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ABSTRACT
Carotid artery disease is a condition in which the carotid arteries
become narrowed or blocked. When the arteries become narrowed,
the condition is called carotid stenosis. The carotid arteries provide
the main blood supply to the brain. Carotid artery disease occurs
when sticky, fatty substances called plaque build-up in the inner
lining of the arteries. The plaque may slowly block or narrow the
carotid artery or cause a clot (thrombus) to form more suddenly.
Clots can lead to stroke. Imaging techniques have long been used
for assessing and treating cardiac and carotid disease. B-mode ul-
trasound imaging or intravascular ultrasound (IVUS) has emerged,
and it is widely used for visualizing carotid plaques and assess-
ing plaque characteristics that are related to the onset of neuro-
logical symptoms. In Medical diagnosis operations such as fea-
ture extraction and object recognition will play the key role. These
tasks will become difficult if the images are corrupted with noises.
So the development of effective algorithms for noise removal be-
came an important research area in present days. Developing Im-
age denoising algorithms is a difficult task since fine details in a
medical image embedding diagnostic information should not be
destroyed during noise removal. The ultrasound imaging suffers
from speckle noise. Many of the wavelet based denoising algo-
rithms use DWT (Discrete Wavelet Transform) in the decompo-
sition stage which is suffering from shift variance and lack of di-
rectionality. To overcome this in this paper we are using the de-
noising method which uses dual tree complex wavelet transform to
decompose the image and we performed the shrinkage operation
to eliminate the noise from the noisy image. In the shrinkage step
we used semi-soft thresholding operator along with traditional hard
and soft thresholding operators and verified the suitability of dual
tree complex wavelet transform for the denoising of ultrasound im-
ages. The results proved that the denoised image using DTCWT
(Dual Tree Complex Wavelet Transform) have a better balance be-
tween smoothness and accuracy than the DWT and less redundant
than UDWT (Undecimated Wavelet Transform). We used the SSIM
(Structural similarity index measure) along with PSNR to assess the
quality of denoised images . [1],[2],[3]
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1. INTRODUCTION
Medical information, composed of clinical data, images and
other physiological signals, has become an essential part of a
patient’s care, whether during screening, the diagnostic stage or the
treatment phase. Over the past three decades, rapid developments
in information technology (IT) and Medical Instrumentation
has facilitated the development of digital medical imaging. This
development has mainly concerned Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), the different digital radiolog-
ical processes for vascular, cardiovascular and contrast imaging,
mammography, diagnostic ultrasound imaging, nuclear medical
imaging with Single Photon Emission Computed Tomography
(SPECT) and Positron Emission Tomography (PET). All these
processes are producing ever-increasing quantities of images.
These images are different from typical photographic images
primarily because they reveal internal anatomy as opposed to an
image of surfaces [3].

Spatial filters are traditional means of removing noise from images
and signals. Spatial filters usually smooth the data to reduce the
noise, and also blur the data. Several new techniques have been
developed in the last few years that improve on spatial filters by
removing the noise more effectively while preserving the edges
in the data. Some of these techniques used the ideas from partial
differential equations and computational fluid dynamics such as
level set methods, total variation methods, non-linear isotropic and
anisotropic diffusion, other techniques combine impulse removal
filters with local adaptive filtering in the transform domain to
remove not only white and mixed noise, but also their mixtures.
In order to reduce the noise present in medical images many
techniques are available like digital filters (FIR or IIR), adaptive
filtering methods etc. However, digital filters and adaptive methods
can be applied to signal whose statistical characteristics are
stationary in many cases. Recently the wavelet transform has
been proven to be useful tool for non-stationary signal analysis
[4],[5],[6],[7],[8],[9].

1.1 Carotid artery stenosis
Carotid artery disease is a condition in which the carotid arteries
become narrowed or blocked. When the arteries become narrowed,
the condition is called carotid stenosis. The carotid arteries provide
the main blood supply to the brain. They are located on each side
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of neck. Carotid artery disease occurs when sticky, fatty substances
called plaque build-up in the inner lining of the arteries. The
plaque may slowly block or narrow the carotid artery or cause a
clot (thrombus) to form more suddenly. Clots can lead to stroke
[10].

Ultrasound imaging is used to detect the formation of plaque in
carotid artery. The early detection of plaque will help to prevent
the stroke. But the ultrasound image is suffering from speckle
noise. Speckle is a multiplicative noise that degrades image quality
and the visual evaluation in ultrasound and SAR imaging. This
necessitates the need for robust despeckling techniques in a wide
spectrum of the aforementioned imaging applications. Despeckle
filtering applications has been a rapidly emerging research area in
recent years. The objective of our work is develop new denoising
algorithms to detect the presence of plaque which is dominated
by the speckle noise in ultrasound images to diagnose the risk of
stroke and compare the efficiency of the same with the existing
algorithms.

2. DISCRETE WAVELET TRANSFORM
The DWT of a signal x(n) is calculated by passing it through a
series of filters. First the samples are passed through a low pass
filter with impulse response g(n) resulting in a convolution of the
two:

y[n] = (x ∗ g)[n] =
∞∑

k=−∞

x(k)g(n− k) (1)

The signal is also decomposed simultaneously using a high-pass
filter with impulse respone h(n). The outputs of the highpass fil-
ter are detail coefficients and the outputs of the lowpass filter are
approximation coefficients. It is important that the two filters are
related to each other and they are known as a quadrature mirror fil-
ter. Since half the frequencies of the signal have now been removed,
half the samples can be discarded according to Nyquist’s rule. The
filter outputs are then subsampled by 2

ylow[n] =

∞∑
k=−∞

x(k)g(2n− k) (2)

yhigh[n] =

∞∑
k=−∞

x(k)h(2n+ 1− k) (3)

This decomposition has halved the time resolution since only half
of each filter output characterises the signal. However, each output
has half the frequency band of the input so the frequency resolu-
tion has been doubled. This decomposition is repeated to further in-
crease the frequency resolution and the approximation coefficients
decomposed with high and low pass filters and then down-sampled
[11].

2.1 2D DWT
2D DWT can be implemented by applying the 1D DWT along the
rows of an image first and applying then on the columns of an im-
age. When a wavelet transform is applied to an image which is a
2D signal it decomposes the image into four subbands. The LL
band contains the approximation coefficients, LH band contains
horizontal details, HL band contains vertical details and HH band
will contain the diagonal details [11].

3. UNDECIMATED WAVELET TRANSFORM
Decimation of the wavelet coefficients is an intrinsic property of
the discrete wavelet transform (DWT). The decimation step re-
moves every other of the coefficients of the current level. Thus the
computation of the wavelet transform is faster and more compact
in terms of storage space. More importantly, the transformed signal
can be perfectly reconstructed from the remaining coefficients.
Unfortunately, the decimation is causing shift variance of the
wavelet transform [12].

In order to achieve shift- invariance, researches from different
fields and having various goals have invented several wavelet
transform algorithms. This type of transforms is known under the
common name undecimated wavelet transform (UWT).

Unlike the discrete wavelet transform (DWT), which downsamples
the approximation coefficients and detail coefficients at each
decomposition level, the undecimated wavelet transform (UWT)
does not incorporate the downsampling operations. Thus, the
approximation coefficients and detail coefficients at each level
are the same length as the original signal. The UWT upsamples
the coefficients of the lowpass and highpass filters at each level.
The upsampling operation is equivalent to dilating wavelets. The
resolution of the UWT coefficients decreases with increasing
levels of decomposition. By comparing the UWT with the DWT,
the UWT has some unique features, Translation invariance, better
denoising capability, better peak detection capability [12].

4. DUAL TREE COMPLEX WAVELET
TRANSFORM

The dual tree complex wavelet transform is directionally selective
and shift invariant in two and higher dimensions. The dual tree
complex wavelet transform introduces the redundancy by a factor
of 2d for d dimensions which is lower than the redundancy
introduced by UDWT (Undecimated Wavelet Transform)Since last
20 years DWT (Discrete Wavelet Transform) has proven excellent
tool for analysis of one dimensional signal’s by replacing the
Fourier Transform’s infinitely oscillating sinusoidal basis functions
with a set of locally oscillating functions called wavelets. But Its
performance is poor in the analysis of complex and modulated
signals such as radar, speech, music, higher dimensional medical
and geophysics data. In these areas the complex wavelet transform
will give a better performance than critically sampled DWT
[13],[14].

The Discrete wavelet transform is suffering from four shortcomings

Oscillations: The wavelets are bandpass functions, so the coeffi-
cients of wavelet transform will oscillate positive and negative
around singularities. This will complicate signal modelling and
singularity extraction.

Shift Variance: A Small shift in the signal of interest will perturb
the wavelet coefficient oscillation pattern around singularities.
The wavelet transform coefficients of signal x(t) and its shifted
version x(t− d) are not same.

Aliasing: The wavelet coefficient processing methods like thresh-
olding, filtering and quantization etc. will upset the balance be-
tween the Analysis and synthesis filter banks so the artifacts will
present in the reconstructed signal.
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Lack of Directionality: DWT will process the point singularities
effectively but it can be difficult to model and process the
geometric features like lines, edges and ridges.

These four short comings can be minimised by using dual tree
wavelet transform in processing the medical images than the tra-
ditional DWT and UDWT. UDWT is shift invariant but the redun-
dancy introduced is more than the dual tree wavelet transforms.
There are three wavelets associated with the 2D wavelet transform.
The following figure illustrates three wavelets as gray scale images.

Fig. 1: 2D Wavelets

The first two wavelets are oriented in the vertical and horizontal
directions and the third wavelet does not have a dominant orien-
tation. The third wavelet mixes two diagonal orientations, which
gives rise to the checkerboard artifact. The 2D DWT is poor at iso-
lating the two diagonal orientations i.e it can’t distinguish +45o

line and −45o. The complex 2-D dual-tree DWT have wavelets in
six distinct directions as shown in the following figure. There are
two wavelets in each direction. In each direction, one of the two
wavelets can be interpreted as the real part of a complex-valued 2D
wavelet, and the other wavelet as the imaginary part of a complex-
valued 2D wavelet.

Fig. 2: 2D Dual Tree Complex Wavelets

The dual-tree complex DWT of a signal x is computed using two
critically-sampled DWTs in parallel on the same data as shown in
the following figure. If the same filters used in the upper tree and
lower tree nothing is gained. So the filters in this structure will de-
signed in a specific way that the subbands of upper DWT is in-
terpreted as real part of complex wavelet transform and the lower

tree as imaginary part. The transform is expansive by a factor 2 and
shift invariant. The complex 2D wavelet is shown in the following
figure.

Fig. 3: Dual Tree Wavelet Implementation

There are various methods to design the filters for dual tree
complex wavelet transform. The detailed study of filter design is
found in the article ”The Dual-Tree Complex Wavelet Transform”
by Nick G. Kingsbury [9]. The filters must satisfy the desired
properties such as approximate half sample property, Perfect
Reconstruction (Orthogonal or Biorthogonal), Finite support (FIR
filters), and Vanishing moments/good stop band, Linear phase.

5. DENOISING ALGORITHM
The wavelet shrinkage is a signal denoising technique based on the
idea of thresholding the wavelet coefficients. Wavelet coefficients
having small absolute value are considered to encode mostly
noise and very fine details of the signal. In contrast, the important
information is encoded by the coefficients having large absolute
value. Removing the small absolute value coefficients and then
reconstructing the signal should produce signal with lesser amount
of noise. The wavelet shrinkage approach can be summarized as
follows.

1. Apply the forward transform on the noisy image. There are
various wavelet families such as Haar, Daubechies, Coieflets,
Symlets, biorthogonal etc. developed in the literature. In this paper
we used dubechies, symlets for the 2D DWT and UDWT. We
used the dual tree complex wavelet transform developed by Ivan
W Selesnick and Nick G Kingsbury. The image can be divided
into number of multiresolution levels. The maximum number
of possible decomposition levels is n = logN2 . Where N is the
number of pixels in the image. In our experiment the number of
decomposition levels were set to 4.

2. Estimate the noise from the detail coefficients. In this paper
we used global threshold and level dependent threshold. Global
threshold is calculated from the HH band coefficients of level 4. In
level dependent threshold we calculated the threshold from the HH
band of that particular level. In this paper we used the universal
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threshold which is a simple entropy measure totally depends on
the size of the signal T = σ.

√
2 log(N) where N is the number

of pixels in the image and T is the threshold value. The noise
level is estimated using the method developed by Jhonson and
Donoho in the wavelet domain and suggested a robust estimate
that is based only on the empirical wavelet coefficients at the finest
resolution level. The reason for considering only the finest level
is that the corresponding empirical wavelet coefficients tend to
consist mostly of noise. Since there is some signal present even at
this level, Donoho and Johnstone proposed a robust estimate of the
noise level using the following equation [15],[16],[17],[14].

σ(mad) =
median

{
|wj | : j = 1, 2, ...N

2

}
0.6745

(4)

here w0, w1, w2... are the detail coefficients in the finest level.
using σ and T we will continue to the next step wavelet shrinkage.

3. Apply the shrinkage operation on the wavelet coefficients.
Shrinkage operation is performed on the wavelet coefficients usin
the threshold estimated in the previous step. In this paper we used
hard thresholding, soft thresholding, semi-soft thresholding and
stein thresholding.hard thresholding method zeros the coefficients
that are smaller than the threshold and leaves the other ones
unchanged. In contrast, the soft thresholding scales the remaining
coefficients in order to form a continuous distribution of the
coefficients centered on zero.Several varieties of soft thresholding
are described in the literature [18],[19],[20],[21],[14].

Hard Thresholding:

DT
H(w) =

{
w forall |w| > T
0 otherwise

(5)

Soft Thresholding:

Ds
H(w) = sgn(w)max (0; |w| − T ) (6)

Semi-soft thresholding is a familly of non-linearities that interpo-
lates between soft and hard thresholding.It uses both a main thresh-
old T and a secondary threshold T1 = µ ∗ T .

DTT1
SS (w) =

{
0 |w| ≤ T

sgn(w)T1(|w|−T )
T1−T T < |w| ≤ T1

w |w| > T1
(7)

When µ = 1 the semi-soft thresholding performs a hard thresh-
olding, whereas when µ = ∞, it performs a soft thresholding.
Stein Thresholding: Another way to achieve a trade-off between
hard and soft thresholding is to use a soft-squared thresholding
non-linearity, also named a Stein estimator.

4. Apply the inverse transform to get the denoised image. In our
paper we used inverse DWT, inverse UDWT and Inverse Dual Tree
Complex Tree wavelet transforms on the approximation and detail
coefficients to get the denoised image.

6. RESULTS AND DISCUSSIONS
6.1 Experimental Setup
Forward Transform: DWT and UDWT with ’db4’ family, symlet

family. DTCWT developed by Ivan W Selesnick.
Number of Decomposition Levels: 4

Shrinkage Functions: Hard, Soft, Semi-soft
Inverse Transform: IDWT and IUDWT with ’db4’ family, symlet

family. Inverse DTCWT developed by Ivan W Selesnick.
Quality Metrics: Mean Square Error (MSE),Peak Signal to Noise

Ratio(PSNR), Structural Similarity Index Measure(SSIM) etc.
[22],[23].

6.2 Quality Metrics
The following image quality metrics were used to evaluate the per-
formance of the various wavelet transforms.

6.2.1 Mean Square Error(MSE). The mean square error between
a image f(x, y) and denoised image f̂(x, y) is given as

MSE =
1

MN

M∑
x=1

N∑
y=1

[
f̂ (x, y)− f (x, y)

]2
(8)

6.2.2 Peak Signal to Noise Ratio(PSNR). PSNR is the peak
signal-to-noise ratio in decibels (dB). The PSNR is only meaning-
ful for data encoded in terms of bits per sample, or bits per pixel.
For example, an image with 8 bits per pixel contains integers from
0 to 255.

PSNR = 20log10

(
2B − 1√
MSE

)
(9)

Where B represents bits per sample.

6.2.3 The structural similarity (SSIM). This index is a method
for measuring the similarity between two images. The SSIM index
is a full reference metric, in other words, the measuring of image
quality based on an initial uncompressed or distortion-free image
as reference. SSIM is designed to improve on traditional methods
like peak signal-to-noise ratio (PSNR) and mean squared error
(MSE), which have proved to be inconsistent with human eye
perception.

The SSIM metric is calculated on various windows of an image.
The measure between two windows x and y of common size NN
is

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (
σ2
x + σ2

y + c2
) (10)

µx is the average of x and µy is the average of y.
σ2
x is the variance of x and σ2

y is the variance of y.
σxy is the covariance of x and y.
c1 = (k1L)

2,c2 = (k2L)
2 two variables to stabilize the division

with weak denominator.
L is the dynamic range of the pixel-values.
k1 = 0.01 and k2 = 0.03 by default.

The resultant SSIM index is a decimal value between -1 and 1, and
value 1 is only reachable in the case of two identical sets of data.
Typically it is calculated on window sizes of 8x8. The window can
be displaced pixel-by-pixel on the image.

6.2.4 Maximum Difference. Maximum difference is defined as

MD = max
(∣∣f (x, y)− f̂ (x, y)∣∣) (11)

The large value of maximum difference means de-noised image is
poor quality.
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6.2.5 Normalised Absolute Error (NAE). The large value of nor-
malised absolute error means that de-noised image is poor quality
and is defined as

NAE =

M−1∑
x=0

N−1∑
y=0

∣∣f (x, y)− f̂ (x, y)∣∣
M−1∑
x=0

N−1∑
y=0

|f (x, y)|
(12)

6.2.6 Signal To Noise Ratio (SNR). Signal to noise ratio in an
image is calculated as

SNR =
µ

σ
(13)

Where µ is the average information in the signal and σ is the
standard deviation of the signal which represents the amount of
noise present in the image.

6.2.7 Structural Content. For anMxN image the structural con-
tent is defined as

SC =
1

K

K∑
k=1

M−1∑
x=0

N−1∑
y=0

fk(x, y)
2

M−1∑
x=0

N−1∑
y=0

f̂k(x, y)
2

(14)

6.3 observations
The tabulations were made for DWT, UDWT and Dual Tree
Complex wavelets and three shrinkage functions as shown in the
following tables.

The performance of the proposed filters is compared with the
traditional spatial filters. If the PSNR value is high it does not
mean that the image is denoised in better way. Even the noise is
removed it suffers from blurring and ringing effects when DWT is
used. These artifacts are eliminated by using Dual tree Complex
Wavelet Transform in place of DWT. The denoised images were
shown in the following figures.

Table 1. : Performance of Spatial Filters

Metric Wiener Homogeneous Mask Area Geometric
MSE 145.1333 575.7459 499.2489
SNR 16.9359 10.6931 11.2321

PSNR 29.5234 23.5388 24.1579
SSIM 0.7915 0.5703 0.6714

SC 1.0944 1.2405 1.2762
MD 61 146 217

NAE 0.2071 0.3754 0.3399

From the above results it is observed that spatial filtering is intro-
ducing blurring while denoising the images. The DWT is introduc-
ing checker board artifacts when the image is heavily corrupted
with the speckle. The undecimated wavelet transform is perform-
ing better than the spatial filters and DWT but more computational
complexity is involved while denoising the image. The structural

Table 2. : Performance of Discrete Wavelet Transform

Metric Hard Threshold Soft Threshold Semi-Soft Threshold
MSE 330.9807 565.463 744.2902
SNR 13.168 10.9319 11.0001

PSNR 25.9431 23.6171 22.4237
SSIM 0.7812 0.5904 0.7566

SC 1.1952 1.1656 0.664
MD 203 119 240

NAE 0.2301 0.3831 0.3118

Table 3. : Performance of Undecimated Discrete Wavelet Transform

Metric Hard Threshold Soft Threshold Semi-Soft Threshold
MSE 273.2872 582.8712 533.4604
SNR 13.7038 10.6961 11.0521

PSNR 25.3562 23.0666 23.4514
SSIM 0.6354 0.618 0.6351

SC 0.9841 0.8685 0.8793
MD 172 184 183

NAE 0.2445 0.3661 0.3416

Table 4. : Performance of Dualtree Complex Wavelet Transform

Metric Hard Threshold Soft Threshold Semi-Soft Threshold
MSE 541.2894 539.2893 469.658
SNR 11.0123 11.0186 11.5688

PSNR 23.3881 23.4042 24.0046
SSIM 0.7489 0.8477 0.7979

SC 0.8705 0.8741 0.8934
MD 170 178 173

NAE 0.3405 0.3408 0.3082

content is preserved in undecimated wavelet transform based de-
noising. Finally the dual tree complex wavelet transform is having
low computational complexity and good capability of preserving
edges in the denoised images. So the carotid artery image denois-
ing where edge information is very important it is useful to use dual
tree complex wavelet transform based filters than spatial filtering
and DWT filtering.
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