
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.47, June 2018

8

Using two Educational Simulator Tools for Computer

Architecture Teaching and Learning Support

Dimitris Kehagias

Department of Informatics
T.E.I. of Athens

Greece

ABSTRACT

Simulators are commonly used in any computer architecture

course as primary tools for supporting the teaching and

learning activity. We have developed two educational

simulator tools to support teaching and learning of the MESI

cache coherence protocol and dynamic scheduling using

Tomasulo's Algorithm.

We have used these simulators during the spring semester of

the academic year 2016 – 2017, in the context of the

“Advanced Computer Architecture” course offered by the

Informatics department of the Technological Educational

Institute (T.E.I.) of Athens.

In this paper we briefly present these simulators and evaluate

their impact on the learning process. The results are presented

both qualitatively and quantitatively and are strongly indicate

that the use of the two simulators can effectively support the

learning process and enhance learning.

General Terms

Computer Simulation, Algorithms, Applied Computing.

Keywords

Tomasulo’s algorithm, MESI protocol, Simulator, Computer

architecture, Interactive animation.

1. INTRODUCTION
For computer science students in an undergraduate advanced

computer architecture course, the topics of cache coherence

and dynamic scheduling are often confusing as they are not

always that distinct. In order to help students learning these

course topics and engage their learning interest, simulation

tools have been created and used in the past. We, in the

department of Informatics of the Technological Educational

Institute (T.E.I.) of Athens [1], in the content of the

undergraduate course “advanced computer architecture”,

created two simulators and employ them as the primary tools

for explaining the aforementioned computer architecture

topics. These simulators are a MESI simulator for a write-

back cache [2] and an android based simulator that shows how

dynamic scheduling is obtained using Tomasulo's Algorithm

[3].

Our intention to build these simulators was motivated by the

fact that many students, taking the “advanced computer

architecture” course offered by our department, exhibit

difficulties fully understand (a) the cache coherency problem

and (b) how dynamic scheduling is obtained using Tomasulo's

Algorithm.

The aim of this paper is to investigate whether the teaching of

the MESI cache coherence protocol and dynamic scheduling

using Tomasulos’ algorithm can be made more effective

through the use of the two simulators as we have built them.

The evaluation process uses pre and post-testing and

questionnaire analysis.

The rest of the paper is organized as follows. Section II

provides a brief overview on the most relevant educational

simulators. Section III explains the features of the two

simulators as we have built them. Section IV demonstrates the

evaluation of the two simulators. Section V concludes the

paper.

2. RELATED WORK
The evaluation of the simulators was carried out using both

qualitative and quantitative methods. Similar evaluations we

found in [4, 5, 6, 7].

Various standalone tools exist to explain how dynamic

scheduling is obtained using the Tomasulo's Algorithm, and to

simulate the MESI protocol. The most relevant ones are

presented in the following lines:

In [8] a HASE simulation model, which closely follows the

design of the IBM system 360/91 floating-point unit, has been

built in order to demonstrate dynamically the Tomasulo's

algorithm.

The simulator in [9] simulates Tomasulo's algorithm for a

floating-point MIPS-like instruction pipeline, demonstrating

out-of-order execution.

[10] and [11] present two web-based tools that have been

developed for students to understand the concepts of the

Tomasulo's algorithm used for dynamic scheduling.

The simulator in [12] simulates a run of a software application

in a cached multiprocessor system and uses the MESI

protocol to maintain data coherence.

In [13] a flash interactive animation shows how MSI and

MESI cache coherence protocols work.

However, none of them includes all the features that our

proposal offers. These features include operation in a step by

step mode, animation, written explanations in every animation

step, configurable execution core, variable issue rate, variable

latency per instruction class. Also, allows the user (i) to see

memory contents during simulation, (ii) to show or hide

animations and get help during simulation.

3. THE TWO SIMULATORS

3.1 The MESI cache coherence simulator
Figure 1 shows the graphical interface of the simulator whose

features include:

 Three cores with local caches. The caches are direct

mapped with a write back policy. The local cache of

each core has four cache lines (LN0-LN3) and the

cache-line/block size is four words. The column

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.47, June 2018

9

titled STATE displays the current state (M, E, S, or

I) of each cache line. The simulator doesn’t concern

itself with byte addressing within words, word

alignment and so on. The simulator accepts its input

from users. A user specifies a word in the “Enter

Word….” frame and starts a read/write transaction

on the specified word by pressing the

READ/WRITE button. A word consists of a letter

(A-Z) and a digit (0-9). In order to start a read/write

operation the contents of memory must previously

be set by pressing the RND Words button. The

words are set randomly.

 A main memory containing sixty four words

organized as sixteen memory blocks (BL0-BL15)

with four words each. Memory is addressed at block

level and data addresses start from zero. Thus,

address zero indexes the first block in memory,

address one the second block, and so on.

 The local caches and the main memory are

connected by a bus that acts as a communication

network.

 LOG info panel that shows which read or write

request is being executed.

 With the Initialize button the contents of all caches

and main memory are cleared, while with the RND

Words button the contents of memory are specified

randomly.

 The simulator permits simulated execution to

proceed in variable-speed timed mode with

interactive display update speed adjustment using

the frame Speed: (5 to 100). Speed of 10, 50 and

100 correspond to 10, 2 and 1 second(s) per step

respectively.

 By selecting the Scenario button twelve ready case

studies are displayed that implement all the

functioning parts of the MESI protocol.

 Description of the main interface is given by

selecting the Help button.

 Main menu button returns to main menu.

3.2 The Tomasulo simulator
The simulation screen (Figure 2) has a very rich and friendly

visual interface. It illustrates the movement of instructions to

the reservation stations and the movement of results from the

functional units. It consists with the following components:

RAT: Register Alias Table is a structure for performing

register renaming. It maintains the mappings between

reservation stations and destination registers of instructions.

LOAD Q / STORE Q: Load and store buffers for LD and SD

instructions. They hold data and addresses for memory access.

INST Q: The “INST Q” component is a queue that contains

the instructions in the order entered by the user. The

instructions are issued into the reservation stations in first-in,

first-out order.

REGS: The “REGS” component implements the Floating-

point (F) and integer (R) register file. The registers contain

values entered by the user during the configuration process, or

broadcasted since instructions complete their execution. These

values that are already in registers, meaning the values that

are present and ready for execution, are entered to reservation

stations.

ADD RS / MUL RS: There are two types of reservation

stations “ADD RS” and “MUL RS”. One is for ADDD and

SUBD instructions, while the second is for MULTD and

DIVD instructions. Each reservation station is made up of

three fields. The first field in a row holds the opcode for the

pending instruction in the form of an arithmetic symbol (+,-

,*,/, for ADDD, SUBD, MULTD and DIVD instructions

respectively) and the other two fields hold either operand

values, or names of reservation stations or load/store buffers

that will provide them.

ALU ADD / ALU MUL: Functional Units (FUs) to

accomplish the execution step of instructions. The “ALU

ADD” FUs are floating point adders which execute ADDD

and SUBD instructions while the “ALU MUL” is floating

point multipliers which execute MULTD and DIVD

instructions. The FUs receive instruction and operand packets

from the RSs and send operand result packets to the common

data bus. The number of clock cycles required to execute an

instruction is a parameter read from the hardware

configuration activity at the start of a simulation.

All the above mentioned components are interconnected with

a common data bus (CDB), which is used to broadcast result

from the adder, multiplier and the load buffer to the

reservation stations, the register file and the store buffers.

The simulation screen provides the user with several choices,

including:

ISSUE: During the issue process the next -in program order-

instruction is taken from the instruction queue and putted into

a free reservation station of correct kind (ADD RS or MUL

RS).

DISPATCH: The process of sending an instruction to

execution from a reservation station to a functional unit (ADD

RS to ALU ADD or MUL RS to ALU MUL).

EXECUTE: Is the phase during which a functional unit (ALU

ADD or ALU MUL) operates on ready operands of an

instruction.

BROADCAST: When an instruction finishes execution

broadcasts its results on a common data bus and from there

into registers and reservation stations.

NEXT EVENT: Allows the user to move to the cycle in

which some visible action occurs.

MEMORY CONTENTS: Memory contents can be seen

during simulation. ANIMS: Show or hide animations.

4. EVALUATION
In this paper we have investigated on a first level whether the

teaching of MESI cache coherence protocol and dynamic

scheduling using Tomasulos’ algorithm can be made more

effective through the use of the two simulators as we have

built them. Thus, the questions raised are as follows:

 Did these learning simulator tools benefit students

and helped them understand the topics under

investigation?

 What was the degree of usability of the two

simulators?

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.47, June 2018

10

Figure 1 [2]: MESI simulator user interface

Figure 2 [3]: Tomasulo’s simulation screen

These questions were addressed through a combination of

quantitative and qualitative methods. The qualitative method

used opinion surveys, while the quantitative one pre and post-

tests.

4.1 Methodology
The evaluation of the two simulators was carried out in the

framework of the undergraduate “Advanced Computer

Architecture” course at the department of Informatics of the

Technological Educational Institute (T.E.I.) of Athens during

the spring semester of the academic year 2016 - 2017. This

course is taught during the sixth semester.

During the semester, students, having been taught about MESI

cache coherence protocol and the Tomasulo algorithm, wrote

a pretest on these two topics to determine the extent of

understanding the issues. The pre-test had the form of a

midterm examination. Students' answers revealed that 20

students out of the 48 students faced difficulties in

understanding the concepts as taught in the traditional way.

After that, the group of the 20 students was used as the test

group. Initially, the group of the 20 students performed a

number of tutorial exercises, addressing the identified learning

difficulties, using the two simulators. After two weeks of this

educational process, the students participated in a post-test to

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.47, June 2018

11

determine whether the use of simulators helped them to

understand better the topics under investigation; the post-test

had the form of a second midterm for the test group, consisted

of questions similar to the pre-test questions. They also

answered to an opinion survey regarding the two simulators

they used.

4.2 Results

4.2.1 Qualitative evaluation
One opinion survey was conducted at the end of the

evaluation phase. The survey was implemented using 5-point

Likert scale questionnaire (5=strongly agree, 4=agree, 3=don’t

know, 2=disagree, 1=strongly disagree) and consisted of eight

opinion questions. Questions 1 to 4 (Q1-Q4) investigate the

extent to which the two simulators were effective in helping

students to understand specific course topics.

The questions concerning the Tomasulo simulator were the

following:

Q1. The simulator helped me understand how each stage

of Tomasulo’s algorithm operates (issue, execute

and write back).

Q2. I understood better the way instructions are

completed out of order using the simulator.

Q3. The simulator helped me understand the issue of

how register renaming is provided by reservation

stations.

Q4. The simulator helped me understand the issue of

how Tomasulo’s algorithm eliminates WAW/WAR

hazards.

The questions concerning the MESI simulator were the

following:

Q1. The simulator helped me understand the meaning of

each state of the MESI protocol in the cache

memory and the corresponding state in any other

cache memory in a multiprocessor environment.

Q2. The simulator gave me the opportunity to study in

depth the cache memory parameters, such as the

associativity, the replacement policy, the writing

policy, etc.

Q3. Using the simulator I better realized when a

transition between states is needed in order to reflect

the actions taken by a processor.

Q4. The simulator helped me understand program

locality.

The results are shown in Tables I and II.

Questions 5 to 8 (Q5-Q8) are common for both simulators.

They gather information about the effect of the simulators on

the students’, overall, learning process and the user interface.

These questions were the following:

Q5. The use of the simulator facilitated better

understanding the theoretical background of some

of the difficult concepts of the course.

Q6. The use of the simulator has increased my

confidence to do well in the course.

Q7. I found the user interface of the simulator easy to

understand and use.

Q8. The use of the simulator helped me to achieve the

course learning outcomes.

The results are shown in Tables I and II.

Table 1. Tomasulo simulator

Question 1 2 3 4 5 Average grade

Q1 1 10 9 4.35

Q2 1 5 14 4.65

Q3 1 1 4 14 4.55

Q4 1 2 1 10 6 3.90

Q5 1 4 15 4.70

Q6 2 1 11 7 4.30

Q7 1 4 15 4.70

Q8 1 12 7 4.25

Table 2I. MESI simulator

Question 1 2 3 4 5 Average grade

Q1 2 11 7 4.15

Q2 7 13 4.65

Q3 2 12 6 4.20

Q4 3 12 5 4.10

Q5 1 4 15 4.70

Q6 2 1 10 8 4.35

Q7 1 4 15 4.70

Q8 1 13 6 4.20

As shown in Tables I and II, the results of the survey were

positive, overall.

For both simulators, highest ratings were obtained for

questions 5 (Q5), concerning the effectiveness of using the

simulators towards helping students to understand specific

course topics (average grade 4.70), and 7 (Q7), concerning the

simplicity of the user interface (average grade 4.70). The

overall helpfulness of the simulators is demonstrated by the

high ratings of questions 5 to 8 (Q5-Q8).

The ratings for questions 1 to 4 (Q1-Q4) show the extent to

which the two simulators were effective in helping students to

understand specific difficult issues related to the MESI cache

coherence protocol and dynamic scheduling using Tomasulo's

Algorithm.

4.2.2 Quantitative evaluation
The quantitative method used pre and post-tests. After the

midterm examination (multiple choice pre-test), 20 of the

students, who faced difficulties in understanding the concepts

as taught in the traditional way, constituted the test group and

performed a number of tutorial exercises addressing the

identified learning difficulties using the two simulators. At the

end of this educational process the students participated in a

multiple choice post-test to determine whether the use of

simulators helped them to understand better the topics under

investigation. The pre and post-tests consisted of 5 similar

questions

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.47, June 2018

12

Table III summarizes the results obtained from the pre and

post-tests, and shows that the experience with both simulators

seems to influence to a greater extent the topics under

examination. This is evident in some of the individual post-

test results.

Table 3II: Results from pre-post tests

Examining MESI cache coherence protocol (% correct

answers):

Test Q1 Q2 Q3 Q4 Q5 Average

grade

Pre 45.2 37.3 49.5 27.4 20.6 36

Post 56.5 66.4 59.3 72.3 65.4 64

Examining dynamic scheduling using Tomasulo's

Algorithm (% correct answers):

Pre 38.4 39.3 22.4 48.2 28.4 35.3

Post 55.4 60.3 70.4 55.5 58.8 60.1

5. CONCLUSIONS
In this paper we have investigated on a first level whether the

teaching and learning of MESI cache coherence protocol and

dynamic scheduling using Tomasulos’ algorithm can be made

more effective through the use of two simulators as we have

built them.

The impact of the simulators on the learning process was

evaluated by means of an opinion survey as well as pre and

post-tests given by students after the completion of the topics

under investigation.

The results obtained have been encouraging, indicating that

the use of the two simulators can effectively support the

learning process and enhance learning.

6. REFERENCES
[1] “Advanced Computer Architecture”. Available at:

http://www.cs.teiath.gr/?page_id=6450.

[2] D. Kehagias and I. Raptis, “An Interactive MESI Cache

Coherence Simulator for Educational Purposes”, In the

ACM Conference Proceedings of the 20th Pan-Hellenic

conference on Informatics (PCI 2016), Patra Greece,

doi>10.1145/3003733.3003765, Nov. 10-12, 2016.

[3] Dimitris Kehagias and V. Douskas-Bertlvise, “Android-

based Simulator to Support Tomasulo Algorithm

Teaching and Learning”, International Journal of

Computer Applications (IJCA), Vol. 170, No. 2, pp. 24-

29, doi>10.5120/ijca2017914703, July 2017.

[4] Chalk, B. “Evaluation of a Simulator to Support the

Teaching of Computer Architecture”. 3rd Annual LTSN-

ICS Conference, Loughborough University.

[5] Mustafa, B. “Evaluating a System Simulator for

Computer Architecture Teaching and Learning Support”.

ITALICS Vol. 9, issue 1, Feb. 2010, ISSN: 1473-7507.

[6] Grigoriadou M., Kanidis V., Gogoulou A. “A Web-

Based Educational Environment for Teaching the

Computer Cache Memory”, IEEE Transactions on

Education, 2006, Vol. 49, No.1, p. 147-156.

[7] V. Luković, R. Krneta, A. Vulović, C. Dimopoulos, K.

Katzis, and M. Meletiou-Mavrotheris, “Using Logisim

Educational Software In Learning Digital Circuits

Design,” in Proceedings of 3rd International Conference

on Electrical, Electronic and Computing Engineering

IcETRAN 2016, p. AUI1.5.1-6.

[8] “Tomasulo’s Algorithm. University of Edinburgh”.

Available at:

http://www.icsa.inf.ed.ac.uk/research/groups/hase/model

s/tomasulo/index.html. Accessed on Feb. 2017.

[9] Typanski N., “Tomasulo algorithm simulator

(prototype)”. Available at:

http://nathantypanski.github.io/tomasulo-simulator/

Accessed on Feb. 2017.

[10] University of Massachusetts at Amherst. “Dynamic

Scheduling Using Tomasulo's Algorithm”. Available at:

http://www.ecs.umass.edu/ece/koren/architecture/.

Accessed on Feb. 2017.

[11] “Tomasulo’s Algorithm for Dynamic Scheduling”.

Available at:

http://dark.eit.lth.se/darklab/tomasulo/script/tomasulo.ht

m. Accessed on Feb. 2017.

[12] Gomez-Luna, J., Herruzo, E. and Benavides, J. I., 2009.

MESI Cache Coherence Simulator for Teaching

Purposes. CLEI ELECTRONIC JOURNAL. 12, 1.

[13] Laguens, A. A., Mir, S.B. and Quintana Orti, E.S., 2011.

An Interactive Animation for Learning How Cache

Coherence Protocols Work. In proceedings of

INTED2011 Conference, 7-9 March, Valencia Spain.

IJCATM : www.ijcaonline.org

