
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

34

QUAESTUS – A Top-N Recommender System with

Ranking Matrix Factorization

Ajay Venkitaraman

K. J. Somaiya College of
Engineering, Vidyavihar

Mumbai, India

Sahil Mankad

K. J. Somaiya College of
Engineering, Vidyavihar

Mumbai, India

Umang Barbhaya

K. J. Somaiya College of
Engineering, Vidyavihar

Mumbai, India

ABSTRACT

The last decade has seen rapid strides being taken in the field

of recommender systems, which has been driven by both

consumer demand for personalization as well as academic

interest in implementing more accurate and optimized

versions of recommender systems. In this paper we have

discussed our implementation of Quaestus, a top-n item-based

collaborative filtering recommender system with ranked

matrix factorization (for relevance based sorting) which we

have tested on an e-commerce dataset. We have used

sentiment analysis to understand the polarity of reviews and

thus extracting a score out of it, which in collaboration with

the product rating (which was available on a scale of 1 to 5)

has helped build a more robust recommender system. We

have deployed Quaestus on an e-commerce website that we

have built. The paper describes the phases of implementation

and shows the method to deploy our model to the website that

we have created. The results after experiments have shown

that our model fares better than other algorithms with which

we have compared our model.

General Terms

Recommender System, Natural Language Processing, E-

Commerce Platform, Web Scraping, Machine Learning, NLP,

ML.

Keywords

Recommender System, Matrix Factorization, Sentiment

Analysis, Bigram Extraction, K-fold Cross-validation,

Ranking Based Factorization.

1. INTRODUCTION
Recommender systems have gained prominence as an active

area of research, especially due to the vast applications that it

caters to. Researchers have been trying to build systems that

can suggest products that precisely map consumers’

requirements since the mid-1990s, with seminal research

being undertaken on collaborative filtering [3], [4]. In its basic

form, a recommender system tries to estimate ratings for

products that a user has not seen before. Mathematically, it

can be stated as follows: if 𝐶 is the set of users and 𝑆 is the set

of all products (also referred to as items), and 𝑢 is the utility

function that measures the usefulness of item 𝑠 ∈ 𝑆 to

user 𝑐 ∈ 𝐶, that is, 𝑢 ∶ 𝐶 × 𝑆 → 𝑅, where 𝑅 is an ordered

set. Here, we aim to choose the item that maximizes the user’s

utility, which when stated formally translates to the following

[1],

𝑠𝑐
′ = arg max 𝑢 𝑐, 𝑠 , 𝑤ℎ𝑒𝑟𝑒 ∀𝑐 ∈ 𝐶, 𝑠′ ∈ 𝑆 𝑎𝑛𝑑 𝑠 ∈ 𝑆

Primitive systems were replaced by better ones over the

course of time, owing to both increase in computational

capability and competition as technology startups used

recommender systems as their ‘unique selling point’. Today

most of the business-to-consumer (B2C) firms implement

their own recommender system to generate user-specific

content, so as to serve their consumers better, and therefore

are trying to one-up their competitors. In order to achieve this,

research has focused on the algorithms and techniques to

create recommender systems. Initial systems focused on

content-based recommender systems, where the utility 𝑢(𝑐, 𝑠)

of item 𝑠 for user 𝑐 is calculated based on the utilities 𝑢 𝑐, 𝑠𝑖
assigned by user 𝑐 to items 𝑠𝑖 ∈ 𝑆 that are ‘similar’ to item 𝑠

[1]. This similarity is based on the ‘content’ of the product.

For example, if we take food products, similar products can be

food products of the same brand, having similar ingredients,

etc. The inherent disadvantage of this method was that it was

necessary to have a detailed metadata of the product so as to

build the recommender system. Item-based collaborative

filtering [6] was later used to overcome this disadvantage of

content-based recommender systems. Here, the

recommendations were based on item-item similarity

measures (e.g. item-item correlation or cosine similarity

between items). Relationship between items is identified for

the computation of the most similar items, which is done

using the set of items that the users have rated and/or

reviewed. This was a key breakthrough in the age of e-

commerce since purchase history of various users was

available and the number of products whose information was

available online proliferated.

The organization of this paper is as follows. Section 1 is the

introduction to the paper. Section 2 describes the relevant

information of the terminologies that are essential to

understanding the paper. In section 3, we describe the system

in its entirety and also its architecture. Section 4 is a

discussion about the methodology and the key algorithms that

we have used and is followed by the description of the

datasets we used for our research in section 5. Section 6

showcases our results and section 7 concludes the paper.

Section 8 is devoted to adding some of our ideas for future

work in this space. In sections 9 and 10 we show our gratitude

to the people who have made it possible for us to have

implemented this research of ours.

2. LITERATURE SURVEY
Amazon [7] was one of the first major corporations to make

use of item-based collaborative filtering, and other companies

selling various products and providing various services soon

followed suit. The Netflix Prize Competition conducted in

2006 by the company to improve their collaborative filtering

showed that matrix factorization methods make the

collaborative filtering based recommender systems more

robust, accurate and help to make the process of learning

easier in systems.

Matrix factorization methods essentially taps into the latent

factors involved in analyzing a two-dimensional set (e.g. user-

item set). Such latent factors sometime give us a lot more

information with respect to the interaction between users and

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

35

the items they rate. Vectors of such latent factors are tested for

correspondence, where a high value of correspondence would

lead to a recommendation of the item to the particular user.

These factors analyze both implicit and explicit user feedback.

Implicit feedback refers to implicit user behavior, such as

browsing patterns, time spent browsing a particular product,

clickstream data, etc. Websites typically collect such

information using personalization services and third-party

HTTP requests [8]. Explicit user feedback is more readily

available and is of a high quality, examples being ratings and

reviews by users. Matrices formed using explicit user

feedback is typically sparse, since every user can experience

and comment upon only a limited number of products or

services. The function of matrix factorization models is to

map the users and the items into a latent factor space and

model their interactions as inner products in the space [2].

Fig 1: Architecture of the proposed system

The increasing trend of using machine learning methods in

natural language processing, increasing availability of datasets

of larger size and the betterment of processing power of

devices lead to the rise of opinion mining and sentiment

analysis since the last decade and a half. Sentiment analysis

originally referred to the understanding of polarity in users’

review. But in recent times, it has grown to encompass the

computational treatment of opinion, sentiment used in the text

and subjectivity and context of the same [9]. This application

of sentiment analysis goes hand in hand with the requirements

of recommender system, where it becomes a necessity to

understand contextually what a user is trying to convey from a

text which can be as short as a word to as long as a page or

even more. Thus sentiment analysis has been employed a lot,

of late in recommender systems and users are prompted to

review products and services as much as possible.

3. ARCHITECTURE OF THE

PROPOSED SYSTEM
The proposed system aims at developing the complete

recommender model and creating an interface suitable for web

browsing where users can log in and view products and find

the recommendations generated for them. There are four

phases of the architecture, viz. database creation phase,

sentiment analysis phase, recommendation generation phase

and user interface that displays the end results of the system.

Each of these phases are explained in more detail along with

the architectural representation (see Fig 1) below.

3.1 Database Creation Phase
In this phase, the database on which the subsequent phases

will operate is created. This database can be created

completely or modified by preprocessing existing open source

datasets. Since creating complete datasets is a cumbersome

task, modification of open source datasets from credible

repositories is preferred for research purposes. The end result

of this phase is a structured or unstructured database that can

be used in the further steps (through different methods of

querying the database). The key constituents of the database

are user and product identification numbers, the rating given

by the user to the product (represented in the form of a

number) and the review provided by the user (represented as

text).

3.2 Sentiment Analysis Phase
In this phase, sentiment analysis is performed on the review

so as to understand its polarity and create a mapping of the

emotion of the user behind every review. This falls under the

umbrella of opinion-oriented information extraction [9],

where the key takeaway is not to represent the product, but to

represent what the user feels about the product. For our

system, sentiment analysis being performed on the review

makes the system more robust, since ratings don’t fully

capture the story. A 3-star rating can have a review that

corresponds to a 3.5-star rating, while sometimes, it may

correspond to a 2.5-star rating

This restriction imposed upon ratings due to the scale of the

rating (5-star in our case) is offset by reviews since the

mechanism of reviews gives the users a platform to convey

their thoughts about the product. This step takes as input the

review from the database and results in the generation of

feature sets that help in detecting if the review is positive or

negative (details of our implementation is specified in the

following section).

3.3 Recommendation Generation Phase
This is the key phase of our system, where the

recommendation of the 10 best products for every user takes

place. The output of the previous phase (sentiment analysis

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

36

phase) is taken as the input of this phase, with a slight

modification that the score generated for the recommender

algorithm takes into account a combination of the review and

the rating provided by the user. Here, we use top-n item-based

collaborative filtering with matrix factorization enabled with

relevance based sorting for developing more accurate

predictions in an optimized fashion (n being 10 here).

Moreover, this is a standard procedure used to compute

recommendations from datasets that have a transaction list,

since in such datasets, product information and the

information about user-product interaction is more readily

available, and thus item-based collaborative filtering and

matrix factorization (to factorize the sparse matrices of ratings

and reviews of products by users) blend well with such

problems. The recommendations are ranked in descending

order and a predefined number of recommendations (n) are

provided to the user.

3.4 User Interface
A website has been created that acts as an e-commerce

platform, where our recommender system has been deployed.

The backend has been developed in Python 3 [10] since it

provided us with rapid prototyping and the best available

resources to optimize our implementation according to our

needs. Specifically, we have used the Flask microframework

[11], which is implemented in Python and is based on

Werkzeug [12] and Jinja2 [13]. The user interface handles the

functionalities in the website which includes but not limited to

user login, signup, browsing of products, rating and reviewing

them.

4. METHODOLOGY AND

ALGORITHMS USED
This section talks about the specific implementation of the

system along with a discussion about the algorithms used for

the same.

4.1 Bigram Extraction and Preparation of

Feature Set
In the sentiment analysis phase, we use a supervised learning

approach [14]. In this approach, we first train our model on

previously labeled reviews and then label new reviews based

on the patterns extracted by the model from the training

dataset. Several methods are specified in [14], from which we

implement the sentiment analysis model using the Naïve

Bayes Classifier. Firstly, we select 𝑛 reviews each from the

set of positive and negative reviews from an open source

dataset and remove the punctuations (except the apostrophe,

since it features in many words and removing it might change

the meaning of the word). Then we stem the words to their

root form using the Porter stemmer [16] so that all the

variations of a particular word (with respect to plurality, tense,

etc.) are transformed to be considered as the root word itself.

For example: ‘recommend’, ‘recommendation’,

‘recommends’, ‘recommended’ and ‘recommendations’ are all

converted to the root word ‘recommend’. Bigrams from the

context of natural language processing are consecutive units

of words that are used in texts. According to [15], bigrams are

particularly helpful in sentiment analysis as they have the

ability to take into account modified verbs, nouns, etc. This

makes it more logical to generate bigrams from the modified

review text. As explained, it helps us classify modified forms

of words (especially adjectives) such as ‘not good’ or ‘not

bad’. Not all bigrams are equally useful in providing

information for sentiment analysis and it also becomes

computationally expensive to use all the bigrams in the text.

Thus we take into account the first 20000 most frequently

occurring unique bigrams. The next step is to prepare feature

sets since they help in discovering the frequently occurring

bigrams in a review and also the label of the review. This

helps our algorithm to decide if the bigram should be

associated with a positive review or a negative one. For a

previously unseen review, the algorithm checks whether the

bigrams in it are more frequently associated with positive or

negative reviews and labels the new review accordingly [17].

The feature set we use for our problem consists of a dictionary

where the key represents the bigram and the value represents

whether the bigram is a part of 20000 most frequently

occurring unique bigrams.

4.2 Top-N Item-based Collaborative

Filtering with Ranking Matrix

Factorization
Top-N recommender systems are a modified form of

recommender systems where the top n recommendations are

provided (n is defined as 10 here). Item-based collaborative

filtering aims at recommending items that are similar to the

items that the user has rated previously. As stated above, this

serves a better purpose than other collaborative filtering

algorithms when product details are more readily available

than user details (user-based collaborative filtering) and/or the

constituents of the product (content-based collaborative

filtering). Matrix factorization tries to make this process of

finding similar items more accurate as well as more

computationally efficient. It is a form of unsupervised

learning since it aims at learning the latent factors in the

relationship between users and items. This reduces the

dimension of matrices to incorporate the most important

factors, thus making it easier to compute the products to be

recommended. We use a slightly modified version of matrix

factorization, since we need to recommend multiple products

to a user, and thus we need a metric to understand the best

recommendations of the lot. Thus Quaestus uses a ranking

method along with matrix factorization so as to sort the

recommendations according to relevance and generate a score

for every user-item pair and recommends items with the best

score (in descending order). Let 𝒊 represent a user and 𝒋
represent an item, then the score can be given as:

𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 = µ + 𝑤𝑖 + 𝑤𝑗 + 𝑎𝑇𝑥𝑖 + 𝑏𝑇𝑦𝑗 + 𝑢𝑖
𝑇𝑣𝑗 ,

Where µ represents a global bias term, 𝑤𝑖 represents the

weight term for user 𝑖, 𝑤𝑗 represents the weight term for

item 𝑗, 𝑥𝑖 and 𝑦𝑗 represent the user and item side features

respectively and 𝑎 and 𝑏 represent the weight vectors of the

side features. The latent factors are represented by 𝑢𝑖 and 𝑣𝑗 .

The minimization objective of the algorithm can be

represented mathematically as:

min
𝑤 ,𝑎 ,𝑏 ,𝑉,𝑈

1

 𝐷
 𝐿 𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 , 𝑟𝑖𝑗

(𝑖 ,𝑗 ,𝑟𝑖𝑗)∈𝐷

+ 𝜆1 𝑤 2
2 + 𝑎 2

2 + 𝑏 2
2

+ 𝜆2 𝑈 2
2 + 𝑉 2

2

+
𝜆𝑟𝑟

𝑐𝑜𝑛𝑠𝑡 ∗ 𝑢
 𝐿 𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 , 𝑣𝑢𝑟

(𝑖 ,𝑗)∈𝑢

,

Where, 𝐷 represents the observation dataset, 𝑟𝑖𝑗 represents the

rating given by user 𝑖 to item 𝑗, 𝑈 = (𝑢1, 𝑢2, …) represents the

user’s latent factors and 𝑉 = (𝑣1, 𝑣2, …) represents the item’s

latent factors, 𝐿 𝑥, 𝑦 represents the loss function and is given

as 𝑥 − 𝑦 2, 𝜆1 represents the linear regularization parameter

and 𝜆2 represents the normal regularization parameter, 𝜆𝑟𝑟

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

37

represents the ranking regularization term necessary for

ordering the recommendations, 𝑣𝑢𝑟 represents the rating value

for unobserved items, and 𝑢 represents the sample of pairs of

unobserved users and items.

5. PREPARATION OF DATA AND

TRAINING OF ALGORITHMS
This section talks about the datasets used for our research, the

description of the same, the preprocessing of the data and the

training of the algorithms mentioned in section 4 using the

data.

5.1 Initial Product Dataset
As mentioned in 3.1, it becomes a tedious task to create full-

fledged datasets from scratch for research purpose. To avoid

this, our research uses the open source Amazon product

dataset by Julian McAuley from University of California, San

Diego [19].

5.1.1 Data Description
The McAuley dataset consists of over 160,000 rows of

product details with 9 attributes, consisting of various product

details, user rating, user review and identifiers of the row, like

time of review. It was observed that some essential data like

product name, product description (what the product actually

is), image of the product, product price etc. was missing and

this was necessary for the purpose of building our system in

its entirety. Thus we had to perform Web Scraping from

amazon.com using Python 3 [10] and some of its associated

libraries such as lxml [20] and requests [21].

5.1.2 Data Preprocessing
The dataset so extracted in its raw form was not perfectly

usable, since it contained noisy data from different encodings

and it was necessary to clean the data so as to make it fit to be

used as inputs to the various algorithms. Tuples with empty

rows were removed, feature scaling was done, and attributes

with high correlation were also removed so as to reduce

redundancy and bias in predictions. The necessary features

were incorporated in tables and the final product database was

created.

5.2 Sentiment Analysis Data and Training

the Model
The sentiment analysis module implemented in Quaestus uses

a supervised learning approach. For this we needed a labeled

dataset that contains reviews and their sentiments. We used

the Amazon Reviews for Sentiment Analysis from Kaggle

[22] for our purpose.

5.2.1 Data Description
The dataset consists of a few million Amazon customer

reviews (input text) and their ratings in stars (labels) for

training the sentiment analysis model.

5.2.2 Training the sentiment analysis model
The dataset was split randomly into train, test and validation

sets in proportions of 70, 15, and 15 respectively. The

validation set was used for hyperparameter optimization while

the train set was used for training the model and test set was

used to check the accuracy of the model. The data was

shuffled before performing the split to avoid any skews that

might emerge in the resulting split sets. The hyperparameter

alpha (which is used for smoothing, to prevent any zero

probabilities) was tuned using 𝑘-fold cross-validation (𝑘 taken

as 5) by performing iterations with various values of alpha (as

shown in Table 1) and the optimum value was used to train

our model.

Table 1. Values of hyperparameter alpha and their

corresponding accuracies

Sr.

No
Alpha Value Accuracy

1 0.01 73.587

2 0.1 75.027

3 0.5 76.373

4 1 77.0

5 5 77.507

6 6 77.613

7 7 77.587

8 7.5 77.587

9 7.75 77.573

10 7.875 77.627

11 8 77.64

12 8.125 77.64

13 8.25 77.64

14 8.375 77.6

15 8.5 77.613

16 8.75 77.587

17 9 77.587

18 10 77.547

19 15 77.253

20 20 76.947

21 25 76.707

22 50 76.013

23 75 75.733

24 100 75.573

25 150 75.053

26 500 73.427

27 1000 71.013

As evident from the table above, 8.25 is chosen as the

optimum value of alpha to train the model. The test set

accuracy of the model was around 81%. The model outputs a

score of the review by deciding if it was positive or negative.

5.3 Training the Recommender System
The module that generates recommendations uses item-based

collaborative filtering along with ranking matrix factorization

for optimum accuracy and computational efficiency. The

model outputs a predefined number of recommendations for a

user and ranks them (sorts them) based on relevance. The

module has been developed using Graphlab Create [18].

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

38

5.3.1 Data Description
The data for the recommender system is from the original

database that gives the user and product identification

attributes and the ratings given by the user for a particular

product that is available in the dataset. The sentiment analysis

module provides the score for every review. The review score

and the rating is operated on to get the cumulative score that is

used in the dataset that the recommender engine would use for

its predictions.

5.3.2 Training the recommender system model
The dataset was shuffled randomly and then split into train

and test sets using 𝑘-fold cross-validation (𝑘 taken as 5), so as

to eliminate any bias in the dataset. The model was trained

using Stochastic Gradient Descent (SGD) with some of the

maneuvers suggested in [23] for improving the rate of

convergence. The optimization is parallelized using multiple

threads at once and this procedure being inherently random,

the same parameters can give rise to slightly different models.

So as to optimize hyperparameters, we use a random search

space (set of parameters and their ranges), since choosing

such random spaces can lead to better results within a fraction

of computational time and budget as compared to manual

search or grid search [24]. The results of those tests are used

to finalize the values of the hyperparameters for training the

model on the train set that is split by 𝑘-fold cross-validation.

This trained model is used to generate the recommendations

and the model is stored in the host machine.

6. RESULTS
The results were evaluated after plotting them on Jupyter

Notebook [26]. The tables below (Table 2 and Table 3) show

the precision and recall values respectively against the cutoff

values (from 1 to 10) for the four models being compared, viz.

Top-N Item-Based Collaborative Filtering with Ranking

Factorization Recommender (hyperparameters optimized,

denoted as M1), Ranking Factorization Recommender (with

hyperparameters that have not been optimized, denoted as

Model_1), Factorization Recommender (the conventional

version, denoted as Model_2), Item-Based Collaborative

Filtering (the conventional version, denoted as Model_3)

Table 2. Precision values of the algorithms at different

values of Cutoff (up to 10)

Cut

off

M1

Precision

Model_1

Precision

Model_2

Precision

Model_3

Precision

1 0.0205078 0.0263672 0.0332031 0.0195313

2 0.0224609 0.0234375 0.0253906 0.0205078

3 0.0221354 0.0205078 0.0224609 0.0195313

4 0.0231934 0.0214844 0.0224609

0.0205078

5 0.0230469 0.0210938 0.0216797 0.0214844

6 0.0236003 0.0216471 0.0214844 0.0221354

7 0.0241350 0.0217634 0.0216239 0.0230190

8 0.0244141 0.0209961 0.0211182 0.0231934

9 0.0246311 0.020833 0.0220269 0.0226780

10 0.025 0.0203125 0.0216797 0.0223633

Table 3. Recall values of the algorithms at different values

of Cutoff (up to 10)
Cut

off

M1

Recall

Model_1

Recall

Model_2

Recall

Model_3

Recall

1 0.0001271 0.0001701 0.0002103 0.0001286

2 0.0002806 0.0003016 0.0003227 0.0002667

3 0.0004198 0.0003936 0.0004261 0.0003790

4 0.0005885 0.0005471 0.0005660 0.0005300

5 0.0007356 0.0006699 0.0006839 0.0006971

6 0.0009023 0.0008261 0.0008136 0.0008613

7 0.0010790 0.0009698 0.0009561 0.0010364

8 0.0012511 0.0010755 0.0010648 0.0011891

9 0.0014197 0.0012011 0.0012540 0.0013073

10 0.0016031 0.0013027 0.0013733 0.0014344

As seen from the table, our model (M1) gives the best result

in both precision and recall. M1 along with Model_3 are the

only models where the precision increases with cut-off, thus

showing the optimization of our matrix for top-n

recommendations. The figures below (Fig 2, Fig 3, Fig 4, and

Fig 5) show the precision and recall values of the algorithms

across cutoff values (from 1 to 46) while performing 𝑘-fold

cross-validation. They reiterate the fact that our model (m1)

performs the best for our dataset. Some of the observations

that we note here are as follows: The evaluation metrics

(precision, recall, F1-score) are highly dependent on the

dataset and any inaccuracies may also be caused by the

dataset in question. Another important fact to be noted is that

it is necessary to consider other top-n recommender systems

so as to evaluate our results, and we have verified that they

are comparable to similar algorithms [25], [27], [28] for top-n

recommender systems. Our model (m1) has an increase in the

precision as well as recall till a cutoff value of 10, but beyond

the value of 10, the precision decreases as the recall increases,

and even then, the precision as well as recall values are among

the best in three out of the four folds in 𝑘-folds. Finally the

most important observation to make here is that it is important

to choose the correct evaluation metrics for recommender

system (or more specifically, recommender systems that

provide top-n recommendations) as metrics such as RMSE

(root mean squared error) and MAE (mean absolute error)

may not be the correct metrics, as they are generally regarded

as regression metrics, i.e., metrics suitable to handle

regression problems while the problem in our hand is a

recommendation problem. Precision, recall and F1 score are

still better than RMSE and MAE for such problems, but even

they cannot be regarded as the best there is, as online

evaluation metrics such as session abandonment rate, click-

through rate, etc. are more popular for industrial use. Our

model may not be the best in the above mentioned regression

metrics, but it has proven to be so when it comes to precision

and recall for our dataset.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

39

Fig 2: Precision recall values for different models across

cutoff values (from 1 to 46) for fold 1

Fig 3: Precision recall values for different models across

cutoff values (from 1 to 46) for fold 2

Fig 4: Precision recall values for different models across

cutoff values (from 1 to 46) for fold 3

Fig 5: Precision recall values for different models across

cutoff values (from 1 to 46) for fold 4

We can see here that the precision value for our model (m1) is

around 0.025 and the recall value is about 0.0016 for a cutoff

value of 10 and beyond a cutoff value of 10, the precision

decreases gradually while recall increases.

7. CONCLUSION
The proposed system successfully recommends the top 10

recommendations for every user. The model that we proposed,

viz. top-n item-based collaborative filtering recommender

system with ranking matrix factorization has given us the best

results for our dataset, and is comparable with other

algorithms that have been proposed by academia [25], [27],

and [28]. The optimizations that we have performed have

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

40

markedly improved the performance as compared to the

model that was not optimized.

8. FUTURE SCOPE
Even though the performance of the model was on expected

lines, it didn’t fare very well in some metrics such as RMSE.

This inaccuracy may be the result of the specific dataset and it

remains to be seen if they can be overcome for other datasets.

Also, a model that can recommend a variety of products

across domains can also be thought of, which would

necessitate the model to learn the various factors that lead to

the purchase of a variety of products, since the consumer can

buy products for very different reasons. Such an ensemble

dataset may need rigorous train, test and hyperparameter

optimization for performing competitively.

9. ACKNOWLEDGMENT
We are immensely thankful to our mentor Prof Rajni

Pamnani, Assistant Professor at K. J. Somaiya College of

Engineering for being supportive throughout the duration of

our research and providing us with her immense expertise on

the subject. We are also thankful to the researchers and

academia across the globe, who with their research, have been

a source of motivation and direction to our research.

10. REFERENCES
[1] B Adomavicius, Gediminas, and Alexander Tuzhilin.

"Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions."

IEEE transactions on knowledge and data engineering

17.6 (2005): 734-749.

[2] Koren, Yehuda, Robert Bell, and Chris Volinsky.

"Matrix factorization techniques for recommender

systems." Computer 42.8 (2009).

[3] Konstan, Joseph A., et al. "GroupLens: applying

collaborative filtering to Usenet news." Communications

of the ACM 40.3 (1997): 77-87.

[4] Resnick, Paul, et al. "GroupLens: an open architecture

for collaborative filtering of netnews." Proceedings of the

1994 ACM conference on Computer supported

cooperative work. ACM, 1994.

[5] Girase, Sheetal, and Debajyoti Mukhopadhyay. "Role of

Matrix Factorization Model in Collaborative Filtering

Algorithm: A Survey." arXiv preprint arXiv:1503.07475

(2015).

[6] Sarwar, Badrul, et al. "Item-based collaborative filtering

recommendation algorithms." Proceedings of the 10th

international conference on World Wide Web. ACM,

2001.

[7] Linden, Greg, Brent Smith, and Jeremy York. "Amazon.

com recommendations: Item-to-item collaborative

filtering." IEEE Internet computing 7.1 (2003): 76-80.

[8] Puglisi, Silvia, David Rebollo-Monedero, and Jordi

Forné. "On Web user tracking: How third-party http

requests track users' browsing patterns for personalised

advertising." Ad Hoc Networking Workshop (Med-Hoc-

Net), 2016 Mediterranean. IEEE, 2016.

[9] Pang, Bo, and Lillian Lee. "Opinion mining and

sentiment analysis." Foundations and Trends® in

Information Retrieval 2.1–2 (2008): 1-135.

[10] Van Rossum, Guido, and Fred L. Drake. The python

language reference manual. Network Theory Ltd., 2011.

[11] Ronacher, Armin. "Welcome—flask (a python

microframework)." URL: http://flask. pocoo. org/(visited

on 02/02/2015) (2010): 38.

[12] Ronacher, A. "Werkzeug: The Python WSGI Utility

Library." Release 0.9 (2011).

[13] Ronacher, Armin. "Jinja2 (the python template engine)."

(2014).

[14] Neethu, M. S., and R. Rajasree. "Sentiment analysis in

twitter using machine learning techniques." Computing,

Communications and Networking Technologies

(ICCCNT), 2013 Fourth International Conference on.

IEEE, 2013.

[15] Wang, Sida, and Christopher D. Manning. "Baselines

and bigrams: Simple, good sentiment and topic

classification." Proceedings of the 50th Annual Meeting

of the Association for Computational Linguistics: Short

Papers-Volume 2. Association for Computational

Linguistics, 2012.

[16] Porter, Martin F. "Snowball: A language for stemming

algorithms." (2001).

[17] Bird, Steven, Ewan Klein, and Edward Loper. Natural

language processing with Python: analyzing text with the

natural language toolkit. "O'Reilly Media, Inc.", 2009.

[18] Dato-Team. (2013, October 15). GraphLab Create™.

(C. Guestrin, Ed.) Seattle, Washington, USA: Dato, Inc.

[19] McAuley, Julian, et al. "Image-based recommendations

on styles and substitutes." Proceedings of the 38th

International ACM SIGIR Conference on Research and

Development in Information Retrieval. ACM, 2015.

[20] Behnel, Stefan, Martijn Faassen, and Ian Bicking. "lxml:

XML and HTML with Python." (2005).

[21] Reitz, Kenneth. "Requests: Http for humans." Online:

http://docs. pythonrequests. org/.(24 December, 2012.)

(2014).

[22] Bittlingmayer, Adam Mathias, Amazon Reviews for

Sentiment Analysis, Kaggle Inc., Web,

https://www.kaggle.com/bittlingmayer/amazonreviews/d

ata (2017).

[23] Bottou, Léon. "Stochastic gradient descent tricks."

Neural networks: Tricks of the trade. Springer, Berlin,

Heidelberg, 2012. 421-436.

[24] Bergstra, James, and Yoshua Bengio. "Random search

for hyper-parameter optimization." Journal of Machine

Learning Research 13.Feb (2012): 281-305.

[25] Fazeli, Soude, et al. "User-centric Evaluation of

Recommender Systems in Social Learning Platforms:

Accuracy is Just the Tip of the Iceberg." IEEE

Transactions on Learning Technologies (2017).

[26] Perez, Fernando, and Brian E. Granger. "Project Jupyter:

Computational narratives as the engine of collaborative

data science." Retrieved September 11 (2015): 207.

[27] Ye, Mao, et al. "Exploiting geographical influence for

collaborative point-of-interest recommendation."

Proceedings of the 34th international ACM SIGIR

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.43, May 2018

41

conference on Research and development in Information

Retrieval. ACM, 2011.

[28] Domingues, Marcos A., Alípio Mário Jorge, and Carlos

Soares. "Using contextual information as virtual items on

top-n recommender systems." arXiv preprint

arXiv:1111.2948 (2011).

[29]

IJCATM : www.ijcaonline.org

