
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.51, June 2018

1

Selenium with Support of both TestNG and Cucumber

Frameworks

Shivkumar Goel

Deputy HOD, Dept. of MCA
VESIT, Chembur, Mumbai

Kshitija Vartak

Dept. of MCA
VESIT, Chembur, Mumbai

ABSTRACT
Today, there are many web applications being developed and

testing each of them so that the end-user gets maximum user-

friendly experience with utmost efficiency is very important.

To test these applications and their functionalities, Manual

testing is not always feasible. For testing minute details and

lowest level scenarios, manual testing is very time-consuming

and tedious. To overcome this, Automation testing is used in

which testing process is automated with minimal manual

intervention. Also, repetition of tests is possible which is cost-

effective. Automation is very useful in Regression testing and

testing the common flow of an application which must be

tested when enhancements or new features are added to it.

Nowadays, there are many testing frameworks available. We

have used Selenium Webdriver. Selenium supports various

testing frameworks such as JUnit, NUnit, TestNG, etc. Mostly

these frameworks are used in isolation along with Selenium.

But we have developed a framework which integrates two

testing frameworks (TestNG and Cucumber) into a single

framework/project. In this way, leveraging benefits of both

the frameworks is possible. Users have flexibility to choose

their preferred framework for testing.

General Terms
Selenium, Automation, Testing, Testing frameworks

Keywords
Cucumber, TestNG, parallel testing, POM

1. INTRODUCTION
Automation Testing has become very crucial these days as

there are number of web applications to be tested so that the

usage, efficiency and effectiveness of an application can be

increased. Each application has many workflows, both at the

higher and lower level. Test cases written to test these

applications, define each of these workflows, even at the

lowest level. Testing such scenarios with Manual Testing is

very tedious, time-consuming and increases cost. Manual

Testing also requires manual intervention and it is not

possible to cover all the scenarios. Hence, Automation is the

beneficial way of executing test cases against an application

without much manual intervention.

Automation testing involves use of Automation tool which is

capable of recording and replaying the cases, comparing

results, producing reports, execute cases overnight, repeating

cases, etc.Test automation plays a very important role

in continuous delivery and testing.[1] Test automation

increases Reusability of code, code coverage, decreases cost

and human efforts.[2] There are many Testing Frameworks

available such as Selenium, UFT, TestComplete, etc. We have

opted for Selenium.

Selenium is a testing framework for web applications.

Selenium supports different programming languages such as

C#, Groovy, Java, Perl, PHP, Python, Ruby and Scala.[3]

Once the test cases are written in any of these languages, they

can be executed on web browsers like Chrome, Internet

Explorer, Firefox, Safari, etc. We have used java as a

language for scripting. Along with Selenium, many testing

frameworks are available. We have integrated TestNG and

Cucumber with Selenium. Mostly, either TestNG or

Cucumber are integrated to support automation. But we have

designed a framework in which, TestNG and Cucumber have

been integrated with Selenium (See Table 1 for their

comparison). In this way, the benefits and advantages of both

the testing frameworks can be leveraged under a single

framework. For Selenium, we have not used Selenium IDE.

Instead, we have used Selenium WebDriver and imported

required jars into the framework and worked on them.

Section 2 describes what TestNG and Cucumber frameworks

along with their comparison (See Table 1) and drawbacks.

Section 3 describes the requirements. Section 4 describes how

we have integrated both under a single framework along with

Selenium. It also gives details about our framework .Section 5

Concludes this paper. Section 6 contains references.

2. TESTNG AND CUCUMBER TESTNG

FRAMEWORKS
Comparison of TestNG and Cucumber frameworks is given in

Table 1.

2.1 TestNG Framework
TestNG isan open source automated testing framework and is

inspired from JUnit and NUnit. But it introduces new

functionality making it more powerful. It is also easier to

use.NG of TestNG means Next Generation. It is used by the

developers and gives them the ability to write more flexible

and powerful tests as it uses easy annotations, grouping,

sequencing & parameterizing [4].TestNG also provides

powerful reporting than JUnit. Also, the reports are easily

readable and understandable.

TestNG doesn’t involve creation of feature files and writing

scenarios into it. This avoids making framework bulky and

saves time.

One important feature of TestNG is multithreaded support i.e.

running tests in parallel and support for grouping using which

the test cases could be grouped and run according to the

groups specified. [5]

https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_testing
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Groovy_(programming_language)
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.51, June 2018

2

Table 1: Comparison of TestNG and Cucumber

2.2 TestNG Framework
TestNG isan open source automated testing framework and is

inspired from JUnit and NUnit. But it introduces new

functionality making it more powerful. It is also easier to

use.NG of TestNG means Next Generation. It is used by the

developers and gives them the ability to write more flexible

and powerful tests as it uses easy annotations, grouping,

sequencing & parameterizing [4].TestNG also provides

powerful reporting than JUnit. Also, the reports are easily

readable and understandable.

TestNG doesn’t involve creation of feature files and writing

scenarios into it. This avoids making framework bulky and

saves time.

One important feature of TestNG is multithreaded support i.e.

running tests inparallel and support for grouping using which

the test cases could be grouped and run according to the

groups specified. [5]

2.2.1 TestNG Annotations
TestNG uses annotations to write test cases where each

annotation identifies a method wherein some logic is written.

The methods execute according to the annotations specified-

before or after classes/suites/methods. The main test case is

identified by @Test annotation. Other annotations

are:@BeforeSuite, @AfterSuite, @BeforeClass, @AfterClass,

@BeforeMethod, @AfterMethod, @DataProvider, etc.

We have written the logic of opening a database connection,

opening and reading a file, reading test data, opening a

browser, reading URLs, etc. in @Before methods. The logic

of closing all the connections and files, closing browser,

clearing cookies, cleanup, etc. is written in @After methods.

Writing proper logic in relevant annotations is very crucial as

these annotations get picked up while test case is running and

helps the test to run successfully.

2.3 Cucumber Framework
Cucumber is one such open source tool, which supports

Behavior Driven Development(BDD). Cucumber can be

defined as a testing framework, driven by plain English text.

It serves as documentation, automated tests, and a

development aid – all in one.Cucumber reads the code

written in plain English text (Language Gherkin) in the

feature file.It finds the exact match of each step in the step

definition (a code file). [6]

2.3.1 Feature Files
This gives information about the business functionality and

consists of requirements specified in a plain-text format using

a series of Scenarios. These files are then reviewed by the

teams before starting actual development.

2.3.2 Scenario
These Scenarios are written in a language known as

―Gherkin‖ in Given-When-Then format. Given-When-Then

basically describes what the pre-conditions and conditions are

and what the expected outcome is.They are easily readable

and understandable.

Basically, a scenario represents a functionality of an

application which is under test.A feature file can contain

many scenarios, which are then developed by writing step

definitions.

Example:

Feature: Login Functionality

Scenario: Login Functionality Given user navigates to

abc.com When user logs in using Username And password

Then login should be successful

2.4 Drawbacks of Cucumber
Cucumber involves writing test cases in the form of Scenarios

in Feature files where each Scenario represents a specific

feature/functionality. There can be many scenarios in one

feature file. Since, the scenarios are written in plain English,

translating them into code is one task.

The step definitions should be proper and corresponding to

the Given-When-Then conditions. Also, another limitation is

that, we had to write each requirement adhering to the Given-

When-Then format. Sticking to this format every time is not

feasible. If there are complex functionalities to be tested, then

the feature file and scenarios become bulky and lengthy. Even

if the scenarios are written in plain English, writing them for

each functionality is time-consuming and not everyone would

be comfortable using it. The scenarios work well with simple

functionalities of an application. But as new functionalities

and features are added, there arises dependencies between the

feature files. Complexity steps in when we need to test a

specific functionality and identify whether the test would need

only one feature file or combination of different files. If it

needs combination of files, then we need to figure out a way

of iterating over each and executing step definitions

accordingly. Developing the step definitions is also a tedious

task. Hence, Cucumber is preferred for testing out simple

functionalities where combinations of not more feature files

are needed.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.51, June 2018

3

2.5 Drawbacks of TestNG
There are not many drawbacks of TestNG. But TestNG only

supports Java based languages. As compared to Cucumber,

test cases cannot be written in plain English. TestNG involves

only coding the steps (Preferably in Java). In Cucumber,

Business Analyst can help in writing test cases which is not

possible in TestNG.

3. REQUIREMENTS
IDE: Eclipse

Java Version: 1.8

Build Tool: Maven

3.1.1 Pom.xml
Since the project is a Maven project, pom.xml file is by

default created in which dependencies, suite files, project

details, etc. could be added. Once the dependencies are added,

jars and packages are automatically downloaded from Maven

repository into the project. Hence, corresponding

dependencies for Selenium, JUnit and TestNG needs to be

added. We have added following dependencies:

<dependencies>

<dependency><groupId> junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

</dependency>

<dependency>

<groupId>org.testng</groupId>

 <artifactId>testng</artifactId>

 <version>6.8.21 </version>

</dependency>

<dependency>

<groupId>org.seleniumhq.selenium</groupId>

 <artifactId>selenium.java</artifactId>

 <version>2.53.1</version>

</dependency>

</dependencies>

4. LEVERAGING TESTNG AND

CUCUMBER UNDER ONE

FRAMEWORK
Even though TestNG and Cucumber have their own

limitations, their benefits could be leveraged and provided

under a single framework along with Selenium WebDriver.

We have developed a framework which leverages benefits of

both. We wanted to provide flexibility to the users to use any

framework they prefer along with Selenium.

The test cases, regardless whether they are written in

Cucumber or TestNG, extend common classes which are a

part of different packages in the framework (See Figure 1).

For this, we have used POM (Page Object Model) pattern to

develop the classes and framework.

FIGURE 1: Integrating TestNG and Cucumber under one Framework, which extend common classes.

4.1 POM
Page Object Model is a design pattern to create Object

Repository for web UI elements. Under this model, for each

web page in the application, there should be corresponding

page class. [7] These POM classes contain the code to find

WebElements such as buttons, text, links, etc. on the web

page. The methods in these classes perform operations or

actions on the web elements such as click, input text into a

textbox, etc.

4.2 Framework explanation
The framework contains various Helpers, utilities, reporters,

etc. which are extended by the TestNG and Cucumber test

cases. Different classes which have separate support for

TestNG and Cucumber are not needed. The framework has

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.51, June 2018

4

ability to support both TestNG and Cucumber using same set

of classes. Some of the classes are:

1. TestCaseHelper: This is the main and crucial class

that helps the test cases to execute properly. It

contains methods to open a file, read data, open a

database connection, and initialize some variables.

To get the WebDriver instance, open the browser

and launch the URL, it calls BrowserHelper’s

methodsand passes the necessary arguments.

Similarly, it also contains methods to close all the

open connections, files, browsers, etc. once the test

case has been executed.

2. BrowserHelper: This class gets the browser name

we want to launch the application with like Chrome,

Internet Explorer, Firefox, Safari, etc. It has

methods to set the capabilities of the browser,

maximize the browser window, able/disable the

cookies, gets the URL name. opens the application,

etc. and returns the web driver instance back to

TestCaseHelper.

3. PageFactoryActionHelper: This class contains

methods that perform actions of the web elements

such as button clicks, inputting text, finding item in

drop down list, selecting checkbox/radio buttons,

etc. The test cases directly call these methods to

simulate the events on the application.

4. Wait: This class contains various wait events such

as wait- until element is visible, for page to load,

until element is clickable, etc. Since different

applications have various times at which the

page/elements are loaded, these methods need to be

called accordingly.

5. ReadTestData: This class contains various

methods that read the test data from an excel sheet,

xml, csv, etc. We had saved our test data into an

excel sheet, therefore the methods were to read data

from a workbook, sheet, based on rows/columns,

etc. Only TestNG test cases extend this class to read

data from as Cucumber tests reads data from feature

files.

6. TestDataProvider: Apart from ReadTestData, we

have also implemented DataProvider functionality

that is used only by TestNG. The excel data is

returned as an Object array which is much easier to

retrieve, manipulate and handle. It uses

@DataProvider annotation.
7. Reporter: This class contains methods that report

the test case outcomes/results into the database and

gives details at the test step level i.e. step, it’s

description, what was the expected outcome, what is

the actual outcome, result(Pass/Fail), reason for

failure, etc. We had also one class for TestNG

reports as TestNG reports are much powerful are

readily available. These reports are also readable

and easily understandable as they are in HTML

format.

8. Hooks: This class is specifically for Cucumber test

cases as it is necessary for the scenarios to execute.

It contains the code that runs before or after the test

case. It contains methods to get the scenario name,

Hooks also calls methods of TestCaseHelper class

for other operations.

9. Actual Test cases:

a. Cucumber test cases: The step definitions are

written that specify what actions need to be

performed according to the Given-When-Then

scenarios. The steps read values from feature

files and pass to the corresponding methods

implemented using @Given, @When and

@Then annotations. Each annotated method

calls relevant methods from one of the above-

mentioned classes.

b. TestNG test cases: The cases are written using

TestNG annotations such as

@BeforeClass,@BeforeSuite, @AfterSuite,

@BeforeClass, @AfterClass,@BeforeMethod,

@AfterMethod, @DataProvider, etc. The test

case in identified by @Test annotation. These

cases read data from ReadTestData class as

TestNG doesn’t involve feature files and

writing scenarios into it. The cases execute

based only on annotations.

c. TestNG test cases: The cases are written using

TestNG annotations such as

@BeforeClass,@BeforeSuite, @AfterSuite,

@BeforeClass, @AfterClass,@BeforeMethod,

@AfterMethod, @DataProvider, etc. The test

case in identified by @Test annotation. These

cases read data from ReadTestData class as

TestNG doesn’t involve feature files and

writing scenarios into it. The cases execute

based only on annotations.

10. PropertiesFileReader: We have saved the URL of

web application, browser name, database name, etc

into a properties file. The test cases call the methods

of this class to access this data and initialize

variables accordingly.

4.3 Test case Execution
1. Cucumber test cases:Once the feature files and

scenarios are in place, test cases can now be

executed. Cucumber uses JUnit framework to

run. As Cucumber uses JUnit, we need to have

a Test Runner class.[8] Other necessary

functionalities are introduced by extending the

relevant above-mentioned classes.

1.1 Runner class:
This class uses @RunWith annotation which

helps JUnit to identify the runner class.

Example [9]:

import org.junit.runner.RunWith;

import cucumber.api.CucumberOptions;

import cucumber.api.junit.Cucumber;

@RunWith(Cucumber.class)

@CucumberOptions(

 features = "Feature"

 ,glue={"stepDefinition"}

)

public class TestRunner {

}

This class tells JUnit whichisthe feature file

and the file containing step definitions to

execute. The test case can also be executed

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.51, June 2018

5

based on tags using @Tags annotations whose

values could be @Run, @Fail, etc. These

annotations should be specified at the top of

every scenario. Once the Runner class is set,

the test case can be executed as JUnit by

right

clicking on Runner class Run as JUnit.

2. TestNG test cases: The test cases in TestNG are

identified by @Test annotation. Any separate class

such as Runner, is not needed in TestNG as there

are no feature files. TestNG just uses annotations to

execute test cases. TestNG scans for its annotations

while executing test cases. The execution could be

done in 2 ways:

a. By creating testng.xml: This xml file contains

name of the classes to execute, name of the test

suite, parameters if any, etc. Parallel execution

b. By right clicking on any particular test and

selecting Run AsTestNG, the test is

executed.

5. CONCLUSION
As Given in Table 1, there are certain benefits and limitations

of both the frameworks, but we have used benefits of them

together to make our framework more powerful and flexible.

Our framework supports both TestNG and Cucumber

frameworks along with Selenium Webdriver. We have given

flexibility to the users to choose whichever framework they

prefer. Each of them has its own benefits and drawbacks but

we have tried to leverage benefits of both.

Cucumber is recommended when the functionality to test is

simple and straight-forward as testing complex functionalities

involves writing multiple feature files thereby leading to

multiple scenarios in each. This would require combinations

of files in one test which is time-consuming and tedious.

TestNG supports both types of functionalities, simple as well

as complex. But for simple scenarios, to provide unnecessary

coding, it is recommended to use Cucumber. Even if TestNG

and Cucumber are used in a single framework, test cases

written using their annotations do not conflict with each other.

While executing Cucumber test cases, TestNG annotations are

ignored and same is the case while executing TestNG cases.

Both extend common classes and are written using POM

pattern, for execution. They also access common files and test

data.

We can test the application using both testing frameworks and

check various aspects of the steps and result specific to each.

The way both display results step-wise is different. In this

way we can see the reasons for failures if, if any, in multiple

ways. This gives us more flexibility to analyze the results

which are generated in the form of reports. Using these

results, the tests could be improved and modified accordingly.

6. REFERENCES
[1] "Testautomation", En.wikipedia.org.

[Online].Availableat:https://en.wikipedia.org/wiki/Test_a

utomation. [Accessed: 29- Mar- 2018]

[2] "Most Popular Test Automation Frameworks with Pros

and Cons of Each – Selenium Tutorial #20 — Software

Testing Help", Softwaretestinghelp.com. [Online].

Available: https://www.softwaretestinghelp.com/test-

automation-frameworks-selenium-tutorial-20/.

[Accessed: 06- Apr- 2018]

[3] "Selenium (software)", En.wikipedia.org. [Online].

Availableat:https://en.wikipedia.org/wiki/Selenium_(soft

ware). [Accessed: 10- Apr- 2018]

[4] "Maven Information", Docs.seleniumhq.org. [Online].

Available:https://docs.seleniumhq.org/download/maven.j

sp. [Accessed: 10- Apr- 2018]

[5] "TestNG Introduction | Selenium Tutorials for Starters |

ToolsQA", Toolsqa.com. [Online]. Available:

http://toolsqa.com/selenium-webdriver/testng-

introduction/. [Accessed: 17- Apr- 2018]

[6] "TestNG Overview", www.tutorialspoint.com. [Online].

Availableat:https://www.tutorialspoint.com/testng/testng

_overview.htm. [Accessed: 23- Apr- 2018]

[7] "TestNG - Welcome", Testng.org. [Online]. Available:

http://testng.org/doc/. [Accessed: 23- Apr- 2018]

[8] "Cucumber Overview", www.tutorialspoint.com.

[Online]. Available:

https://www.tutorialspoint.com/cucumber/cucumber_ove

rview.htm. [Accessed: 01- May- 2018]

[9] Guru99.com. [Online]. Available:

https://www.guru99.com/using-cucumber-selenium.html.

[Accessed: 01- May- 2018]

[10] "Why Selenium and Cucumber Should Not Be Used

Together", Testing Excellence. [Online]. Available:

https://www.testingexcellence.com/selenium-and-

cucumber-ui-automation-challenges/. [Accessed: 01-

May- 2018]

[11] Guru99.com. [Online]. Available:

https://www.guru99.com/junit-vs-testng.html. [Accessed:

01- May- 2018]

[12] "Introduction of TestNG framework - Advantages of

TestNG over Junit framework", Software Testing Class.

[Online].Available:https://www.softwaretestingclass.com

/introduction-of-testng-framework-advantages-of-testng-

over-junit-framework/. [Accessed: 01- May- 2018]

[13] "TestNG Basic Annotations", www.tutorialspoint.com.

[Online].Available:

https://www.tutorialspoint.com/testng/testng_basic_anno

tations.htm. [Accessed: 04- May- 2018]

[14] "Page Object Model (POM) & Page Factory in Selenium:

Complete Tutorial", Guru99.com. [Online]. Available:

https://www.guru99.com/page-object-model-pom-page-

factory-in-selenium-ultimate-guide.html. [Accessed: 04-

May- 2018]

[15] "Introduction to Page Object Model

Framework", Selenium Easy. [Online]. Available:

http://www.seleniumeasy.com/selenium-tutorials/page-

object-model-framework-introduction. [Accessed: 04-

May- 2018]

[16] L. Sharma, "How to set up JUnit Test Runner Class to

run Cucumber Features", Toolsqa.com. [Online].

Available: http://toolsqa.com/cucumber/junit-test-runner-

class. [Accessed: 10- May- 2018]

IJCATM : www.ijcaonline.org

