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ABSTRACT 

The last decade has seen rapid strides being taken in the field 

of recommender systems, which has been driven by both 

consumer demand for personalization as well as academic 

interest in implementing more accurate and optimized 

versions of recommender systems. In this paper we have 

discussed our implementation of Quaestus, a top-n item-based 

collaborative filtering recommender system with ranked 

matrix factorization (for relevance based sorting) which we 

have tested on an e-commerce dataset. We have used 

sentiment analysis to understand the polarity of reviews and 

thus extracting a score out of it, which in collaboration with 

the product rating (which was available on a scale of 1 to 5) 

has helped build a more robust recommender system. We 

have deployed Quaestus on an e-commerce website that we 

have built. The paper describes the phases of implementation 

and shows the method to deploy our model to the website that 

we have created. The results after experiments have shown 

that our model fares better than other algorithms with which 

we have compared our model.    

General Terms 

Recommender System, Natural Language Processing, E-

Commerce Platform, Web Scraping, Machine Learning, NLP, 
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Keywords 
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1. INTRODUCTION 
Recommender systems have gained prominence as an active 

area of research, especially due to the vast applications that it 

caters to. Researchers have been trying to build systems that 

can suggest products that precisely map consumers’ 

requirements since the mid-1990s, with seminal research 

being undertaken on collaborative filtering [3], [4]. In its basic 

form, a recommender system tries to estimate ratings for 

products that a user has not seen before. Mathematically, it 

can be stated as follows: if 𝐶 is the set of users and 𝑆 is the set 

of all products (also referred to as items), and 𝑢 is the utility 

function that measures the usefulness of item 𝑠 ∈  𝑆 to 

user 𝑐 ∈  𝐶, that is,      𝑢 ∶  𝐶 × 𝑆 → 𝑅, where 𝑅 is an ordered 

set. Here, we aim to choose the item that maximizes the user’s 

utility, which when stated formally translates to the following 

[1], 

𝑠𝑐
′ = arg max 𝑢 𝑐, 𝑠  , 𝑤ℎ𝑒𝑟𝑒 ∀𝑐 ∈ 𝐶, 𝑠′ ∈ 𝑆 𝑎𝑛𝑑 𝑠 ∈ 𝑆  

Primitive systems were replaced by better ones over the 

course of time, owing to both increase in computational 

capability and competition as technology startups used 

recommender systems as their ‘unique selling point’. Today 

most of the business-to-consumer (B2C) firms implement 

their own recommender system to generate user-specific 

content, so as to serve their consumers better, and therefore 

are trying to one-up their competitors. In order to achieve this, 

research has focused on the algorithms and techniques to 

create recommender systems. Initial systems focused on 

content-based recommender systems, where the utility 𝑢(𝑐, 𝑠) 

of item 𝑠 for user 𝑐 is calculated based on the utilities 𝑢 𝑐, 𝑠𝑖  
assigned by user 𝑐 to items 𝑠𝑖  ∈  𝑆 that are ‘similar’ to item 𝑠 

[1]. This similarity is based on the ‘content’ of the product. 

For example, if we take food products, similar products can be 

food products of the same brand, having similar ingredients, 

etc. The inherent disadvantage of this method was that it was 

necessary to have a detailed metadata of the product so as to 

build the recommender system. Item-based collaborative 

filtering [6] was later used to overcome this disadvantage of 

content-based recommender systems. Here, the 

recommendations were based on item-item similarity 

measures (e.g. item-item correlation or cosine similarity 

between items). Relationship between items is identified for 

the computation of the most similar items, which is done 

using the set of items that the users have rated and/or 

reviewed. This was a key breakthrough in the age of e-

commerce since purchase history of various users was 

available and the number of products whose information was 

available online proliferated.  

The organization of this paper is as follows. Section 1 is the 

introduction to the paper. Section 2 describes the relevant 

information of the terminologies that are essential to 

understanding the paper. In section 3, we describe the system 

in its entirety and also its architecture. Section 4 is a 

discussion about the methodology and the key algorithms that 

we have used and is followed by the description of the 

datasets we used for our research in section 5. Section 6 

showcases our results and section 7 concludes the paper. 

Section 8 is devoted to adding some of our ideas for future 

work in this space. In sections 9 and 10 we show our gratitude 

to the people who have made it possible for us to have 

implemented this research of ours.             

2. LITERATURE SURVEY 
Amazon [7] was one of the first major corporations to make 

use of item-based collaborative filtering, and other companies 

selling various products and providing various services soon 

followed suit. The Netflix Prize Competition conducted in 

2006 by the company to improve their collaborative filtering 

showed that matrix factorization methods make the 

collaborative filtering based recommender systems more 

robust, accurate and help to make the process of learning 

easier in systems. 

Matrix factorization methods essentially taps into the latent 

factors involved in analyzing a two-dimensional set (e.g. user-

item set). Such latent factors sometime give us a lot more 

information with respect to the interaction between users and 
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the items they rate. Vectors of such latent factors are tested for 

correspondence, where a high value of correspondence would 

lead to a recommendation of the item to the particular user. 

These factors analyze both implicit and explicit user feedback. 

Implicit feedback refers to implicit user behavior, such as 

browsing patterns, time spent browsing a particular product, 

clickstream data, etc. Websites typically collect such 

information using personalization services and third-party 

HTTP requests [8]. Explicit user feedback is more readily 

available and is of a high quality, examples being ratings and 

reviews by users. Matrices formed using explicit user 

feedback is typically sparse, since every user can experience 

and comment upon only a limited number of products or 

services. The function of matrix factorization models is to 

map the users and the items into a latent factor space and 

model their interactions as inner products in the space [2]. 

Fig 1: Architecture of the proposed system 

The increasing trend of using machine learning methods in 

natural language processing, increasing availability of datasets 

of larger size and the betterment of processing power of 

devices lead to the rise of opinion mining and sentiment 

analysis since the last decade and a half. Sentiment analysis 

originally referred to the understanding of polarity in users’ 

review. But in recent times, it has grown to encompass the 

computational treatment of opinion, sentiment used in the text 

and subjectivity and context of the same [9]. This application 

of sentiment analysis goes hand in hand with the requirements 

of recommender system, where it becomes a necessity to 

understand contextually what a user is trying to convey from a 

text which can be as short as a word to as long as a page or 

even more. Thus sentiment analysis has been employed a lot, 

of late in recommender systems and users are prompted to 

review products and services as much as possible. 

3. ARCHITECTURE OF THE 

PROPOSED SYSTEM 
The proposed system aims at developing the complete 

recommender model and creating an interface suitable for web 

browsing where users can log in and view products and find 

the recommendations generated for them. There are four 

phases of the architecture, viz. database creation phase, 

sentiment analysis phase, recommendation generation phase 

and user interface that displays the end results of the system. 

Each of these phases are explained in more detail along with 

the architectural representation (see Fig 1) below.  

3.1 Database Creation Phase 
In this phase, the database on which the subsequent phases 

will operate is created. This database can be created 

completely or modified by preprocessing existing open source 

datasets. Since creating complete datasets is a cumbersome 

task, modification of open source datasets from credible 

repositories is preferred for research purposes. The end result 

of this phase is a structured or unstructured database that can 

be used in the further steps (through different methods of 

querying the database). The key constituents of the database 

are user and product identification numbers, the rating given 

by the user to the product (represented in the form of a 

number) and the review provided by the user (represented as 

text). 

3.2 Sentiment Analysis Phase 
In this phase, sentiment analysis is performed on the review 

so as to understand its polarity and create a mapping of the 

emotion of the user behind every review. This falls under the 

umbrella of opinion-oriented information extraction [9], 

where the key takeaway is not to represent the product, but to 

represent what the user feels about the product. For our 

system, sentiment analysis being performed on the review 

makes the system more robust, since ratings don’t fully 

capture the story. A 3-star rating can have a review that 

corresponds to a 3.5-star rating, while sometimes, it may 

correspond to a 2.5-star rating 

This restriction imposed upon ratings due to the scale of the 

rating (5-star in our case) is offset by reviews since the 

mechanism of reviews gives the users a platform to convey 

their thoughts about the product. This step takes as input the 

review from the database and results in the generation of 

feature sets that help in detecting if the review is positive or 

negative (details of our implementation is specified in the 

following section). 

3.3 Recommendation Generation Phase 
This is the key phase of our system, where the 

recommendation of the 10 best products for every user takes 

place. The output of the previous phase (sentiment analysis 
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phase) is taken as the input of this phase, with a slight 

modification that the score generated for the recommender 

algorithm takes into account a combination of the review and 

the rating provided by the user. Here, we use top-n item-based 

collaborative filtering with matrix factorization enabled with 

relevance based sorting for developing more accurate 

predictions in an optimized fashion (n being 10 here). 

Moreover, this is a standard procedure used to compute 

recommendations from datasets that have a transaction list, 

since in such datasets, product information and the 

information about user-product interaction is more readily 

available, and thus item-based collaborative filtering and 

matrix factorization (to factorize the sparse matrices of ratings 

and reviews of products by users) blend well with such 

problems. The recommendations are ranked in descending 

order and a predefined number of recommendations (n) are 

provided to the user.  

3.4 User Interface 
A website has been created that acts as an e-commerce 

platform, where our recommender system has been deployed. 

The backend has been developed in Python 3 [10] since it 

provided us with rapid prototyping and the best available 

resources to optimize our implementation according to our 

needs. Specifically, we have used the Flask microframework 

[11], which is implemented in Python and is based on 

Werkzeug [12] and Jinja2 [13]. The user interface handles the 

functionalities in the website which includes but not limited to 

user login, signup, browsing of products, rating and reviewing 

them. 

4. METHODOLOGY AND 

ALGORITHMS USED 
This section talks about the specific implementation of the 

system along with a discussion about the algorithms used for 

the same.  

4.1 Bigram Extraction and Preparation of 

Feature Set 
In the sentiment analysis phase, we use a supervised learning 

approach [14]. In this approach, we first train our model on 

previously labeled reviews and then label new reviews based 

on the patterns extracted by the model from the training 

dataset. Several methods are specified in [14], from which we 

implement the sentiment analysis model using the Naïve 

Bayes Classifier. Firstly, we select 𝑛 reviews each from the 

set of positive and negative reviews from an open source 

dataset and remove the punctuations (except the apostrophe, 

since it features in many words and removing it might change 

the meaning of the word). Then we stem the words to their 

root form using the Porter stemmer [16] so that all the 

variations of a particular word (with respect to plurality, tense, 

etc.) are transformed to be considered as the root word itself. 

For example: ‘recommend’, ‘recommendation’, 

‘recommends’, ‘recommended’ and ‘recommendations’ are all 

converted to the root word ‘recommend’. Bigrams from the 

context of natural language processing are consecutive units 

of words that are used in texts. According to [15], bigrams are 

particularly helpful in sentiment analysis as they have the 

ability to take into account modified verbs, nouns, etc. This 

makes it more logical to generate bigrams from the modified 

review text. As explained, it helps us classify modified forms 

of words (especially adjectives) such as ‘not good’ or ‘not 

bad’. Not all bigrams are equally useful in providing 

information for sentiment analysis and it also becomes 

computationally expensive to use all the bigrams in the text. 

Thus we take into account the first 20000 most frequently 

occurring unique bigrams. The next step is to prepare feature 

sets since they help in discovering the frequently occurring 

bigrams in a review and also the label of the review. This 

helps our algorithm to decide if the bigram should be 

associated with a positive review or a negative one. For a 

previously unseen review, the algorithm checks whether the 

bigrams in it are more frequently associated with positive or 

negative reviews and labels the new review accordingly [17]. 

The feature set we use for our problem consists of a dictionary 

where the key represents the bigram and the value represents 

whether the bigram is a part of 20000 most frequently 

occurring unique bigrams.  

4.2 Top-N Item-based Collaborative 

Filtering with Ranking Matrix 

Factorization 
Top-N recommender systems are a modified form of 

recommender systems where the top n recommendations are 

provided (n is defined as 10 here). Item-based collaborative 

filtering aims at recommending items that are similar to the 

items that the user has rated previously. As stated above, this 

serves a better purpose than other collaborative filtering 

algorithms when product details are more readily available 

than user details (user-based collaborative filtering) and/or the 

constituents of the product (content-based collaborative 

filtering). Matrix factorization tries to make this process of 

finding similar items more accurate as well as more 

computationally efficient. It is a form of unsupervised 

learning since it aims at learning the latent factors in the 

relationship between users and items. This reduces the 

dimension of matrices to incorporate the most important 

factors, thus making it easier to compute the products to be 

recommended. We use a slightly modified version of matrix 

factorization, since we need to recommend multiple products 

to a user, and thus we need a metric to understand the best 

recommendations of the lot. Thus Quaestus uses a ranking 

method along with matrix factorization so as to sort the 

recommendations according to relevance and generate a score 

for every user-item pair and recommends items with the best 

score (in descending order). Let 𝒊 represent a user and 𝒋 
represent an item, then the score can be given as: 

𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 = µ + 𝑤𝑖 + 𝑤𝑗 + 𝑎𝑇𝑥𝑖 + 𝑏𝑇𝑦𝑗 + 𝑢𝑖
𝑇𝑣𝑗 , 

Where µ represents a global bias term, 𝑤𝑖  represents the 

weight term for user 𝑖, 𝑤𝑗  represents the weight term for 

item 𝑗, 𝑥𝑖  and 𝑦𝑗  represent the user and item side features 

respectively and 𝑎 and 𝑏 represent the weight vectors of the 

side features. The latent factors are represented by 𝑢𝑖  and 𝑣𝑗 . 

The minimization objective of the algorithm can be 

represented mathematically as: 

min
𝑤 ,𝑎 ,𝑏 ,𝑉,𝑈

1

 𝐷 
  𝐿 𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 , 𝑟𝑖𝑗  

(𝑖 ,𝑗 ,𝑟𝑖𝑗 )∈𝐷

+ 𝜆1  𝑤 2
2 +  𝑎 2

2 +  𝑏 2
2 

+ 𝜆2  𝑈 2
2 +  𝑉 2

2 

+
𝜆𝑟𝑟

𝑐𝑜𝑛𝑠𝑡 ∗  𝑢 
 𝐿 𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 , 𝑣𝑢𝑟  

(𝑖 ,𝑗 )∈𝑢

, 

Where, 𝐷 represents the observation dataset, 𝑟𝑖𝑗  represents the 

rating given by user 𝑖 to item 𝑗, 𝑈 = (𝑢1, 𝑢2, … ) represents the 

user’s latent factors and 𝑉 = (𝑣1, 𝑣2, … ) represents the item’s 

latent factors, 𝐿 𝑥, 𝑦  represents the loss function and is given 

as  𝑥 − 𝑦 2, 𝜆1 represents the linear regularization parameter 

and 𝜆2 represents the normal regularization parameter, 𝜆𝑟𝑟  
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represents the ranking regularization term necessary for 

ordering the recommendations, 𝑣𝑢𝑟  represents the rating value 

for unobserved items, and 𝑢 represents the sample of pairs of 

unobserved users and items.   

5. PREPARATION OF DATA AND 

TRAINING OF ALGORITHMS 
This section talks about the datasets used for our research, the 

description of the same, the preprocessing of the data and the 

training of the algorithms mentioned in section 4 using the 

data.  

5.1 Initial Product Dataset 
As mentioned in 3.1, it becomes a tedious task to create full-

fledged datasets from scratch for research purpose. To avoid 

this, our research uses the open source Amazon product 

dataset by Julian McAuley from University of California, San 

Diego [19].  

5.1.1 Data Description 
The McAuley dataset consists of over 160,000 rows of 

product details with 9 attributes, consisting of various product 

details, user rating, user review and identifiers of the row, like 

time of review. It was observed that some essential data like 

product name, product description (what the product actually 

is), image of the product, product price etc. was missing and 

this was necessary for the purpose of building our system in 

its entirety. Thus we had to perform Web Scraping from 

amazon.com using Python 3 [10] and some of its associated 

libraries such as lxml [20] and requests [21]. 

5.1.2 Data Preprocessing 
The dataset so extracted in its raw form was not perfectly 

usable, since it contained noisy data from different encodings 

and it was necessary to clean the data so as to make it fit to be 

used as inputs to the various algorithms. Tuples with empty 

rows were removed, feature scaling was done, and attributes 

with high correlation were also removed so as to reduce 

redundancy and bias in predictions. The necessary features 

were incorporated in tables and the final product database was 

created.  

5.2 Sentiment Analysis Data and Training 

the Model 
The sentiment analysis module implemented in Quaestus uses 

a supervised learning approach. For this we needed a labeled 

dataset that contains reviews and their sentiments. We used 

the Amazon Reviews for Sentiment Analysis from Kaggle 

[22] for our purpose.    

5.2.1 Data Description 
The dataset consists of a few million Amazon customer 

reviews (input text) and their ratings in stars (labels) for 

training the sentiment analysis model. 

5.2.2 Training the sentiment analysis model  
The dataset was split randomly into train, test and validation 

sets in proportions of 70, 15, and 15 respectively. The 

validation set was used for hyperparameter optimization while 

the train set was used for training the model and test set was 

used to check the accuracy of the model. The data was 

shuffled before performing the split to avoid any skews that 

might emerge in the resulting split sets. The hyperparameter 

alpha (which is used for smoothing, to prevent any zero 

probabilities) was tuned using 𝑘-fold cross-validation (𝑘 taken 

as 5) by performing iterations with various values of alpha (as 

shown in Table 1) and the optimum value was used to train 

our model.  

Table 1. Values of hyperparameter alpha and their 

corresponding accuracies 

Sr. 

No 
Alpha Value Accuracy 

1 0.01 73.587 

2 0.1 75.027 

3 0.5 76.373 

4 1 77.0 

5 5 77.507 

6 6 77.613 

7 7 77.587 

8 7.5 77.587 

9 7.75 77.573 

10 7.875 77.627 

11 8 77.64 

12 8.125 77.64 

13 8.25 77.64 

14 8.375 77.6 

15 8.5 77.613 

16 8.75 77.587 

17 9 77.587 

18 10 77.547 

19 15 77.253 

20 20 76.947 

21 25 76.707 

22 50 76.013 

23 75 75.733 

24 100 75.573 

25 150 75.053 

26 500 73.427 

27 1000 71.013 

 

As evident from the table above, 8.25 is chosen as the 

optimum value of alpha to train the model. The test set 

accuracy of the model was around 81%. The model outputs a 

score of the review by deciding if it was positive or negative.  

5.3  Training the Recommender System 
The module that generates recommendations uses item-based 

collaborative filtering along with ranking matrix factorization 

for optimum accuracy and computational efficiency. The 

model outputs a predefined number of recommendations for a 

user and ranks them (sorts them) based on relevance. The 

module has been developed using Graphlab Create [18].     
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5.3.1 Data Description 
The data for the recommender system is from the original 

database that gives the user and product identification 

attributes and the ratings given by the user for a particular 

product that is available in the dataset. The sentiment analysis 

module provides the score for every review. The review score 

and the rating is operated on to get the cumulative score that is 

used in the dataset that the recommender engine would use for 

its predictions. 

5.3.2 Training the recommender system model 
The dataset was shuffled randomly and then split into train 

and test sets using 𝑘-fold cross-validation (𝑘 taken as 5), so as 

to eliminate any bias in the dataset. The model was trained 

using Stochastic Gradient Descent (SGD) with some of the 

maneuvers suggested in [23] for improving the rate of 

convergence. The optimization is parallelized using multiple 

threads at once and this procedure being inherently random, 

the same parameters can give rise to slightly different models. 

So as to optimize hyperparameters, we use a random search 

space (set of parameters and their ranges), since choosing 

such random spaces can lead to better results within a fraction 

of computational time and budget as compared to manual 

search or grid search [24]. The results of those tests are used 

to finalize the values of the hyperparameters for training the 

model on the train set that is split by 𝑘-fold cross-validation. 

This trained model is used to generate the recommendations 

and the model is stored in the host machine.  

6. RESULTS 
The results were evaluated after plotting them on Jupyter 

Notebook [26]. The tables below (Table 2 and Table 3) show 

the precision and recall values respectively against the cutoff 

values (from 1 to 10) for the four models being compared, viz. 

Top-N Item-Based Collaborative Filtering with Ranking 

Factorization Recommender (hyperparameters optimized, 

denoted as M1), Ranking Factorization Recommender (with 

hyperparameters that have not been optimized, denoted as 

Model_1), Factorization Recommender (the conventional 

version, denoted as Model_2), Item-Based Collaborative 

Filtering (the conventional version, denoted as Model_3) 

Table 2. Precision values of the algorithms at different 

values of Cutoff (up to 10) 

Cut

off 

M1 

Precision 

Model_1 

Precision 

Model_2 

Precision 

Model_3 

Precision 

1 0.0205078  0.0263672 0.0332031 0.0195313 

2 0.0224609   0.0234375     0.0253906 0.0205078 

3 0.0221354 0.0205078 0.0224609 0.0195313 

4 0.0231934 0.0214844 0.0224609 
  

0.0205078 

5 0.0230469   0.0210938 0.0216797 0.0214844 

6 0.0236003 0.0216471 0.0214844 0.0221354 

7 0.0241350 0.0217634 0.0216239 0.0230190 

8 0.0244141 0.0209961 0.0211182 0.0231934 

9 0.0246311 0.020833 0.0220269 0.0226780 

10 0.025 0.0203125     0.0216797 0.0223633 

    

Table 3. Recall values of the algorithms at different values 

of Cutoff (up to 10) 
Cut

off 

M1 

Recall 

Model_1 

Recall 

Model_2 

Recall 

Model_3 

Recall 

1 0.0001271 0.0001701 0.0002103 0.0001286 

2 0.0002806 0.0003016 0.0003227 0.0002667 

3 0.0004198 0.0003936 0.0004261 0.0003790 

4 0.0005885 0.0005471 0.0005660 0.0005300 

5 0.0007356 0.0006699 0.0006839 0.0006971 

6 0.0009023 0.0008261 0.0008136 0.0008613 

7 0.0010790 0.0009698 0.0009561 0.0010364 

8 0.0012511 0.0010755 0.0010648 0.0011891 

9 0.0014197 0.0012011 0.0012540 0.0013073 

10 0.0016031 0.0013027 0.0013733 0.0014344 

 

As seen from the table, our model (M1) gives the best result 

in both precision and recall. M1 along with Model_3 are the 

only models where the precision increases with cut-off, thus 

showing the optimization of our matrix for top-n 

recommendations. The figures below (Fig 2, Fig 3, Fig 4, and 

Fig 5) show the precision and recall values of the algorithms 

across cutoff values (from 1 to 46) while performing 𝑘-fold 

cross-validation. They reiterate the fact that our model (m1) 

performs the best for our dataset. Some of the observations 

that we note here are as follows: The evaluation metrics 

(precision, recall, F1-score) are highly dependent on the 

dataset and any inaccuracies may also be caused by the 

dataset in question. Another important fact to be noted is that 

it is necessary to consider other top-n recommender systems 

so as to evaluate our results, and we have verified that they 

are comparable to similar algorithms [25], [27], [28] for top-n 

recommender systems. Our model (m1) has an increase in the 

precision as well as recall till a cutoff value of 10, but beyond 

the value of 10, the precision decreases as the recall increases, 

and even then, the precision as well as recall values are among 

the best in three out of the four folds in 𝑘-folds. Finally the 

most important observation to make here is that it is important 

to choose the correct evaluation metrics for recommender 

system (or more specifically, recommender systems that 

provide top-n recommendations) as metrics such as RMSE 

(root mean squared error) and MAE (mean absolute error) 

may not be the correct metrics, as they are generally regarded 

as regression metrics, i.e., metrics suitable to handle 

regression problems while the problem in our hand is a 

recommendation problem. Precision, recall and F1 score are 

still better than RMSE and MAE for such problems, but even 

they cannot be regarded as the best there is, as online 

evaluation metrics such as session abandonment rate, click-

through rate, etc. are more popular for industrial use. Our 

model may not be the best in the above mentioned regression 

metrics, but it has proven to be so when it comes to precision 

and recall for our dataset.     
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Fig 2: Precision recall values for different models across 

cutoff values (from 1 to 46) for fold 1 

 

Fig 3: Precision recall values for different models across 

cutoff values (from 1 to 46) for fold 2 

 

 

Fig 4: Precision recall values for different models across 

cutoff values (from 1 to 46) for fold 3 

 

 

Fig 5: Precision recall values for different models across 

cutoff values (from 1 to 46) for fold 4 

We can see here that the precision value for our model (m1) is 

around 0.025 and the recall value is about 0.0016 for a cutoff 

value of 10 and beyond a cutoff value of 10, the precision 

decreases gradually while recall increases. 

7. CONCLUSION 
The proposed system successfully recommends the top 10 

recommendations for every user. The model that we proposed, 

viz. top-n item-based collaborative filtering recommender 

system with ranking matrix factorization has given us the best 

results for our dataset, and is comparable with other 

algorithms that have been proposed by academia [25], [27], 

and [28]. The optimizations that we have performed have 
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markedly improved the performance as compared to the 

model that was not optimized.  

8. FUTURE SCOPE 
Even though the performance of the model was on expected 

lines, it didn’t fare very well in some metrics such as RMSE. 

This inaccuracy may be the result of the specific dataset and it 

remains to be seen if they can be overcome for other datasets. 

Also, a model that can recommend a variety of products 

across domains can also be thought of, which would 

necessitate the model to learn the various factors that lead to 

the purchase of a variety of products, since the consumer can 

buy products for very different reasons. Such an ensemble 

dataset may need rigorous train, test and hyperparameter 

optimization for performing competitively. 
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