SNR Set A Set B Set C Average

w/o MWF w/ MWF w/o MWF w/ MWF w/o MWF w/ MWF w/o MWF w/ MWF
clean 99.19 98.32 99.19 98.32 99.33 97.87 99.30 98.30
20 dB 84.95 97.04 84.66 96.65 85.77 96.08 85.00 96.70
15 dB 67.53 95.46 64.54 94.02 73.88 93.88 67.60 94.60
10 dB 42.52 90.62 39.86 87.43 55.37 87.57 44.10 88.80
5 dB 18.80 77.20 15.09 70.58 31.65 73.72 19.90 73.90
0 dB 7.12 49.08 2.71 41.46 13.39 49.25 6.70 46.10
-5 dB 5.38 16.90 2.42 12.29 8.81 23.51 4.90 16.40
Average 44.19 81.88 41.38 78.03 52.02 80.10 44.66 80.02
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