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ABSTRACT 

Soft errors such as Single Event Upset (SEU) have great 

effect on performance degradation of circuits implemented on 

SRAM_based FPGA. The soft error in configuration bits 

which control the logic and routing parts of the circuit, leads 

to permanent faults. In this paper, we have developed a co-

evolutionary method to reduce the effect of soft error on the 

implemented circuit on FPGA. This method is based on 

cooperation of genetic algorithm and ant colony optimization. 

The efficiency of co-evolutionary method has been proved by 

comparison of its results with the proposed genetic algorithm 

and ant colony optimization. The experimental results for 

some MCNC benchmark circuits show up to 34% 

improvement compare to genetic algorithm and up to 60% 

improvement against ant colony optimization. 
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1. INTRODUCTION 
The Field Programmable Gate Array (FPGA) has used in 

wide range of application such as aerospace. There are various 

types of this chip from various vendors. The conventional 

FPGA architecture consists of a two-dimensional (2-D) array 

of identical configurable Logic Blocks (LBs), surrounded by 

programmable Input/output Blocks (IOBs). The LB usually 

consists of a Lookup Table and a DFF. The LBs have been 

connected using a programmable interconnect network, which 

consists of switch matrices and wires. Almost 80% of 

transistors in an FPGA lay inside this programmable routing 

network (programmable switches and buffers). In modern 

FPGAs, more than fourteen layers of metal are used, most of 

them for routing resources [1]. 

Single Event Upset (SEU) is the most important source of soft 

error in aerospace applications. FPGAs are more vulnerable to 

SEUs compared to Application Specific Integrated Circuits 

(ASIC) [2]. In SRAM-based FPGAs, all programmable 

resources (particularly routing switches) are configured by 

SRAM cells; these devices are very susceptible to such errors 

[3]. The energetic particles such as neutrons from cosmic ray 

and alpha particles generating electron–hole pairs as they pass 

through a semiconductor device [4]. If the amount of 

accumulated charges collected at the drain of the off 

MOSFET in an SRAM cell is sufficient an inversion in the 

state of the SRAM cell may occur [4].  

The effects of SEUs in an SRAM-based FPGA may lead to 

the following faults: (1) SEUs may alter the contents of 

SRAM cells used in the implemented circuit. For example, 

SEUs may alter the contents of DFFs used in the circuit or the 

control unit. (2) SEUs may alter the contents of the FPGA’s 

configuration memory, which defines the function of logic 

resources (e.g. lookup tables or LUTs) as well as their 

interconnection (e.g. routing switches) [5]. Type 1 is transient 

because the faulty bit can be overwritten, while type 2 is 

permanent because the configuration bits remain unchanged 

until configuration bit stream re-downloaded into the FPGA 

[6]. 

Reliability is actually as important as other factors such as 

cost, performance, power consumption, area overhead and 

speed in the design of digital circuits [7], [8]. Reliability 

analysis of a logic circuit composed of logic gates, estimates 

the probability of a correct output value when the circuit is 

subject to an error stress such as incorrect input or internal 

gate failure. A common technique for reliability analysis of 

logic circuits is based on Monte Carlo framework which is 

based on fault injection into the nodes of the circuits and 

calculation of circuit output values by applying various input 

vectors [9]. The main problem of this method is its 

inapplicability to large circuit and large number of input 

vectors. References [10-14] have introduced analytical 

methods based on Discrete Time Markov Chains (DTMC) and 

Binary Decision Diagrams (BDDs). The reliability analysis 

based on signal probability can be found in references [15-

19].  

References [20] and [21] have proposed two algorithms for 

reliability analysis of combinational circuits. The first 

algorithm is called observability-based reliability analysis and 

the second is called single-pass reliability analysis. The 

concept of these algorithms is based on the fact that an error at 

the output of any gate is the cumulative consequent of a local 

error component related to that gate, and a propagated error 

component related to the failure of gates in its transitive fan-in 

cone. In [22] a reliability analysis for sequential circuits is 

presented based on second method. 

In this paper we have presented a signal probability method 

for estimating soft error rate of FPGA implemented designs. 

In this method we have considered single fault occurrence in 

LUT cells and programmable routing switches. In addition, 

the problem of re-convergent fan-outs has been solved using 

16 correlation coefficients approach which leads to accurate 

results. 

To reduce soft error rate, we have developed three 

evolutionary based methods. First one is an adopted genetic 

algorithm for this paper problem and second one is adopted 

ant colony optimization and the last one which is the best 

algorithm among these methods is the co-evolutionary 

method. This method uses the advantageous behavior of the 

former two methods and leads to better results. Evolutionary 

methods applied to place and route circuits on FPGA for 

different goals. Simulated annealing is used to optimize 

wirelength and maximum path delay in [23, 24].  Reference 

[25, 26] have presented a GA_based for optimal placement 

and in references [27,28] ACO has been selected as bases for 

optimization.  Particle Swarm Optimization [PSO] is adapted 
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to placement problem in FPGA in references [29-31]. All of 

this method define their fitness function based on bounding 

box which presents a weak estimation of the wirelength cost 

so we have introduced another fitness function based on 

Minimum Steiner Tree (MST) which not only has better 

estimation of wirelength but also as a goal in global routing 

estimates the congestion of wires in routing resources. Our 

proposed methods based on GA and ACO introduce new and 

more appropriate operators and adaptation approach. 

This paper is organized as follows: Soft error rate estimation 

method has been described in section 2. In section 3 the 

fitness function has been introducedfor the proposed 

evolutionary methods. Adopted genetic algorithm and ant 

colony methods described in section 4 and 5 respectively. The 

co-evolutionary method to reduce soft error rate has been 

presented in section 6. Experimental results for some 

benchmark circuits presented in section 7 and conclusion has 

been drawn in section 8. 

2. Soft Error Rate Estimation 
Soft errors such as SEU have great effect on FPGA memory 

elements in aerospace applications. There are two types of 

FPGA’s memory resources; first, user bits (DFFs) in which 

the SEU can alter the content of them directly or passing 

through a combinational path. This type of soft error is 

essentially transient and disappears after writing new data in 

the affected DFF. Configuration bits as the second type of 

memory resources, constitute more than 98% of all memory 

elements in the SRAM_based FPGA [32], [33]. The 

configuration bits configure routing switches and LUT cells as 

combinational logic part of implemented circuit. An SEU that 

upsets a configuration bit has a permanent effect until the 

original configuration bit-stream be re-downloaded into the 

FPGA. 

Single fault in integrated circuits is the most probable fault 

type. A brief view at fault in time (FIT) and mean time to 

failure (MTTF) of SEU in SRAM_based FPGA from XILINX 

corporation declares that considering single fault model for 

faults leads to accurate results in soft error analysis 

(probability of multiple fault occurrence is negligible). Single 

fault can occur in the logic and routing parts of an 

implemented design and we model these faults as follows.  

• LUT Single Fault Model: An LUT is an N×1 RAM (where N 

is a power of two, e.g. a 16×1 RAM) in which an arbitrary 

logic function of up to log2N inputs can be implemented. The 

contents of this N-cell RAM are determined through FPGA’s 

configuration operation. Single Event Upset (SEU) may 

change the contents of these cells temporarily or permanently 

(Fig. 1). Single fault occurrence in any of LUT cells may 

change the logic function implemented on it (e.g. in Fig. 1 the 

faulty cell changes the LUT function from XOR to NAND). 

• Programmable Switch Single Fault Model: The routing 

resources (wire segments and bidirectional switches) occupy a 

large portion of the FPGA chip. Consequently, SEU induced 

faults have occurred in these parts more likely. The most 

vulnerable elements of routing resources are programmable 

switches, which are used to make connection between 

horizontal and vertical wire segments. A programmable 

switch can be either a buffer or a pass transistor (Fig. 2). Each 

programmable switch is controlled by six bits of configuration 

memory. A fault occurrence in these control bits may lead to a 

net getting misrouted or disconnected. 

The programmable switches constitute switch boxes which 

make a flexible structure to routing affair. There are different 

architectures for switch boxes in SRAM_based FPGA of 

various vendors. In this paper we have selected disjoint switch 

box architecture (Fig. 2). Disjoint switch boxes have been 

used in industrial FPGAs [34], in which a wire i of one box’s 

side can connect only to other wires i in the other three sides 

of switch box. If we want to connect any pairs of four wires in 

the four sides of switch box, we should use six programmable 

switches in their cross-point. 

When a single fault occurred in a programmable switch, one 

of the following cases will arise: 

• Zero to one transition in a control bit: in this case an unused 

switch of six switches will be on. This may have no effect on 

the system operation (Fig. 3-a), make a connection between 

two wire with same driver (Fig. 3-b) or make a connection 

between two wires with different drivers (Fig. 3-c). The last 

case leads to an unknown state in the output wires of the 

switch (‘X’ logic value). 

• One to zero transition in a control bit: in this case a switch 

which is on turned off and causes a floating state 

(discontinuity in a path). This disconnection maybe 

interpreted as a logic ‘0’ or logic ‘1’ in the destination of the 

path, so in this case we assign “X” value to the output wire of 

the related switch. 

The signal probability propagation is a common method in 

power analysis and signal activity computation. The reliability 

analysis of logic circuits using signal probability propagation 

method has been discussed in literature extensively. While in 

previous works only two logic levels of 0 and 1 have taken 

into account, in this work, we have considered three standard 

logic values of 0,1 and X beside an additional value of Y. 

An FPGA implemented circuit seats on LBs (LUTs and 

DFFs) connected together by switch boxes (containing 

programmable switches) and wire segments. We describe our 

method to propagate weight values through these parts below.  
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Fig 1. Single Fault in an LUT 
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(a) 

 

(b) 

 

(c) 

Fig 3. Zero to one transition in programmable switch 

• Propagation weight through LUT: For each input of LUT 

there are four distinct weights: w0, w1, wx, wy (logic y is the 

invert of logic x). The output weights of this logic element can 

be computed using the weights of inputs and the its logic 

function. For example, the output weights of an XOR gate 

(with its inputs labeled a and b) can be computed according to 

Eq. 1-4. 
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In our method, the re-convergent fan-outs have been handled 

by defining correlation coefficients between a pair of fan-out 

branches (Cij) and propagating these coefficients to the re-

convergence point. So for each LUT, the correlation 

coefficients considered in the derived formulas. For example, 

for “XOR” gate the modified formulas are as follows: 
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•Propagation Weights through Routing Switches: As 

mentioned before a path between an LUT or IO and another 

LUT contains some wire segments and programmable 

switches. If there is no fault in a path the weight values of the 

source of this path propagate to the destination of the path 

directly.  Occurrence of single fault in the programmable 

switches of this path may cause a floating node in the path or 

a collision with other path (Fig. 3). These types of faults 

change the weight values of the destination as follows: 

0)( ,1)( ,0)1( ,0)0(  YwXwww                  (9)
 

In the combinational circuit analysis, we divide the fault into 

two types: single fault in an LUT cell and single fault in a 

programmable switch.   

Single fault in an LUT cell toggles the logic of that cell; so for 

each cell of the LUT we consider this change and compute w0, 

w1, wX and wY in the output of the circuit. The difference 

between these weights and the corresponding values of fault 

free circuit are used for error calculation:
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ErrLogic(i,t) is the error of primary output i caused by a toggle 

in cell t ,∆w0,1,X,Y(i) is the difference between weights of fault 

free and faulty states and ErrLogic(i) is the total error of output i 

caused by single fault occurrence in the logic part. 

Single fault in programmable switches may cause the signals 

travelling from source LB to sink LB(s) to become faulty.  

The faulty value of switched signal is determined regarding its 

configuration as described in eq. 14. After modifying w0, w1, 

wX and wY in the inputs of sink LBs connected to faulty 

switch, we can propagate these values to the outputs of circuit 

and compute the new values of the outputs. Error caused by 

the faulty switch is calculated as:  


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Where:  
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again ErrRouting(i,t) is the error of primary output i caused by a 

toggle in control bit t , ∆w0,1,X,Y(i)is the difference between 

weights of fault free and faulty states and ErrRouting(i) is the 

total error of output i caused by single fault occurrence in a 

programmable switch. 

3. FITNESS EVALUATION 
To reduce the error rate in implemented circuit, we must 

consider the following factors in the estimation method: First 

factor is the number and types of LUTs which can be deduced 

from synthesizing and mapping of circuit into the FPGA. As a 

rule of thumb if the number of LUT cells for mapping the 
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circuit on FPGA decreases the number of fault sites will be 

decreased and the error rate will be decreased accordingly. 

Because of existence of very good synthesis tools we do not 

develop such tool but we use the “netlist” which generated by 

these tools, to develop more reliable place and route method. 

The second factor which is very effective in reduction of the 

error rate is the approach which is applied to place the LUTs 

of the “netlist” on the FPGA and selection of the 

programmable switches and wire segments used in the routing 

process of such “netlist”. The main idea to reduce the soft 

error rate in this paper is optimizing the place and rout in such 

a way that the number of used programmable switches (most 

vulnerable elements to soft error) reduced as well as the 

congestion of switches and risky configuration of the switches 

be avoided. 

As mentioned before the routing between each node and its 

sinks will be done using wire segments and programmable 

switches. Once the nodes (LUTs) placed on the specific cells 

of FPGA we should construct the necessary routs in way that 

the minimum length will be met and the congestion be 

avoided. These routes are constructed using minimum Steiner 

Tree (MST) for the node and its sinks. The MST for node ni 

has been shown in Fig. 4.  

To derive a straight-forward expression for the fitness 

function, we have defined two terms; first one is the 

placement cost which is the sum of MSTs’ length of all 

implemented circuit’s nets (eq. 16). Second term is related to 

congestion of routes in the implemented circuit. We have 

defined a congestion weight for each programmable switch 

and for each switch used in the MST of the node we increase 

this weight. After routing process, more uniformly distributed 

switch weights can be interpreted as less congestion and more 

reliable implementation. So for second term in the fitness 

function we have used the standard deviation as the 

congestion cost (eq. 18). In this equation NSW is the total 

number of switches used in the circuit implementation.     is 
the mean of weights of used switches and wi is the weight of 

switch number i. after calculation of place_cost and 

congest_cost we can derive fitness of the placed and routed 

circuit using eq. 19. 

4. GA-BASED APPROACH FOR SOFT 

ERROR RATE REDUCTION 
In this section we first introduce our approach to build genetic 

system which is compatible with our problem and then overall 

procedure for optimizing the fitness function will be 

introduced.  

• Chromosome structure: in each generation of genetic 

algorithm, there are N individuals each of them called a 

chromosome. Each chromosome can be assumed as a solution 

for the problem which consists of some genes. Each gene 

describes a part of the complete solution. In our problem we 

define each chromosome as a distinct placement of the netlist 

on the FPGA. So each gene of the chromosome will be the 

position of an LB or IO of the netlist. 
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Fig 4 Minimum Steiner Tree 
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Fig 5 Placement of a circuit with 2 IO and 3 LB 

Common architecture of FPGA is a 2 dimensional array of 

LBs which surrounded by IO blocks, so for each gene there is 

two numbers: first number is the row index of corresponding 

block and the second one is its column index. As an example 

assume the netlist has three LBs and two IOs, one possible 

placement of the netlist on a 3×3 FPGA has been indicated in 

Fig. 5. The corresponding chromosome is as follows: 

Chromn = [(3,0),(2,4),(1,2),(3,2),(1,1)] 

The first element of ith pair is the row index of gene i and the 

second one is the column index of the gene. The first two 

genes correspond to IOs and the last three genes correspond to 

LBs. 

• Genetic Operators: The key concept in the genetic algorithm 

is directed scanning of a big search space to find optimum 

results. This can be done by applying genetic operators to one 

generation of chromosomes in a mating pool and construct 

next generation using natural selection. To build a mating 

pool in the generation n, all chromosomes would be evaluated 

based on fitness function and then based on its score the 

number of each chromosome which go to mating pool is 

determined. Genetic operators will be applied to the 

chromosomes in the mating pool as follows. 

Crossover: the conventional crossover in the genetic 

algorithm is done by swapping a portion of genes among two 

chromosomes and producing two new chromosomes which 

are called offspring. In our chromosome structure this method 

leads to unacceptable offspring. The main drawback is the 

replication of a gene in a chromosome. For example, assume 

that we crossover chromosomes a and b from forth gene to the 

last gene then as you can see in child “2” the third and fifth 

genes are similar which means that third and fifth LBs 

occupied one position so this is not a valid chromosome.  
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Chroma = [(0,1),(3,0),(3,2),(1,1),(2,5),(4,3),(5,5)] 

Chromb = [(6,3),(0,4),(2,5),(3,1),(5,3),(4,4),(5,1)] 

Chromchild1 = [(0,1),(3,0),(3,2),(3,1),(5,3),(4,4),(5,1)] 

Chromchild2 = [(6,3),(0,4),(2,5),(1,1),(2,5),(4,3),(5,5)] 

In our proposed crossover operator, the above problem has 

been handled as follows. First of all, proposed crossover is 

based on single parent and lead to single child. The parent 

chromosome divide into IO and LB parts then for each part 

the number of genes which must be swapped is determined 

(pIO,pLB). In LB (IO) part pLB/2 (pIO/2) pair of genes has been 

selected randomly, then the position of genes in each pair 

swapped. The produced child has an acceptable similarity to 

its parent, moreover there is no problem such as gene replica 

in its structure. 

Mutation: The conventional mutation operator is done by 

changing some genes of a chromosome randomly and 

produces a new chromosome. This operator extends the scope 

of the algorithm search and resolves trapping in local minima. 

Applying this operator for our problem may lead to 

unacceptable child. For example, in the following 

chromosome if we mutate fourth gene (LB position) on 

chromosome randomly the resulted child may have a 

replication (Chromchild1) or an IO position selected for that 

LB (Chromchild2).  

Chromb = [(6,3),(0,4),(2,5),(3,1),(5,3),(4,4),(5,1)] 

Chromchild1 = [(6,3),(0,4),(2,5),(5,1),(5,3),(4,4),(5,1)] 

Chromchild2 = [(6,3),(0,4),(2,5),(3,6),(5,3),(4,4),(5,1)] 

We modify this operator as follows: the chromosome is 

divided into IO and LB parts which will be mutated 

separately. For each part we determine the number of genes 

which must be mutated (pm,IO,pm,LB), then we select randomly 

pm,LB(pm,IO) genes from LB(IO) part randomly. The position of 

selected genes will be substituted with an unused position of 

FPGA. Since the substituted positions are not used in the 

parent genes this modified version of mutation does not suffer 

from gene replica, in addition the scope of search would be 

extended by using unused positions. 

5. ACO-BASED APPROACH FOR SOFT 

ERROR RATE REDUCTION 
Traveler Salesman Problem (TSP) is a conventional 

problem in computer science. The bench of this problem 

constitutes a connected graph in which some cities (nodes) are 

connected by weighted edges.  Each solution for TSP is 

finding a tour which visits each node of graph one time and all 

nodes have been visited. In this section we first introduce TSP 

model of our problem then the optimization method will be 

described. 

To construct the graph, we have defined a node for each 

IO or LB. Starting from first node we must assign it to a 

position on FPGA and then go to the next node. If the node is 

an IO (LB) we can assign it to one of the unused IO (LB) 

positions. This process will be terminated when the last node 

assigned to a specific position. 

The main concern in this algorithm is the selection of the 

position for the node from the unused positions. ACO do this 

based on a probability approach.  When ant k in its tour wants 

to assigns a position to node i there will be Ni
k possible 

positions. The probability of selection position j would be 

derived from eq. 20. 
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In which aij could be calculated using eq. 21. 
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In this equation ηij is a heuristic value for assigning position j 

to node i. we have determined this value for node i using the 

position of preceding nodes. For this goal we calculate partial 

cost of the node (place_cost and congest_cost) using placed 

nodes till now and use the inverse of it as ηij. The parameter τij 

is the tendency of ants to select position j for node i in 

pervious algorithm iterations. This parameter called 

pheromone trail of the specified edge. 
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After all ants in one generation complete their tours, each ant 

deposits following pheromone trail on the edges which has 

been visited by it. 

In this equation fitnessk is the cost value of the ant k and Tk is 

the set of all edges have been visited by it. The pheromone 

changing of each edge j will be calculated using eq. 23 in 

which m is the total number of ants. 
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Finally, the pheromone trail will be updated using eq. 24 for 

the next generation use. In this equation ρ is the pheromone 

decay coefficient. 

6. CO-EVOLUTIONARY APPROACH 

FOR SOFT ERROR RATE REDUCTION 
Precocity and Stagnation are two major problems in 

conventional evolutionary algorithm such as ACO and GA. 

These two phenomena arise when the convergence rate of 

algorithm becomes slow. To measure these phenomena, we 

have defined two criteria in ACO and GA. First of which is a 

convergence criterion which has been defined using eq. 25. 

            
 

 
         
                                (25) 

In this equation we use gradient of mean cost of successive 

generations as the convergence definition. L is the number of 

previous generations which convergence judged upon them. 

The gradient between generation i and i-1will be computed 

using eq. 26. When the gradient value decreases the algorithm 

tends to converge which maybe resulted in precocity or 

stagnation. 
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The second criterion is diversity which defined in eq. 27. In 

each generation of algorithm for node n (LB and IO) of the 

netlist the number of different position which have been used 

by all individuals (ants or chromosomes) is defined as dpn 

parameter. When this parameter becomes small the diversity 

will become smaller.This means that algorithm has centralized 

on some region of search space which may lead to local 

minima trapping. 

The flowchart of coevolutionary optimization has been 

indicated in Fig. 6. In the first step m solution for our problem 

generated randomly. Then one of the evolutionary method 

introduced in previous sections started using the primary 

generation (in this paper we first use ACO as our initial 

algorithm). After completing an iteration of algorithm the 

convergence and diversity criteria would be computed for 

current generation. The decision making function which 

defined in eq. 28 has be evaluated then based on its value the 

current algorithm (1) or the other one (0) is selected for next 

iteration. In this equation μ1 and μ2 is adjustable parameter to 

determine the importance of convergence and diversity in the 

decision and α is the parameter which determines the border 

of decision. This parameter is different for various circuits. 

The solutions which are produced in iteration by one of the 

algorithm will be stored in an optimum register and used as 

the current generation in the next iteration. After storing 

optimum register, the stopping criteria of algorithm have been 

tested and the stop or continue state will be selected upon it. 

Fig. 6 Flowchart of Co-Evolutionary algorithm 

Fig. 7 Architecture of an LB 

 

Fig. 8 GA_based approach for “train11” benchmark 

circuit 

 

Fig. 9 ACO_based approach for “train11” benchmark 

circuit 

 

Fig. 10 Comparison three approach for “train11” 

benchmark circuit 

7. Experimental Results 
The FPGA architecture which has been used in this paper 

contains simple LBs (one 4 input LUT and a DFF as shown in 

Fig. 7). The LBs surrounded by IO blocks and the routing 

network is the main parts of the architecture. The routing 

network contains wire segments and switch boxes. Wire 

segment connects adjacent switch boxes (there are N tracks 

between two horizontal or vertical switch boxes). As 

mentioned before we use disjoint architecture for a switch 

box. 

As an experimental result we apply our optimization method 

to some MCNC benchmark circuits. The MCNC benchmark 

circuits describe in “blif” file format in which the input, LB 

and output connection and the logic behavior of each LUT are 

presented. We use this file as “netlist” of the circuit. In the 

first experiment the reduction of soft error rate investigated 
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based on our proposed genetic algorithm method. In Fig. 8 the 

average cost of each generation has been shown for train11 

benchmark circuit. This cost reduced gradually until algorithm 

reaches convergence at 50th generation. In table 1 the average 

costs of initial and last generation (which algorithm converged 

at it) have been indicated for the MCNC benchmark circuits. 

In the second experiment the reduction of soft error rate has 

been investigated based on our proposed ACO method. In Fig. 

9 the average cost of algorithm iteration has been shown. This 

cost reduced gradually until algorithm reaches convergence. 

In table 1 the average costs of initial and last algorithm 

iteration (which algorithm converged at it) have been 

indicated for the MCNC benchmark circuits.   

In the third experiment we have used our proposed co-

evolutionary algorithm to reduce soft error rate.  In Fig. 10 the 

average cost of iterations of algorithm has been compared to 

the previous results of GA and ACO based methods. It is seen 

that the cost of co-evolutionary method is far lower than the 

previous methods.  In table 1 the average costs of initial and 

last algorithm iteration (which algorithm converged at it) have 

been indicated for the MCNC benchmark circuits. In table 2 

we indicated the ratio of the mean cost of last generation for 

some MCNC benchmark circuits. In the second row this ratio 

calculated for co-evolutionary against GA_based method and 

in the third row this ratio calculated for co-evolutionary 

against ACO_based method. The ratio for GA_based method 

starts from 0.66 in C880 and train11 to 0.93 in C17. So for all 

tested circuits the cost of co-evolutionary method is less than 

the cost of GA_based method so the error rate of co-

evolutionary method is less than GA_based one.  The ratio for 

ACO_based method starts from 0.4 in C17 and train11 to 0.99 

in C880. So for all tested circuits the cost of co-evolutionary 

method is less than the cost of ACO_based method so the 

error rate of co-evolutionary method is less than GA_based 

one. 

8. CONCLUSION 
In this paper we develop three evolutionary methods to reduce 

soft error rate of implemented circuits on FPGA. First two 

methods are the adopted version of genetic algorithm and ant 

colony optimization and the third one is a co-evolution 

between these two methods. Applying these methods for 

implementing some MCNC benchmark circuits show that the 

cost of co-evolutionary method is smaller than the cost of the 

first two methods, so we can reach further reduction in soft 

error rate using the co-evolutionary approach. The 

experimental results for some MCNC benchmark circuits 

show up to 34% improvement compare to genetic algorithm 

and up to 60%. 

Table 1. Mean Cost of Initial and Last Generation for Three Methods 

CIRCUIT train4 train11 s208 lion9 lion Con1 C880 C17 bbtas b9 

initCost 379.63 891.41 5757 680.48 346.45 644.75 40912 170.58 718.85 10920 

GA Cost 176.82 636.22 5036.9 415.77 156.78 374.01 38250 63.46 461.56 9517.40 

ACO Cost 264.20 657.47 4735.77 505.27 266.85 437.59 25500.32 148.16 571.90 8338.45 

CoEvl Cost 130.39 420.50 4106.40 301.8 126.29 271 25306 59.18 314.32 8050.30 

 

Table 2. Ratio of Mean Cost of GA_based and ACO_based to Co_Evolutionary Method 

CIRCUIT train4 train11 s208 lion9 lion Con1 C880 C17 bbtas b9 

GA Ratio 0.74 0.66 0.81 0.73 0.8 0.72 0.66 0.93 0.68 0.84 

ACO Ratio 0.49 0.64 0.87 0.6 0.47 0.62 0.99 0.4 0.55 0.96 
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