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ABSTRACT 

This article presents an approach to acquire the solution of 

multi-objective linear fractional programming problems 

where the parameters are assumed to be triangular fuzzy 

numbers. This is done through a fuzzy mathematical 

programming perspective based on an approximation method 

using Taylor series. The problem is first formulated into an 

equivalent deterministic form using the concept of α-cuts. The 

associated membership function of each objective function is 

formulated using the individual optimal solution and is then 

converted into a linear function by applying the first order 

Taylor series. The multi-objective linear fractional 

programming problem then gets reduced to a linear 

programming problem by applying fuzzy mathematical 

programming. To illustrate the computational simplicity and 

applicability of the proposed approach, a numerical example 

is solved and the results are compared with existing methods. 

General Terms 

Multi-objective fuzzy linear fractional programming 

Keywords 

Multi-objective linear fractional programming problem, fuzzy 

mathematical programming, Taylor series, triangular fuzzy 

number, α-cut 

1. INTRODUCTION 
Fractional programming refers to a special class of nonlinear 

optimization problem where the objective function is in the 

form of a ratio of two functions. The importance of this type 

of problems arises as there are many cases in business, 

finance, engineering etc. where we need to optimize the ratio 

of two quantities such as raw materials/output, cost/profit, 

nurse/patient, stock/sales etc. So fractional programming 

becomes an indispensable tool in such situations and this 

leads to researches to find suitable methods to solve them. 

linear fractional programming is a particular case of fractional 

programming, where the objective function is a ratio of two 

linear functions. Various methods have been formulated by 

many researchers like Isbell and Marlow [1], Charnes and 

Cooper [2], Dinklebach [3], Schaible [4], Gilmore and 

Gomory [5] and Swarup [6] to solve fractional programming 

and linear fractional programming. 

In practical life, there often arises situation where we need to 

optimize more than one objective function. This leads to the 

extension of linear fractional programming to Multi-Objective 

Linear Fractional Programming (MOLFP) problem. Several 

methodologies have been proposed in the literature to solve 

MOLFP problems. A goal programming approach was 

proposed by Kornbluth and Steur [7] to solve MOLFP 

problem. Nykowski and Zolkiewski [8] developed a 

compromise approach for MOLFP problems.  Dey and 

Pramanik [9] developed a goal programming approach to 

solve MOLFP problems in crisp environment by employing 

first order Taylor series approximation.   

Introduction of fuzzy set theory [10] to deal optimization 

problem provides a new insight to solve MOLFP problems.  

Several methods such as linguistic approach [11] based on the 

work of Zadeh [12-14], fuzzy goal programming approach 

[15], an interactive fuzzy satisfying method [16], a fuzzy set 

theoretic method [17] were proposed to solve MOLFP 

problems. Chakraborty and Gupta [18] presented MOLFP 

problems by suitably transforming it to multi-objective linear 

programming problems through the transformation of 

variables. Guzel and Shivari [19] discussed the solution of 

MOLFP problems using Taylor series. Toksari [20] employed 

a Taylor series based fuzzy goal programming technique to 

solve MOLFP problems. 

Pramanik and Roy [21, 22] presented fuzzy goal 

programming using negative deviational variables only in 

their formulation. Pramanik and Roy [23, 24] presented a 

fuzzy goal programming model with fuzzy parameters.  

Pramanik [25, 26] presented bi-level programming problem 

and multi-level programming problem with fuzzy parameters 

respectively using fuzzy goal programming approach. 

Pramanik et al. [27, 28] studied bi-level multi-objective 

programming problem and decentralized bi-level multi-

objective programming problem with fuzzy parameters using 

fuzzy goal programming approach. 

Pramanik and Dey [29] presented an MOLFP using fuzzy 

goal programming model. Pramanik and Dey [30] also 

presented a priority based fuzzy goal programming approach 

to solve MOLFP problems.  Pramanik and Dey [31, 32, 33, 

34] employed first order Taylor polynomial series to solve bi-

level linear fractional programming problem, bi-level MOLFP 

problems, linear fractional bi-level decentralized 

programming problem, multilevel fractional programming 

problem, respectively.  Dey et al. [35] developed the 

Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) approach to solve bi-level MOLFP 

problem.  
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Banerjee and Pramanik [36] developed goal programming 

approach to chance constrained MOLFP problem based on 

Taylor’s series approximation. Pramanik & Dey [37] 

presented multi-objective linear plus linear fractional 

programming problem based on Taylor series approximation. 

Pramanik et al. [38] developed multi-level multi-objective 

linear plus linear fractional programming problem based on 

FGP approach. Banerjee and Pramanik [39] presented chance 

constrained multi-objective linear plus linear fractional 

programming problem based on Taylor’s series 

approximation. Pramanik et al. [40] formulated chance 

constrained linear plus linear fractional bi-level programming 

problem.  Several studies have been made using Taylor’s 

polynomial series approximation to deal quadratic 

programming problem [41, 42], quadratic bi-level 

programming problem [43], quadratic bi-level multi-objective 

programming problem [44] and Chance constrained quadratic 

bi-level programming problem [45]. 

In real life situations, the parameters involved in a MOLFP 

problem such as the coefficients of the objective function and 

the constraints, may not be precisely known as various factors 

are associated with them. Error may occur while collecting 

data or data may not be precisely known. Fluctuating market 

conditions may produce difficulties in representing the 

parameters as fixed numbers. To deal with such kind of 

imprecise situation, MOLFP problems with fuzzy parameters 

were introduced which are referred to as Multi Objective 

Fuzzy Linear Fractional Programming (MOFLFP) problem. 

Yano and Sakawa [46] presented an interactive fuzzy decision 

making technique using bisection method and Simplex 

method to deal with MOFLFP problem. Sakawa et al. [47] 

developed a Pareto optimality for MOFLFP problems. Payan 

and Noora [48] used α-cuts to convert the fuzzy parameters 

into interval parameters and the MOFLFP problem was finally 

reduced to a linear programming problem. Fuzzy Linear 

Fractional Programming (FLFP) containing all the variables 

and parameters as triangular fuzzy number has been solved by 

Pop and Stancu Minasian[49]. Ganesan and Veeramani [50] 

developed an approach to solve FLFP problem involving 

symmetric trapezoidal fuzzy numbers. Safaei [51] employed 

the decomposition method to solve FLFP problems. 

Reviewing the literature of existing methods, it is observed 

that Taylor series based fuzzy mathematical programming 

approach to solve MOFLFP problems with fuzzy parameters 

is yet to appear. 

Objective of the present study: 

(i) To develop a robust, efficient and computationally 

simple technique to solve MOFLFP problem with 

fuzzy parameters using fuzzy mathematical 

programming and Taylor series approximation. 

In this article, the MOFLFP problem is converted into a 

MOLFP problem by using α-cuts to convert the fuzzy 

numbers into crisp numbers. The membership function 

associated with each objective function is converted into a 

linear function using first order Taylor series. Fuzzy 

mathematical programming technique is then employed to 

convert the MOLFP problem into a linear programming 

problem. The proposed approach is explained through a 

numerical example 

The remaining article is as follows. Section 2 describes the 

preliminaries of fuzzy sets and fuzzy numbers. Section 3 deals 

with the formulation of MOFLFP problem.  Section 4 devotes 

to present the proposed approach to solve MOFLFP problem 

with fuzzy parameters. Section 5 illustrates a numerical 

example to clarify of the method. Finally the paper ends with 

the concluding remarks in Section 6. 

2. PRELIMINARIES 
This section presents a brief outline of the basic notions of 

fuzzy sets, fuzzy numbers and different operations related to 

them. 

Definition 1: Let T represent a universal set. Then, a fuzzy set 

[52] P  in T is a set of ordered pairs 

{( , ( )) | } 
P

P t t t T
 

where : [0,1]
P

T  denotes  the membership function and is 

a way of expressing the degree to which t P .  

Definition 2: P  is said to be a normal fuzzy set [52] if the 

condition ( ) 1
P

t holds for at least one t T . 

Definition 3: Support of a fuzzy set [52] P  is defined to be

{ | ( ) 0} 
P

t T t . 

Definition 4: The α-cut or α-level set of fuzzy set [52] P , 

denoted  by P is a crisp set defined as{ : ( ) }
P

t t  .  

Definition 5: P  is referred to be a convex fuzzy set [52] if 

and only if the condition 

1 2 1 2( (1 ) ) min( ( ), ( ))  
P P P

t t t t      is satisfied by ( )
P

t  

for all 1 2, t t T  and for all [0,1]  where min stands for the 

minimum operator. 

Definition 6: If R denotes the real line and P  is fuzzy subset 

of R, then P  is called a fuzzy number [52] if 

(i) P is convex and normal. 

(ii) P  possesses bounded support. 

Definition 7: P denotes a triangular fuzzy number [52] if its 

representation is in the form  

P = 1 2 3( , , )p p p  with  1 2 3 p p p  and the membership 

function of P is constructed as follows: 

1
1 2

2 1

3
2 3

3 2

,

( ) ,

0 ,


  


 

  






P

t p
p t p

p p

p t
t p t p

p p

otherwise

  

The α-cut for a triangular fuzzy number P = 
2 31( , , )p p p , is 

represented as  

2 1 3 3 21[ , ] [ ( ) , ( ) ]     L UP P P p p p p p p     [0,1] 

and L UP P  .

 A unique and complete representation of a fuzzy number can 

be made by its α-cuts [53]. Hence α-cuts have a great 

significance in the study of fuzzy numbers. α- cuts being 

closed intervals of real numbers, it enables us to define 

arithmetic operations on them and hence on the corresponding 

fuzzy number.  Let [ , ] L UP P P   and [ , ] L UR R R   are 

considered as two arbitrary fuzzy numbers, then we can define 
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the arithmetic operations [54] on P and R as follows:

 (i) Addition: ( ) [ , ]   L L U UP R P R P R      

(ii) Scalar Multiplication: ( ) [ , ] L UkP kP kP   if  0k  , 

and   ( ) [ , ] U LkP kP kP   , if  0k  . 

(iii) Multiplication: 

( . ) [min( , , , ),

max( , , , )]

 L L L U U L U U

L L L U U L U U

P R P R P R P R P R

P R P R P R P R

        

       
 

(iv) Division: 

min , , , ,

max , , ,

  
  

    
   

    
 

   

L L U U

L U L U

L L U U

L U L U

P P P P

R R R RP

R P P P P

R R R R

   

   

    

   

 

Definition 8: Let 
1 2 3( , , )P p p p be a triangular fuzzy 

number. P is termed non-negative if  1 0p  and let ( )F R

be defined as the collection of all such non-negative fuzzy 

numbers. P is termed as a non-zero positive if 1 0p  . 

Assume that ( )F R be the collection of all such non-zero 

positive fuzzy numbers. 

3. MULTI OBJECTIVE FUZZY LINEAR 

FRACTIONAL PROGRAMMING 

PROBLEM 
Multi-Objective Fuzzy Linear Fractional Programming 

(MOFLFP) problem can be formulated as: 

1

1

( )
( ) , 1,2,...,

( )







  







s

kj j k

j k
k s

k
kj j k

j

t c
N t

Max Z t k l
D t

t d





                          (1)  

subject to  

1

| , 0


  
  
    

    

s
s

ij j i
j

t R a t p t                                               (2)  

Equation (2) can be explicitly expressed as

1

1

1 1 2

1

2 2

1

, 1,2,..., ,

, 1, 2,..., ,
(3)

, 1, 2,...,

0, 1,2,....,s








  




    


   



  







s

ij j i

j

s

ij j i

j

s

ij j i

j

j

a t p i r

a t p i r r r

a t p i r r r

t j

and  , , , , ,kj kj k k ij ic d a p   are fuzzy numbers and ( ) 0kD t , 

for all t, and k = 1, 2, …, l;  i =1, 2,…., r ,  j = 1,2,…., s.  

4. FUZZY GOAL APPROACH FOR 

MOFLFP PROBLEM  
The linear fractional programming problem (1) can be 

transformed into a crisp linear fractional programming 

problem by taking the corresponding α-cut in place of each 

triangular fuzzy number, and then choosing a particular value 

of α. The conditions ( ) ( )N t F R and ( ) ( )D t F R   are 

assumed for convenience. So for maximization problem, the 

coefficients of the numerator is replaced by the upper bound 

of the corresponding α-level set and the coefficients of the 

denominator is to be substituted by the lower bound of the 

corresponding α –level set [55], as follows: 

1

1

1 1 2 2

1 1 2 2

( )
( ( ))

( ( )) , 1,2,...,
( ( ))

( )

( ) ( ) ... ( ) ( )
(4)

( ) ( ) ... ( ) ( )







  



   


   





s
U

kj j k U
j k

k s L
L k

kj j k

j

U U U U

k k ks s k

L L L L

k k ks s k

t c
N t

Z t k l
D t

t d

t t t c

t t t d









   

   





  

  

 

Similarly, for minimization problem, the coefficients of the 

numerator is replaced by the lower bound of the 

corresponding α-level set and the coefficients of the 

denominator is to be substituted by the upper bound of the 

corresponding α –level set [55] as follows: 

1

1

1 1 2 2

1 1 2 2

( )
( ( ))

( ( )) , 1,2,...,
( ( ))

( )

( ) ( ) ... ( ) ( )
(5)

( ) ( ) ... ( ) ( )







  



   


   





s
L

kj j k L
j k

k s U
U k

kj j k

j

L L L L

k k ks s k

U U U U

k k ks s k

t c
N t

Z t k l
D t

t d

t t t c

t t t d









   

   





  

  
 

 

The inequality constraints of equation (3) 

1

1

, 1,2,..., ,


 
s

ij j i

j

a t p i r

 

2 2

1

, 1, 2,...,


   
s

ij j i

j

a t p i r r r

 

are replaced by the following inequalities 

1

1

( ) ( ) , 1,2,..., ,


 
s

L U

ij j i

j

a t p i r   

2 2

1

( ) ( ) , 1, 2,...,


   
s

U L

ij j i

j

a t p i r r r   

The equality constraint of equation (3) 

1 1 2

1

, 1, 2,...,


   
s

ij j i

j

a t p i r r r  

is replaced by the following two inequalities [56]: 

1 1 2

1

( ) ( ) , 1, 2,..., ,


   
s

L U

ij j i

j

a t p i r r r   

1 1 2

1

( ) ( ) , 1, 2,...,


   
s

U L

ij j i

j

a t p i r r r  . 

So equation (3) can be substituted by a set of reduced 

constraints [56] as follows: 
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1

1

1 1 2

1

1 1 2

1

2 2

1

( ) ( ) , 1,2,..., ,

( ) ( ) , 1, 2,..., ,

( ) ( ) , 1, 2,..., , (6)

( ) ( ) , 1, 2,..., ,

t 0.










  


   



    



   













s
L U

ij j i

j
s

L U

ij j i

j
s

U L

ij j i

j
s

U L

ij j i

j

a t p i r

a t p i r r r

a t p i r r r

a t p i r r r

 

 

 

 

                                            

where the lower bounds ( ) , ( )L L

i ijp a   and the upper bounds 

( ) , ( )U U

i ijp a   of the coefficients are set to have the largest 

feasible region so that we can most certainly find the 

compromise solutions of objective functions.   

We denote the system constraints (6) as S .                                      

 

4.1 Construction of Membership function 

for solving MOFLFP Problem 
We consider the maximum and minimum value of each 

objective function as the acceptable upper and lower tolerance 

limit respectively to construct the membership function of the 

objective function. 

 Let max ( )


B

k k
t S

Z Z t  and min ( )


W

k k
t S

Z Z t 1,2,...,k l  denotes 

the best value and the worst value of k-th objective function 

respectively where the conditions of non-negativity and the 

constraint equations are satisfied by t . 

The membership function of k-th objective function is 

constructed as: 

1, ( )

( )
( ) , ( )

0, ( )

 



  


 

B

k k

W
W Bk k

k k k kB W

k k

W

k k

if Z t Z

Z t Z
t if Z Z t Z

Z Z

if Z t Z

                          (7)  

We assume that each objective function ( )kZ t  possesses 

continuous partial derivatives of order (s+1) or less than that 

on the feasible region S , where S  denotes the region 

represented by the equation (6).  

So the membership function ( )k t  corresponding to the 

objective function ( )kZ t  bears similar properties in the 

feasible region S  .  

So the problem (1) gets reduced to the following problem: 

max ( ) , 1,2,...,k t k l                                                    (8) 

subject to 

t S  

4.2 Linearization of Membership 

Functions with the Help of First Order 

Taylor Series Approximation 
Assume that the individual best solution for problem (8) exists 

at * * * *

1 2( , ,....., )k k k kst t t t  subject to the system constraints S . 

We apply first order Taylor series to convert the membership 

function ( )k t into an equivalent linear form. The reduced 

membership function can be written as:  

1 1

1

2 2

2

1

( ) ( ) ( ) ( )

( ) ( ) ...
(9)

( ) ( )

ˆ ( ), 1,2,...,

 











 
    

  
      

   


         
  

k k k k k

k

k k

k

s ks k

s
k

k

t t t t t
t

at t t

t t t
t

at t t

t t t
t

at t t
t k l

  







 

4.3 Fuzzy Mathematical Programming 

Formulation of MOFLFP problem 
Using (9), the problem (8) can be converted to an equivalent 

linear programming problem as follows: 

Max                                                                                  (10) 

subject to  

t S

 
ˆ ( ) 1,2,....,

0 1.

 

 

k t k l 



 Model (10) can be expressed in an explicit form as: 

Max                                                                                   (11) 

subject to  

t S

 * *

1 1
*1

*

2 2
*2

*

*

( ) ( ) ( )

( ) ( ) ...

( ) ( ) , 1,2,...., ;

0 1.

 
   

  

 
   

  

 
    

  

 

k k k

k

k k

k

S kS k

S
k

t t t t
t

at t t

t t t
t

at t t

t t t k l
t

at t t

 



 



 

4.4 Algorithm for solving MOFLFP 

problem 

The above process is summed up in the following algorithm. 

Step 1: Replace the fuzzy parameters with triangular fuzzy 

numbers 

Step 2: Replace the fuzzy numbers with α-cuts according to 

equation 4- 6. 

Step 3: Choose a value of α and construct the problem as a 

crisp problem. 

Step 4: Determine the individual maximum and minimum 

value of each objective function. 

Step 5: Determine the membership functions according to 

equation 7. 

Step 6: Linearize each membership function using first order 

Taylor series about the point at which individual best solution 

is obtained. 

Step 7: Formulation of fuzzy programming model of 

MOFLFP using linearized membership function. 

Step 8: Obtain the solution of the problem in step 7 by solving 

the fuzzy mathematical programming model. 
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5. NUMERICAL EXAMPLE 
We consider the following problem studied by Payan and 

Noora [48]. 

1 2
1

1

1 2
2

1 2

2 4 5
max

2 6

6 50
max

1 8

 




 


 

x x
Z

x

x x
Z

x x

                                                       (12)

 

subject to                                                                                                                           
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where the fuzzy parameters assume the triangular fuzzy 

numbers as the following form: 

~

~

5 (3,5,7), 1 (0,1,2), 2 (1,2,3),140 (100,140,180),

8 (6,8,10), 16 (6,16,20), 6 (4,6,8)

   

  

 

Using equation (4) and equation (6), problem (12) can be 

written as: 
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Considering 0.5   the problem (13) is transformed into a 

crisp linear fractional programming problem as follows: 
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subject to                                                                              (14) 
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Solving problem (14) we find the individual best solutions as  

1 14.24BZ at 1 211.00, 71.75 x x   and 2 10.455BZ at 

1 210.99, 71.75 x x . The individual worst solutions are 

found as 1 1.825WZ at 1 297.32, 6.99 x x and 2 1.821WZ

at 1 297.334, 7.00 x x .  

So the membership functions are constructed as: 
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Figures 1 and 2 depict the graph of the membership functions 

of the objective functions Z1 and Z2. 

The membership functions 1( )x and 2( )x  are converted 

into linear functions by employing the first order Taylor series 

about the points at which the best solutions are obtained, 

obtained, that is, (11.00,71.75)  and (10.99,71.75)

respectively. 
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 Figure 1: Graphical representation of membership 

function of Z1 

 Figure 2: Graphical representation of membership 

function of Z2 
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The fuzzy mathematical programming model can be presented 

as: 

Max                                                                                   (15) 

subject to 
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The problem (19) provides the solution 

1 214.24, 10.455 Z Z at 1 211.00, 71.75 x x . The 

resulting membership values are 1 21, 1   . 

Table 1. Optimal solutions of the numerical example 1 for 

different values of α 

  1x  2x  1Z  2Z  

1.00 16 54 6.658 5 

0.50 11 71.75 14.24 10.455 

0.25 8.5 79.68 21 18.79 

0.00 6 87 31 62.67 

 

It is observed that the solutions obtained by Yano and 

Sakawa[46] and Payan and Noora [48] are the same as 

obtained from the proposed method.  

It is to be noted that the methodology proposed in the study is 

computationally much simpler and easy to implement than the 

methods proposed in [46, 48]. In [48], the MOFLFP problem 

was converted into MOLFP with interval parameters and then 

into MOLFP. This MOLFP was finally transformed into 

linear programming (LP) problem with interval parameter. 

This was divided into two LPs and the optimal solution was 

obtained based on their solutions. Yano and Sakawa [46] 

solved this problem by non-linear programming technique 

which used bisection method and simplex method. The 

problem was solved through iterations. Our method uses 

upper bound of α -cut value for the numerator and lower 

bound of the α - cut value for the denominator in a fuzzy 

fractional linear programming problem of maximization type . 

Thus the problem is converted into a crisp linear-fractional 

problem very easily which is solved by using goal 

programming. All the problems have been solved by LINGO 

version 17 

6. CONCLUSION 
In this study, we present an alternative fuzzy programming 

model to solve MOFLFP problems. In the proposed approach, 

the membership functions are converted into linear form using 

first order Taylor polynomial series approximation. Each 

objective function with fuzzy parameters is transformed into 

crisp objective functions using α -cut of the fuzzy numbers. 

Then fuzzy programming method has been used to solve the 

MOFLFP problem using only the negative deviational 

variables. So it can be concluded that the method developed in 

this study is robust, computationally simpler and easy to 

implement than the existing methods [46, 48]. A numerical 

illustrative example has been solved so demonstrate the 

proposed approach. The proposed method can be extended to 

solve bi-level multi objective and multi-level multi-objective 

linear fractional programming problems with fuzzy 

parameters. The proposed concept is expected to be helpful in 

optimizing linear fractional problems with fuzzy parameters 

in real life problems such as in agriculture, inventory 

problems, production planning, transportation problem etc.  
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