Abstract

The need of Unmanned Aerial Systems (UASs) is expanding day by day as it can be used in both public and military environments. As the need for UAV is growing, there is an expansion in the requirement for more reliable, authentic, efficient, optimized and strong vehicles that are capable for executing various operations. The need of such systems is mainly by the Militaries that continue to desire more UAV functionalities for diverse operations and tasks that can be performed all over the world. To have a continuous advancement in the field of autonomous UAV control system many cogent research works has been performed. A large amount of work is focused on the subsets of UAS control such as path planning algorithms, control of small UAV and autonomy. As various markets are amplifying, the necessity to have such systems with capability to adapt according to introduced tasks, sensing elements, and surroundings will drive requirements. They can be used in several ways in various models, sizes and types according to the needs of various operations. The most common Unmanned Aerial Vehicle is “drone” that can be operated by remote controllers using radio waves. These UAVs normally contains internal memory and uses battery power as a means to an energy source. In the
current scenario, commercial drones are normally subjected to manual control by human that
can control only one drone at a point of time. In accordance to set up a controlling system of
multiple drones, collision avoidance mechanism and the detection of objects around these UAV
systems is very necessary. This paper discusses about the UAVs requirements and capabilities
along with path planning algorithms. It also provides some problems associated with a UAV
system along with its improvement areas.

References

2. K. Surakul. A Control of Multiple Drones for Automatic Collision Avoidance
3. C. M. Eaton. Multiple-Scenario Unmanned Aerial System Control: A Systems Engineering
Approach and Review of Existing Control Methods, 2016
5. Dempsey, M. E. Intelligence, Surveillance, and Reconnaissance Joint Force 2020 White
6. Seffers, G. Joint Aerial Layer Network Vision Moves Toward Reality. Available online:
http://www.afcea.org/content/?q=node/11123 (accessed on 19 August 2015).
Systems applications and challenges. In SoutheastCon 2015 (pp. 1-7). IEEE.
multi-UAV systems with parallel genetic algorithm. Journal of Intelligent & Robotic Systems,
74(1-2), 499-511.
threatening environment using simulated annealing algorithm. In Unmanned Aircraft Systems
(ICUAS), 2015 International Conference on (pp. 56-61). IEEE.
learning for path planning of UAVs. In Unmanned Aircraft Systems (ICUAS), 2013 International
Conference on (pp. 69-78). IEEE.
12. DOD, Dictionary of Military and Associated Terms, March 1994
13. E. Torun. UAV Requirements and Design Consideration, 2000
and future potentials. Environmental Practise, 8 (3), 159-169.
Response. In: The International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, Antwerp, Belgium, Vol. XXXVI-1/W44.
Department supporting fighting against forest fires 1st in the world! Forest Ecology and
19. Martínez-de Dios, J. R., et al., 2006. Experimental results of automatic fire detection and

Index Terms

Computer Science Algorithms

Keywords

Unmanned Aerial System (UAS), autonomous systems, Unmanned Aerial Vehicle (UAV), Drone, path planning algorithms.