
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

42

Co-evolutionary Approach to Reduce Soft Error Rate of

Implemented Circuits on SRAM_based FPGA

Hadi Jahanirad
Department of electrical engineering, University of Kurdistan

Pasdaran Street, Sanandaj, Iran

ABSTRACT

Soft errors such as Single Event Upset (SEU) have great

effect on performance degradation of circuits implemented on

SRAM_based FPGA. The soft error in configuration bits

which control the logic and routing parts of the circuit, leads

to permanent faults. In this paper, we have developed a co-

evolutionary method to reduce the effect of soft error on the

implemented circuit on FPGA. This method is based on

cooperation of genetic algorithm and ant colony optimization.

The efficiency of co-evolutionary method has been proved by

comparison of its results with the proposed genetic algorithm

and ant colony optimization. The experimental results for

some MCNC benchmark circuits show up to 34%

improvement compare to genetic algorithm and up to 60%

improvement against ant colony optimization.

Keywords

Soft error rate, SRAM_based FPGA, Place and route, GA,

ACO

1. INTRODUCTION
The Field Programmable Gate Array (FPGA) has used in

wide range of application such as aerospace. There are various

types of this chip from various vendors. The conventional

FPGA architecture consists of a two-dimensional (2-D) array

of identical configurable Logic Blocks (LBs), surrounded by

programmable Input/output Blocks (IOBs). The LB usually

consists of a Lookup Table and a DFF. The LBs have been

connected using a programmable interconnect network, which

consists of switch matrices and wires. Almost 80% of

transistors in an FPGA lay inside this programmable routing

network (programmable switches and buffers). In modern

FPGAs, more than fourteen layers of metal are used, most of

them for routing resources [1].

Single Event Upset (SEU) is the most important source of soft

error in aerospace applications. FPGAs are more vulnerable to

SEUs compared to Application Specific Integrated Circuits

(ASIC) [2]. In SRAM-based FPGAs, all programmable

resources (particularly routing switches) are configured by

SRAM cells; these devices are very susceptible to such errors

[3]. The energetic particles such as neutrons from cosmic ray

and alpha particles generating electron–hole pairs as they pass

through a semiconductor device [4]. If the amount of

accumulated charges collected at the drain of the off

MOSFET in an SRAM cell is sufficient an inversion in the

state of the SRAM cell may occur [4].

The effects of SEUs in an SRAM-based FPGA may lead to

the following faults: (1) SEUs may alter the contents of

SRAM cells used in the implemented circuit. For example,

SEUs may alter the contents of DFFs used in the circuit or the

control unit. (2) SEUs may alter the contents of the FPGA’s

configuration memory, which defines the function of logic

resources (e.g. lookup tables or LUTs) as well as their

interconnection (e.g. routing switches) [5]. Type 1 is transient

because the faulty bit can be overwritten, while type 2 is

permanent because the configuration bits remain unchanged

until configuration bit stream re-downloaded into the FPGA

[6].

Reliability is actually as important as other factors such as

cost, performance, power consumption, area overhead and

speed in the design of digital circuits [7], [8]. Reliability

analysis of a logic circuit composed of logic gates, estimates

the probability of a correct output value when the circuit is

subject to an error stress such as incorrect input or internal

gate failure. A common technique for reliability analysis of

logic circuits is based on Monte Carlo framework which is

based on fault injection into the nodes of the circuits and

calculation of circuit output values by applying various input

vectors [9]. The main problem of this method is its

inapplicability to large circuit and large number of input

vectors. References [10-14] have introduced analytical

methods based on Discrete Time Markov Chains (DTMC) and

Binary Decision Diagrams (BDDs). The reliability analysis

based on signal probability can be found in references [15-

19].

References [20] and [21] have proposed two algorithms for

reliability analysis of combinational circuits. The first

algorithm is called observability-based reliability analysis and

the second is called single-pass reliability analysis. The

concept of these algorithms is based on the fact that an error at

the output of any gate is the cumulative consequent of a local

error component related to that gate, and a propagated error

component related to the failure of gates in its transitive fan-in

cone. In [22] a reliability analysis for sequential circuits is

presented based on second method.

In this paper we have presented a signal probability method

for estimating soft error rate of FPGA implemented designs.

In this method we have considered single fault occurrence in

LUT cells and programmable routing switches. In addition,

the problem of re-convergent fan-outs has been solved using

16 correlation coefficients approach which leads to accurate

results.

To reduce soft error rate, we have developed three

evolutionary based methods. First one is an adopted genetic

algorithm for this paper problem and second one is adopted

ant colony optimization and the last one which is the best

algorithm among these methods is the co-evolutionary

method. This method uses the advantageous behavior of the

former two methods and leads to better results. Evolutionary

methods applied to place and route circuits on FPGA for

different goals. Simulated annealing is used to optimize

wirelength and maximum path delay in [23, 24]. Reference

[25, 26] have presented a GA_based for optimal placement

and in references [27,28] ACO has been selected as bases for

optimization. Particle Swarm Optimization [PSO] is adapted

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

43

to placement problem in FPGA in references [29-31]. All of

this method define their fitness function based on bounding

box which presents a weak estimation of the wirelength cost

so we have introduced another fitness function based on

Minimum Steiner Tree (MST) which not only has better

estimation of wirelength but also as a goal in global routing

estimates the congestion of wires in routing resources. Our

proposed methods based on GA and ACO introduce new and

more appropriate operators and adaptation approach.

This paper is organized as follows: Soft error rate estimation

method has been described in section 2. In section 3 the

fitness function has been introducedfor the proposed

evolutionary methods. Adopted genetic algorithm and ant

colony methods described in section 4 and 5 respectively. The

co-evolutionary method to reduce soft error rate has been

presented in section 6. Experimental results for some

benchmark circuits presented in section 7 and conclusion has

been drawn in section 8.

2. Soft Error Rate Estimation
Soft errors such as SEU have great effect on FPGA memory

elements in aerospace applications. There are two types of

FPGA’s memory resources; first, user bits (DFFs) in which

the SEU can alter the content of them directly or passing

through a combinational path. This type of soft error is

essentially transient and disappears after writing new data in

the affected DFF. Configuration bits as the second type of

memory resources, constitute more than 98% of all memory

elements in the SRAM_based FPGA [32], [33]. The

configuration bits configure routing switches and LUT cells as

combinational logic part of implemented circuit. An SEU that

upsets a configuration bit has a permanent effect until the

original configuration bit-stream be re-downloaded into the

FPGA.

Single fault in integrated circuits is the most probable fault

type. A brief view at fault in time (FIT) and mean time to

failure (MTTF) of SEU in SRAM_based FPGA from XILINX

corporation declares that considering single fault model for

faults leads to accurate results in soft error analysis

(probability of multiple fault occurrence is negligible). Single

fault can occur in the logic and routing parts of an

implemented design and we model these faults as follows.

• LUT Single Fault Model: An LUT is an N×1 RAM (where N

is a power of two, e.g. a 16×1 RAM) in which an arbitrary

logic function of up to log2N inputs can be implemented. The

contents of this N-cell RAM are determined through FPGA’s

configuration operation. Single Event Upset (SEU) may

change the contents of these cells temporarily or permanently

(Fig. 1). Single fault occurrence in any of LUT cells may

change the logic function implemented on it (e.g. in Fig. 1 the

faulty cell changes the LUT function from XOR to NAND).

• Programmable Switch Single Fault Model: The routing

resources (wire segments and bidirectional switches) occupy a

large portion of the FPGA chip. Consequently, SEU induced

faults have occurred in these parts more likely. The most

vulnerable elements of routing resources are programmable

switches, which are used to make connection between

horizontal and vertical wire segments. A programmable

switch can be either a buffer or a pass transistor (Fig. 2). Each

programmable switch is controlled by six bits of configuration

memory. A fault occurrence in these control bits may lead to a

net getting misrouted or disconnected.

The programmable switches constitute switch boxes which

make a flexible structure to routing affair. There are different

architectures for switch boxes in SRAM_based FPGA of

various vendors. In this paper we have selected disjoint switch

box architecture (Fig. 2). Disjoint switch boxes have been

used in industrial FPGAs [34], in which a wire i of one box’s

side can connect only to other wires i in the other three sides

of switch box. If we want to connect any pairs of four wires in

the four sides of switch box, we should use six programmable

switches in their cross-point.

When a single fault occurred in a programmable switch, one

of the following cases will arise:

• Zero to one transition in a control bit: in this case an unused

switch of six switches will be on. This may have no effect on

the system operation (Fig. 3-a), make a connection between

two wire with same driver (Fig. 3-b) or make a connection

between two wires with different drivers (Fig. 3-c). The last

case leads to an unknown state in the output wires of the

switch (‘X’ logic value).

• One to zero transition in a control bit: in this case a switch

which is on turned off and causes a floating state

(discontinuity in a path). This disconnection maybe

interpreted as a logic ‘0’ or logic ‘1’ in the destination of the

path, so in this case we assign “X” value to the output wire of

the related switch.

The signal probability propagation is a common method in

power analysis and signal activity computation. The reliability

analysis of logic circuits using signal probability propagation

method has been discussed in literature extensively. While in

previous works only two logic levels of 0 and 1 have taken

into account, in this work, we have considered three standard

logic values of 0,1 and X beside an additional value of Y.

An FPGA implemented circuit seats on LBs (LUTs and

DFFs) connected together by switch boxes (containing

programmable switches) and wire segments. We describe our

method to propagate weight values through these parts below.

 0

1

1

0

1

1

1

0

Z = XOR(X,Y) Z = NAND(X,Y)

X

Y

Z

X

Y

Z

Fig 1. Single Fault in an LUT

Fig 2. Disjoint switch Module

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

44

(a)

(b)

(c)

Fig 3. Zero to one transition in programmable switch

• Propagation weight through LUT: For each input of LUT

there are four distinct weights: w0, w1, wx, wy (logic y is the

invert of logic x). The output weights of this logic element can

be computed using the weights of inputs and the its logic

function. For example, the output weights of an XOR gate

(with its inputs labeled a and b) can be computed according to

Eq. 1-4.

)()()()(

)1()1()0()0()0(

YwYwXwXw

wwwww

baba

babaout





(1)

)()()()(

)0()1()1()0()1(

XwYwYwXw

wwwww

baba

babaout



 (2)

)1()()()1(

)0()()()0()(

baba

babaout

wYwYww

wXwXwwXw



 (3)

)1()()()1(

)0()()()0()(

baba

babaout

wXwXww

wYwYwwYw



 (4)

In our method, the re-convergent fan-outs have been handled

by defining correlation coefficients between a pair of fan-out

branches (Cij) and propagating these coefficients to the re-

convergence point. So for each LUT, the correlation

coefficients considered in the derived formulas. For example,

for “XOR” gate the modified formulas are as follows:

)()()()()()(

)11()1()1()00()0()0()0(

YYCYwYwXXCXwXw

CwwCwww

ijjiijji

ijjiijjiout




 (5)

)()()()()()(

)10()0()1()01()1()0()1(

YXCXwYwXYCYwXw

CwwCwww

ijjiijji

ijjiijjiout




 (6)

)1()1()()1()()1(

)0()0()()0()()0()(

YCwYwYCYww

XCwXwXCXwwXw

ijjiijji

ijjiijjiout





(7)

)1()1()()1()()1(

)0()0()()0()()0()(

XCwXwXCXww

YCwYwYCYwwYw

ijjiijji

ijjiijjiout



 (8)

•Propagation Weights through Routing Switches: As

mentioned before a path between an LUT or IO and another

LUT contains some wire segments and programmable

switches. If there is no fault in a path the weight values of the

source of this path propagate to the destination of the path

directly. Occurrence of single fault in the programmable

switches of this path may cause a floating node in the path or

a collision with other path (Fig. 3). These types of faults

change the weight values of the destination as follows:

0)(,1)(,0)1(,0)0( YwXwww (9)

In the combinational circuit analysis, we divide the fault into

two types: single fault in an LUT cell and single fault in a

programmable switch.

Single fault in an LUT cell toggles the logic of that cell; so for

each cell of the LUT we consider this change and compute w0,

w1, wX and wY in the output of the circuit. The difference

between these weights and the corresponding values of fault

free circuit are used for error calculation:





cntcellsLUT

t

LogicLogic tiErrirrE

__

1

),()(

(10)

Where:

)()()()(),(10 iwiwiwiwtirr YXLogicE 

(11)

)()()(_ iwiwiw FaultyFreeFault 

(12)

ErrLogic(i,t) is the error of primary output i caused by a toggle

in cell t ,∆w0,1,X,Y(i) is the difference between weights of fault

free and faulty states and ErrLogic(i) is the total error of output i

caused by single fault occurrence in the logic part.

Single fault in programmable switches may cause the signals

travelling from source LB to sink LB(s) to become faulty.

The faulty value of switched signal is determined regarding its

configuration as described in eq. 14. After modifying w0, w1,

wX and wY in the inputs of sink LBs connected to faulty

switch, we can propagate these values to the outputs of circuit

and compute the new values of the outputs. Error caused by

the faulty switch is calculated as:





cntbitscontrol

t

RoutingRouting tiErrirrE

_ _

1

),()(

(13)

Where:

)()()()(),(10 iwiwiwiwtirr YXRoutingE  (14)

)()()(_ iwiwiw FaultyFreeFault  (15)

again ErrRouting(i,t) is the error of primary output i caused by a

toggle in control bit t , ∆w0,1,X,Y(i)is the difference between

weights of fault free and faulty states and ErrRouting(i) is the

total error of output i caused by single fault occurrence in a

programmable switch.

3. FITNESS EVALUATION
To reduce the error rate in implemented circuit, we must

consider the following factors in the estimation method: First

factor is the number and types of LUTs which can be deduced

from synthesizing and mapping of circuit into the FPGA. As a

rule of thumb if the number of LUT cells for mapping the

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

45

circuit on FPGA decreases the number of fault sites will be

decreased and the error rate will be decreased accordingly.

Because of existence of very good synthesis tools we do not

develop such tool but we use the “netlist” which generated by

these tools, to develop more reliable place and route method.

The second factor which is very effective in reduction of the

error rate is the approach which is applied to place the LUTs

of the “netlist” on the FPGA and selection of the

programmable switches and wire segments used in the routing

process of such “netlist”. The main idea to reduce the soft

error rate in this paper is optimizing the place and rout in such

a way that the number of used programmable switches (most

vulnerable elements to soft error) reduced as well as the

congestion of switches and risky configuration of the switches

be avoided.

As mentioned before the routing between each node and its

sinks will be done using wire segments and programmable

switches. Once the nodes (LUTs) placed on the specific cells

of FPGA we should construct the necessary routs in way that

the minimum length will be met and the congestion be

avoided. These routes are constructed using minimum Steiner

Tree (MST) for the node and its sinks. The MST for node ni

has been shown in Fig. 4.

To derive a straight-forward expression for the fitness

function, we have defined two terms; first one is the

placement cost which is the sum of MSTs’ length of all

implemented circuit’s nets (eq. 16). Second term is related to

congestion of routes in the implemented circuit. We have

defined a congestion weight for each programmable switch

and for each switch used in the MST of the node we increase

this weight. After routing process, more uniformly distributed

switch weights can be interpreted as less congestion and more

reliable implementation. So for second term in the fitness

function we have used the standard deviation as the

congestion cost (eq. 18). In this equation NSW is the total

number of switches used in the circuit implementation. is
the mean of weights of used switches and wi is the weight of

switch number i. after calculation of place_cost and

congest_cost we can derive fitness of the placed and routed

circuit using eq. 19.

4. GA-BASED APPROACH FOR SOFT

ERROR RATE REDUCTION
In this section we first introduce our approach to build genetic

system which is compatible with our problem and then overall

procedure for optimizing the fitness function will be

introduced.

• Chromosome structure: in each generation of genetic

algorithm, there are N individuals each of them called a

chromosome. Each chromosome can be assumed as a solution

for the problem which consists of some genes. Each gene

describes a part of the complete solution. In our problem we

define each chromosome as a distinct placement of the netlist

on the FPGA. So each gene of the chromosome will be the

position of an LB or IO of the netlist.

 (17)

 (18)

 (19)

Src

Snk0

Snk1

Snk2

Snk3SP0

SP1

SP2

Fig 4 Minimum Steiner Tree

LB2 LB0

LB1

IO0

IO1

Fig 5 Placement of a circuit with 2 IO and 3 LB

Common architecture of FPGA is a 2 dimensional array of

LBs which surrounded by IO blocks, so for each gene there is

two numbers: first number is the row index of corresponding

block and the second one is its column index. As an example

assume the netlist has three LBs and two IOs, one possible

placement of the netlist on a 3×3 FPGA has been indicated in

Fig. 5. The corresponding chromosome is as follows:

Chromn = [(3,0),(2,4),(1,2),(3,2),(1,1)]

The first element of ith pair is the row index of gene i and the

second one is the column index of the gene. The first two

genes correspond to IOs and the last three genes correspond to

LBs.

• Genetic Operators: The key concept in the genetic algorithm

is directed scanning of a big search space to find optimum

results. This can be done by applying genetic operators to one

generation of chromosomes in a mating pool and construct

next generation using natural selection. To build a mating

pool in the generation n, all chromosomes would be evaluated

based on fitness function and then based on its score the

number of each chromosome which go to mating pool is

determined. Genetic operators will be applied to the

chromosomes in the mating pool as follows.

Crossover: the conventional crossover in the genetic

algorithm is done by swapping a portion of genes among two

chromosomes and producing two new chromosomes which

are called offspring. In our chromosome structure this method

leads to unacceptable offspring. The main drawback is the

replication of a gene in a chromosome. For example, assume

that we crossover chromosomes a and b from forth gene to the

last gene then as you can see in child “2” the third and fifth

genes are similar which means that third and fifth LBs

occupied one position so this is not a valid chromosome.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

46

Chroma = [(0,1),(3,0),(3,2),(1,1),(2,5),(4,3),(5,5)]

Chromb = [(6,3),(0,4),(2,5),(3,1),(5,3),(4,4),(5,1)]

Chromchild1 = [(0,1),(3,0),(3,2),(3,1),(5,3),(4,4),(5,1)]

Chromchild2 = [(6,3),(0,4),(2,5),(1,1),(2,5),(4,3),(5,5)]

In our proposed crossover operator, the above problem has

been handled as follows. First of all, proposed crossover is

based on single parent and lead to single child. The parent

chromosome divide into IO and LB parts then for each part

the number of genes which must be swapped is determined

(pIO,pLB). In LB (IO) part pLB/2 (pIO/2) pair of genes has been

selected randomly, then the position of genes in each pair

swapped. The produced child has an acceptable similarity to

its parent, moreover there is no problem such as gene replica

in its structure.

Mutation: The conventional mutation operator is done by

changing some genes of a chromosome randomly and

produces a new chromosome. This operator extends the scope

of the algorithm search and resolves trapping in local minima.

Applying this operator for our problem may lead to

unacceptable child. For example, in the following

chromosome if we mutate fourth gene (LB position) on

chromosome randomly the resulted child may have a

replication (Chromchild1) or an IO position selected for that

LB (Chromchild2).

Chromb = [(6,3),(0,4),(2,5),(3,1),(5,3),(4,4),(5,1)]

Chromchild1 = [(6,3),(0,4),(2,5),(5,1),(5,3),(4,4),(5,1)]

Chromchild2 = [(6,3),(0,4),(2,5),(3,6),(5,3),(4,4),(5,1)]

We modify this operator as follows: the chromosome is

divided into IO and LB parts which will be mutated

separately. For each part we determine the number of genes

which must be mutated (pm,IO,pm,LB), then we select randomly

pm,LB(pm,IO) genes from LB(IO) part randomly. The position of

selected genes will be substituted with an unused position of

FPGA. Since the substituted positions are not used in the

parent genes this modified version of mutation does not suffer

from gene replica, in addition the scope of search would be

extended by using unused positions.

5. ACO-BASED APPROACH FOR SOFT

ERROR RATE REDUCTION
Traveler Salesman Problem (TSP) is a conventional

problem in computer science. The bench of this problem

constitutes a connected graph in which some cities (nodes) are

connected by weighted edges. Each solution for TSP is

finding a tour which visits each node of graph one time and all

nodes have been visited. In this section we first introduce TSP

model of our problem then the optimization method will be

described.

To construct the graph, we have defined a node for each

IO or LB. Starting from first node we must assign it to a

position on FPGA and then go to the next node. If the node is

an IO (LB) we can assign it to one of the unused IO (LB)

positions. This process will be terminated when the last node

assigned to a specific position.

The main concern in this algorithm is the selection of the

position for the node from the unused positions. ACO do this

based on a probability approach. When ant k in its tour wants

to assigns a position to node i there will be Ni
k possible

positions. The probability of selection position j would be

derived from eq. 20.

 (20)

In which aij could be calculated using eq. 21.

 (21)

In this equation ηij is a heuristic value for assigning position j

to node i. we have determined this value for node i using the

position of preceding nodes. For this goal we calculate partial

cost of the node (place_cost and congest_cost) using placed

nodes till now and use the inverse of it as ηij. The parameter τij

is the tendency of ants to select position j for node i in

pervious algorithm iterations. This parameter called

pheromone trail of the specified edge.

 (22)

After all ants in one generation complete their tours, each ant

deposits following pheromone trail on the edges which has

been visited by it.

In this equation fitnessk is the cost value of the ant k and Tk is

the set of all edges have been visited by it. The pheromone

changing of each edge j will be calculated using eq. 23 in

which m is the total number of ants.

 (23)

 (24)

Finally, the pheromone trail will be updated using eq. 24 for

the next generation use. In this equation ρ is the pheromone

decay coefficient.

6. CO-EVOLUTIONARY APPROACH

FOR SOFT ERROR RATE REDUCTION
Precocity and Stagnation are two major problems in

conventional evolutionary algorithm such as ACO and GA.

These two phenomena arise when the convergence rate of

algorithm becomes slow. To measure these phenomena, we

have defined two criteria in ACO and GA. First of which is a

convergence criterion which has been defined using eq. 25.

 (25)

In this equation we use gradient of mean cost of successive

generations as the convergence definition. L is the number of

previous generations which convergence judged upon them.

The gradient between generation i and i-1will be computed

using eq. 26. When the gradient value decreases the algorithm

tends to converge which maybe resulted in precocity or

stagnation.

 (26)

 (27)

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

47

 (28)

The second criterion is diversity which defined in eq. 27. In

each generation of algorithm for node n (LB and IO) of the

netlist the number of different position which have been used

by all individuals (ants or chromosomes) is defined as dpn

parameter. When this parameter becomes small the diversity

will become smaller.This means that algorithm has centralized

on some region of search space which may lead to local

minima trapping.

The flowchart of coevolutionary optimization has been

indicated in Fig. 6. In the first step m solution for our problem

generated randomly. Then one of the evolutionary method

introduced in previous sections started using the primary

generation (in this paper we first use ACO as our initial

algorithm). After completing an iteration of algorithm the

convergence and diversity criteria would be computed for

current generation. The decision making function which

defined in eq. 28 has be evaluated then based on its value the

current algorithm (1) or the other one (0) is selected for next

iteration. In this equation μ1 and μ2 is adjustable parameter to

determine the importance of convergence and diversity in the

decision and α is the parameter which determines the border

of decision. This parameter is different for various circuits.

The solutions which are produced in iteration by one of the

algorithm will be stored in an optimum register and used as

the current generation in the next iteration. After storing

optimum register, the stopping criteria of algorithm have been

tested and the stop or continue state will be selected upon it.

Fig. 6 Flowchart of Co-Evolutionary algorithm

Fig. 7 Architecture of an LB

Fig. 8 GA_based approach for “train11” benchmark

circuit

Fig. 9 ACO_based approach for “train11” benchmark

circuit

Fig. 10 Comparison three approach for “train11”

benchmark circuit

7. Experimental Results
The FPGA architecture which has been used in this paper

contains simple LBs (one 4 input LUT and a DFF as shown in

Fig. 7). The LBs surrounded by IO blocks and the routing

network is the main parts of the architecture. The routing

network contains wire segments and switch boxes. Wire

segment connects adjacent switch boxes (there are N tracks

between two horizontal or vertical switch boxes). As

mentioned before we use disjoint architecture for a switch

box.

As an experimental result we apply our optimization method

to some MCNC benchmark circuits. The MCNC benchmark

circuits describe in “blif” file format in which the input, LB

and output connection and the logic behavior of each LUT are

presented. We use this file as “netlist” of the circuit. In the

first experiment the reduction of soft error rate investigated

0

200

400

600

800

1000

1 6 11 16 21 26 31 36 41 46

Fi
tn

e
ss

Generation

0

200

400

600

800

1000

1 6 11 16 21 26 31 36 41 46
Fi

tn
e

ss

Generation

0

200

400

600

800

1000

1 6 11 16 21 26 31 36 41 46

GA ACO Coevolution Generate m valid

individual

randomly

Do ACO for one

iteration

Do GA for one

iteration

Update optimum

population

Evaluate Decision

Making Function

Stopping

criteria met?

Finish

Next algorithm is

ACO?

YES

YES

NO

NO

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

48

based on our proposed genetic algorithm method. In Fig. 8 the

average cost of each generation has been shown for train11

benchmark circuit. This cost reduced gradually until algorithm

reaches convergence at 50th generation. In table 1 the average

costs of initial and last generation (which algorithm converged

at it) have been indicated for the MCNC benchmark circuits.

In the second experiment the reduction of soft error rate has

been investigated based on our proposed ACO method. In Fig.

9 the average cost of algorithm iteration has been shown. This

cost reduced gradually until algorithm reaches convergence.

In table 1 the average costs of initial and last algorithm

iteration (which algorithm converged at it) have been

indicated for the MCNC benchmark circuits.

In the third experiment we have used our proposed co-

evolutionary algorithm to reduce soft error rate. In Fig. 10 the

average cost of iterations of algorithm has been compared to

the previous results of GA and ACO based methods. It is seen

that the cost of co-evolutionary method is far lower than the

previous methods. In table 1 the average costs of initial and

last algorithm iteration (which algorithm converged at it) have

been indicated for the MCNC benchmark circuits. In table 2

we indicated the ratio of the mean cost of last generation for

some MCNC benchmark circuits. In the second row this ratio

calculated for co-evolutionary against GA_based method and

in the third row this ratio calculated for co-evolutionary

against ACO_based method. The ratio for GA_based method

starts from 0.66 in C880 and train11 to 0.93 in C17. So for all

tested circuits the cost of co-evolutionary method is less than

the cost of GA_based method so the error rate of co-

evolutionary method is less than GA_based one. The ratio for

ACO_based method starts from 0.4 in C17 and train11 to 0.99

in C880. So for all tested circuits the cost of co-evolutionary

method is less than the cost of ACO_based method so the

error rate of co-evolutionary method is less than GA_based

one.

8. CONCLUSION
In this paper we develop three evolutionary methods to reduce

soft error rate of implemented circuits on FPGA. First two

methods are the adopted version of genetic algorithm and ant

colony optimization and the third one is a co-evolution

between these two methods. Applying these methods for

implementing some MCNC benchmark circuits show that the

cost of co-evolutionary method is smaller than the cost of the

first two methods, so we can reach further reduction in soft

error rate using the co-evolutionary approach. The

experimental results for some MCNC benchmark circuits

show up to 34% improvement compare to genetic algorithm

and up to 60%.

Table 1. Mean Cost of Initial and Last Generation for Three Methods

CIRCUIT train4 train11 s208 lion9 lion Con1 C880 C17 bbtas b9

initCost 379.63 891.41 5757 680.48 346.45 644.75 40912 170.58 718.85 10920

GA Cost 176.82 636.22 5036.9 415.77 156.78 374.01 38250 63.46 461.56 9517.40

ACO Cost 264.20 657.47 4735.77 505.27 266.85 437.59 25500.32 148.16 571.90 8338.45

CoEvl Cost 130.39 420.50 4106.40 301.8 126.29 271 25306 59.18 314.32 8050.30

Table 2. Ratio of Mean Cost of GA_based and ACO_based to Co_Evolutionary Method

CIRCUIT train4 train11 s208 lion9 lion Con1 C880 C17 bbtas b9

GA Ratio 0.74 0.66 0.81 0.73 0.8 0.72 0.66 0.93 0.68 0.84

ACO Ratio 0.49 0.64 0.87 0.6 0.47 0.62 0.99 0.4 0.55 0.96

9. REFERENCES
[1] J. Hogan, R. Weber and B. LaMeres, “Reliability

Analysis of Field-Programmable Gate-Array-Based

Space Computer Architectures,” J. Aerospace info. Syst.,

2017, pp. 121–133.

[2] A. Sari, G. Agiakatsikas andM. Psarakis, “A soft error

vulnerability analysis framework for Xilinx FPGAs,” in

Proc. ACM/SIGDA int.symp. on Field-programmable

gate arrays, 2014, pp. 234–240.

[3] P. McNelles, L. Lu, “Field Programmable Gate Array

Reliability Analysis Using the Dynamic Flowgraph

Methodology,” Nuclear Engineering and Technology,

vol. 48, no. 5, Oct. 2016, pp. 1192-1205.

[4] K. A. Hoque, O. A. Mohammad, and Y. Savaria,

“Formal analysis of SEU mitigation for early

dependability and performability analysis of FPGA-

based space applications,” Journal of Applied Logic, vol.

25, no. 1, Dec. 2017, pp. 47–68.

[5] H.Ebrahimi, M. Saheb-Zamani, H.R. Zarandi,

"Mitigating soft errors in SRAM-based FPGAs by

decoding configuration bits in switch boxes",

Microelectronics Journal, vol. 42, no. 1, January, 2011,

pp. 12-20.

[6] H. Asadi, M.B. Tahoori, B. Mullins, D. Kaeli, K.

Granlund, “Soft error susceptibility analysis of SRAM-

based FPGAs in high-performance information systems”,

IEEE Transaction on Nuclear Science, vol. 54, no. 6,

2007, pp 2714–2726.

[7] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F.

Lombardi, “A stochastic computational approach for

accurate and efficient reliability evaluation,” IEEE

Trans. Comp. vol. 63, no. 6, Jun. 2014.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

49

[8] S. Bodapati, and K. Sridharan, “A transistor-level

probabilisticapproach for reliability analysis of

arithmetic circuits withapplication to emerging

technologies,” IEEE Trans Reliability, vol. 66, no. 2,

June 2017.

[9] C. Chen, and R Xiao, “A fast model for analysis and

improvementof gate-level circuit reliability,” Integration,

the VLSI Jour. vol. 50, pp. 107-115, Jun. 2015.

[10] Bhaduri D, Shukla S. NANOPRISM: “a tool for

evaluating granularity versus reliability trade-offs in

nano architectures”, Proceedings of the 14th ACM Great

Lakes symposium on VLSI, 2004. p. 109–12.

[11] Norman G, Parker D, Kwiatkowska M, Shukla S.

“Evaluating the reliability of NAND multiplexing with

PRISM”. IEEE Trans Comput Aided DesIntegr Circuits

Syst, vol 24, no. 10, pp1629–37, 2005

[12] Clarke E, Fujita M, McGeer P, Yang J, Zhao X,

“Multiterminal binary decision diagrams: an efficient

data structure for matrix representation”. Presented at the

international workshop on logic synthesis (IWLS), Tahoe

City, CA; 23–26, May, 1993.

[13] Akers SB. “Binary decision diagrams”. IEEE Trans

Comput, 1978.

[14] Patel K, Markov IL, Hayes JP. “Evaluating circuit

reliability under probabilistic gate-fault models”.

Proceedings of the international workshop on logic

synthesis (IWLS), 2003. pp. 59–64.

[15] Krishnaswamy S, Viamontes GF, Markov IL, Hayes JP.

“Accurate reliability evaluation and enhancement via

probabilistic transfer matrix”, Proceedings of the design,

automation and test in Europe conference, 2005.

[16] Franco DT, Vasconcelos MC, Naviner L, Naviner JF.

“Reliability analysis of logic circuits based on signal

probability”, 15th IEEE international conference on

electronics, circuits and systems, 2008.

[17] Franco DT, Vasconcelos MC, Naviner L, Naviner JF.

“Reliability of logic circuits under multiple simultaneous

faults”, 51st Midwest symposium on circuits and systems,

2008.

[18] Levin VL. “Probability analysis of combination systems

and their reliability”. EngCybernet1964, pp 893–901.

[19] J. TorrasFlaquer, J.M. Daveau, L. Naviner , P. Roche.

“Fast reliability analysis of combinatorial logic circuits

using conditional probabilities”, Microelectronics

Reliability, vol. 50, no.2, pp. 1215–1218, 2010.

[20] Choudhury MR, Mohanram K. “Accurate and scalable

reliability analysis of logic circuits”. Proceedings of

design automation and test in Europe (DATE), 2007. pp.

1454–9.

[21] Choudhury MR, Mohanram K. “Reliability analysis of

logic circuits”. IEEE Trans Comput Aided Des Integr

Circuits Syst, vol. 28, no. 3, 2009.

[22] S.J. SeyyedMahdavi , K. Mohammadi. “SCRAP:

Sequential circuits reliability analysis program”,

Microelectronics Reliability, vol. 49, no. 3, pp. 924–933,

2009.

[23] Marquardt A, Betz V, Rose J. “Timing-driven placement

for FPGAs”. FPGA 2000: 203-213

[24] Betz V, Rose J. “VPR: A new packing, placement and

routing tool for FPGA research. FPL 1997: 213-222

[25] Baruch, Z., Cret, O., Giurgiu, H., "Genetic Algorithm for

FPGA Placement", in Proceedings of the 12th

International Conference on Control Systems and

Computer Science (CSCS-12), 1999, vol. 2, pp. 121-126.

[26] Solar M, Perez J, Pulido J, Rodriguez M. “Placement and

Routing of Boolean Functions in Constrained FPGAs

using a Distributed Genetic Algorithm and Local

Search”. Parallel and Distributed Processing

Symposium, April 2006

[27] Wang K, Ning X. “Ant colony optimization for

Symmetrical FPGA Placement”. Computer-Aided

Design and Computer Graphics, 2009. CAD/Graphics

'09. 11th IEEE International Conference on, Aug. 2009,

pp. 561 - 563

[28] Wenyao X, Kijun X, Xinmin X. “A novel Placement

Algorithm for Symmetrical FPGA”. ASICON 7th

International Conference on, Oct. 2007, pp. 1281 –

1284.

[29] Venayagamoorhy GK, Gudise VG. “Swarm Intelligence

for Digital Circuit Implementation on Field

Programmable Gate Arrays Platforms”. Evolvable

Hardware, Proceedings. NASA/DoD Conference on,

June 2004, pp. 83 - 86

[30] Gudise VG, Venayagamoorhy GK. “FPGA Placement

and Routing Using Particle Swarm Optimization”. VLSI,

Proceedings. IEEE Computer society Annual Symposium

on , Feb. 2004, pp. 307 - 308

[31] El-Abd M, Hassan H,Kamel MS. “Discrete and

Continuous Particle Swarm Optimization for FPGA

Placement”. Evolutionary Computation, IEEE Congress

on , May 2009 , pp. 706 – 711.

[32] Xilinx Corporation, San Jose, CA, “Virtex 2.5 V field

programmable gate arrays,” Data Sheet DS003-1, 2001.

[33] H. Asadi, M.B. Tahoori, "Analytical techniques for soft

error rate modeling and mitigation of FPGA-based

designs," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 15, no. 12, December

2007.

[34] XC4000 Series Field Programmable Gate Arrays

,DataSheet, www.xilinx.com.

IJCATM : www.ijcaonline.org

