
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.52, June 2018

12

A Distributed API for Live VM Migration in Cloudlets

Videet Singhai
Sardar Patel Institute of

Technology
Mumbai, India

Krushi Damania
Sardar Patel Institute of

Technology
Mumbai, India

Shraddha Holmukhe
Sardar Patel Institute of

Technology
Mumbai, India

Prasenjit Bhavathankar
Sardar Patel Institute of Technology

Mumbai, India

ABSTRACT

Cloud computing is an effective technology in handling

computation with dynamically scalable resources. With the

growth of multimedia applications, mobile applications have

become resource-intensive. To provide better connectivity

with the cloud, cloudlets have been introduced, which in turns

provide low latency and high bandwidth. In this paper, we

discuss the live migration of Virtual machines in Cloudlets

using VirtualBox as hypervisor. We have proposed and

implemented a distributed API Viper particularly for

cloudlets, which provides users, interfaces for operating with

Virtual Machines. We also test this API in different scenarios,

changing RAM, CPU and CPU Stress.

Keywords

Cloud Computing, Virtualization, Live Migration, Mobile-

Edge Computing, Cloudlets.

1. INTRODUCTION
The two most common IT-related terms currently in use are

Internet and Cloud computing. The development of security

and improvement of hardware performance led to blooming of

cloud computing in the current IT industry and emerged with

the foundation of virtualization technology. Cloud computing

allows companies to rent their spare hardware resources to

customers in a pay-as-you-go manner and eliminate hardware

purchase and maintenance cost. Virtualization techniques use

Virtual Machines (VM) to launch particular environments and

share physical hardware resources.

The mobile devices have improved its computation power,

storage, and battery lifetime but they still lack when running

resource-intensive applications. Cloud-based applications are

becoming popular and making such applications performance

independent of mobile devices computation capacity. VM

migration is a critical technology in order to protect the VM

from hardware failure, for load balancing, to avoid hotspot

failure [12]. It allows us to transfer the entire virtual

environment to another server without affecting the

applications running inside the VM. There are three

approaches to migration; Hot, Cold and Live [6]. During cold

migration, the guest OS is shut down before migration. Hot

migration allows us to suspend the OS which will be resumed

after the migration is complete whereas live migration

migrates the VM while the OS is still running with a small

downtime.

Live migration is one of the most promising techniques of

virtualization. Live migration is performed in order to

maintain the state of the migrated system same as the original

with least interruption to service running inside the VM.

Multiple VMs can also be migrated together in case of server

failure [7].

In this article, we discuss briefly about need of cloudlets for

mobile devices and live migration in Section II. Various

parameters that can be used to get performance of migration

are given further. That section is followed by the features of

proposed API along with design architecture of the

environment setup. The results are illustrated using graphs for

depicting performance of migration in different test cases.

2. MOBILE EDGE COMPUTING
The number of customers using a mobile phone to connect to

the Internet is constantly rising. It has long been recognized

that mobile hardware is necessarily resource-poor. Mobile

devices have more drawbacks compared to static clients and

servers. Battery life, memory, weight, and heat dissipation are

the major factors limiting the scope of the device [2].

To overcome these limitations, cloud computing was

introduced where the mobile uses cloud storage and server for

computation. Although cloud solves major problems and

limitations of mobile devices, there are considerable delays

introduced when transferring data between mobile and cloud

data center. The main cloud infrastructure is located far from

the mobile user. For example, Amazon’s EC2 infrastructure is

located only in 6 cities worldwide. When the user attempts to

connect to any of the data centers, it needs to go through

many network segments. This introduces unnecessary delay

and can interrupt the user interaction. If the user operates real-

time applications, then using clouds will be insufficient. Even

in case of the Internet of Things (IoT) devices, the sensors do

not have much storage and processing capacity. By the time

this data, generated with high velocity is used for analysis,

there could be failure or crash and the opportunity could be

lost.

This paves way for implementation of cloudlet. Cloudlet is a

small cloud station nearby mobile user which will be

connected through LAN or WAN network to the cloud data

center. Basically, the mobile user needs to interact with the

cloudlet only; the cloudlet will take care of the resource

management and synchronization by communicating with the

data center.

A situation may arise when the mobile device moves away

from the cloudlet and may lead to low performance. In such

case the VM running the computation service can be migrated

to a cloudlet which is nearby the mobile device. The

performance degradation can be detected by monitoring the

round-trip time (RTT) of the mobile device with the cloudlet

server. The cloudlet should initiate a migration if it finds a

nearby cloudlet which may provide a better service. It should

also consider factors like VM storage, CPU usage, load and

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.52, June 2018

13

check if it is efficient to migrate and whether the total VM

migration time and downtime is in an acceptable range.

Live Migration of VM is essential to keep the application

running during migration. The VM migration should occur in

a seamless and abstract way without the user noticing. Pre-

copy live migration is the best way for migrating the VM. The

total migration time and downtime will depend on the CPU

usage by the application, dirty rate and performance capability

of the VM. Here, hypervisor copies all the memory pages to

the destination host while the VM being run on the source

host. During this process, some memory pages get updated or

modified. These pages are often referred as dirty pages. These

pages are re-copied to the destination host until no dirty page

is left, so the transfer takes place in multiple iterations. When

the entire VM is migrated along with the dirty pages, the VM

on source host is stopped and the one on destination node is

resumed.

2.1 Shared Storage
Shared storage is a form of repository that is shared by the

two hosts between whom the migration is taking place. A VM

consists of two main components, configuration or state, and

VM storage space. The VM Storage is already shared between

the hosts. In live migration with shared storage, only the

configuration file is migrated and the storage file does not

move. VirtualBox allows us to share the virtual hard disk

(VDI) with another machine. For migration virtual hard disk

file of the VM in source cloudlet is shared with the target

cloudlet, they either use the same iSCSI targets or use storage

that resides on the network and both cloudlets have access to

it via NFS or SMB/CIFS. In our experimental setup, we have

used NFS for shared storage. Different technologies that can

be used for shared storage is Network File System (NFS),

GlusterFS, NetApp Clustered ONTAP etc. NFS and

GlusterFS are discussed below:

2.1.1 Network File System
NFS is one of the many network-attached storage (NAS) file

system which behaves like a client/server application for a

user to view, store and/or update files on a remote machine. It

lets the user mount whole or a part of a file system on the

server which serves as the centralized storage space. This

mounted portion can be accessed by the clients based on

predefined privileges. The NFS server by default executes the

NFS daemon process to offer a portion of its attached disk

storage to NFS clients, to trade TCP/IP packets with. The

server determines what to make available to the authorized

client by mentioning the parameters and directories in the

configuration file. The NFS client requests access to these

files by using mount command this command asks the server

for an open port and if permission is granted it can view the

files and directories on the server with predefined privileges

[9]. In Virtual Machine (VM) Migration, NFS is used to share

VM images with other KVM hosts. It can be used only to run

small installations and for few clients. File locking is not

supported in KVM.

Fig 1: Shared Access Storage

2.1.2 GlusterFS
The faults of CPU, memory or network are easy to recover

from while that of disk images causes problems to bring the

system up and running. For disk image to be fault tolerant,

GlusterFS is an online file system with petabyte level scaled-

out storage using client/server architecture. If many clients

perform read-write operation simultaneously on the NFS

server, the load on the server increases and it also starts falling

short of resources. Therefore, the idea of combining memory

and power of multiple servers to form a volume to be

accessed by clients arises. GlusterFS is a distributed storage

system and hence it aggregates storage servers through

TCP/IP or InfiniBand RDMS technology to form one

enormous parallel network [10].

Servers are established as storage directory and they run a

GlusterFS daemon to export a local file system as a volume.

All the client-side operations can be performed by

applications using standard IP networks. The client creates

virtual volume from multiple remote servers and is mounted

via the FUSE (File System in User Space) mechanism.

2.2 Without Shared Storage
Migration without shared storage or traditionally called

Shared Nothing Live Migration allows the user to move a

virtual machine even if the VM’s file system resides in a

storage not shared by both the hosts. During migration, the

configuration file is moved first then the VM’s storage file is

migrated. To improve the performance, the VM’s state and

storage still run on the source host till the storage file is

migrated and the VM starts up on the destination host.

3. VM MIGRATION IN CLOUDLETS
Initially, when the user starts the mobile application, it gets

connected to the cloudlet that is present in its proximity and is

nearest to it. The cloudlet sends a request to the cloud center

for that user's required VM. The VM required by the user is

brought to that cloudlet from the data center. All the services

provided to the user are maintained by that cloudlet. As this

cloudlet is nearby to the user, the user's experience with the

application is very smooth. There often arises a situation,

when the user is mobile, the distance between the cloudlet and

the user will start increasing. There may be a point where

there is a considerable delay in the connection between the

user and cloudlet. Hence, the user needs to be connected to a

new cloudlet which is nearest to it. Along with the new

connection, the storage and services also need to be brought to

new cloudlet without disturbing the performance of the

application. In short, the VM of the user in previous cloudlet

needs to be migrated to the recent nearby cloudlet. This

migration needs to be a live VM migration since the user

should not experience any downtime, although in practical

world there is a downtime of few milliseconds.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.52, June 2018

14

Fig 2: Detailed migration process between cloudlets

4. PERFORMANCE PARAMETERS
VM Migration has to be fast, efficient and with minimal side

effects to give an overall good performance. Depending on

different migration mechanisms their performance differs in

metrics as optimization ways change [4,8].

4.1 Metrics
In this section, we discuss different metrics that can be

considered during live migration [3].

4.1.1 Total Migration Time
It is the total time taken during every process from the start to

the end of VM migration. Its value can vary depending on

how much data is being moved during migration. Total data

transferred from source to target cloudlet and allocated

bandwidth decide this parameter.

4.1.2 Downtime
The time for which the service becomes unavailable during

the VM migration is called the Downtime.

4.1.3 Page Dirty Rate
It is the rate at which the memory pages are updated by the

VM. During the migration, every page must be updated as

quickly as possible to maintain the consistency and to confine

the total migration time and downtime

4.1.4 Link Speed
The bandwidth allocated to the link is inversely proportional

to the total migration time. The faster transfer requires more

bandwidth; hence it takes less total migration time.

4.1.5 Network Traffic
It is the amount of data sent from source to target cloudlet is a

factor in deciding cost of migration.

4.1.6 Service Degradation
The application running inside the VM which is accessed by

the mobile device gets affected during migration and service

degradation is a measure to indicate the degree of that. It can

be measured by the changes in throughput, response time, etc

of the service.

4.1.7 Network Bandwidth Utilization
This metric is defined by the considering network traffic and

migration time. Utilization is at its best when network traffic

and migration time is lowest.

4.2 Overhead
Migration has its drawbacks and some performance

degradation factors are discussed below [8].

4.2.1 Computational Overhead
Migration processes use up computational resources at other

source and destination. Optimization techniques like data

Deduplication, compression also add to it.

4.2.2 Network Overhead
Reading and writing from source to destination consume I/O

bandwidth and migration process competes with other VMs as

it is very network-intensive.

4.2.3 Space Overhead
It’s least valuable compared to other two overheads.

Techniques like snapshotting take up introduce space

overhead

5. PROPOSED API
There are two types of APIs we developed -Viper Distributed

REST API and Viper Python Library (package).

Fig 3: Workflow of Viper API

The REST API is built with Flask. The API needs to be

downloaded on every system (cloudlet) that is a part of the

Fog. After the package is downloaded, the programmer just

needs to set details like IP address in the config.py file and the

server setup gets completed. After the API is installed and

configured in all the cloudlets, the database of the cloudlets

need to be updated. Every cloudlet should have the metadata

about its neighbouring cloudlets. Whenever a cloudlet is

added in the system or deleted from the system, the database

gets updated. In our Experiment, we used MySQL DB.

Companies who have their own cloud center have a dedicated

REST API or any other kind of mechanism that triggers

certain events which in turn take care of the cloud

infrastructure. The application (app) that the company runs

communicates with the REST API. The API realizes the

essential data and parameters of the corresponding app and

performs certain activities like VM migration or load

balancing. REST API gives an advantage because the app can

communicate with it irrespective of the language it is written

in. This API is also useful for IoT devices which need to send

data on the fly for analysis.

As we can see from the above diagram, the app sends a

request to the Viper REST API. The API takes care of

communicating with the Virtual Machines. It provides

functions like migrating, cloning, initializing a VM.

In some cases, companies prefer to use their own REST API

for monitoring their cloud center. We have developed a

python library for such scenarios. A programmer can just

import the Viper modules and use the provided

functionalities. One can create its own REST API using this

python package.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.52, June 2018

15

6. IMPLEMENTATION

6.1 Assumptions and Constraints
Following are the assumptions and constraints

 The cloudlets are connected in VPN over LAN.

 The cloudlets are nearby each other and hence RTT

latency is simulated

 Cloudlets are assumed to be performing as customer

edge and are one hop away from the provider edge

 Maximum of 2 interfaces can be connected to the

mobile

6.2 Architecture

Fig 4: System Architecture

In the system, there are 2 main modules the cloud and mobile

device. Cloud is VPN of cloudlets over LAN. The cloudlets

are nearby each other and hence they are assumed to be a hop

away from the mobile device. The cloudlet consists of a host

operating system over which a hypervisor is installed. In our

setup, the hypervisor is VirtualBox. It creates virtual

environment for multiple VMs one of which here runs a

server application that is accessed by the mobile device. Two

Ubuntu 16.04 hosts were used as cloudlets and VirtualBox

was used to enable virtualization environment to the Virtual

Machines.

As the mobile device moves away from the source cloudlet its

RTT from it increases. When the RTT goes beyond a

threshold RTT, the performance of the application degrades

and hence there is a need to connect to another nearby

cloudlet. To determine the target cloudlet, source sends a

request to all its nearby cloudlet to check its RTT with the

mobile device. In return, they send their RTT to source

cloudlet, and the minimum of which is chosen as target

cloudlet. Each cloudlet has a database which has IP addresses

of all its neighbourhood cloudlets and the respective RTT

between them.

Fig 5: System Flow

A VM is created and configured with respect to the VM in

source cloudlet at the destination cloudlet. Teleporter is set

on. The folder containing the .vdi file of VM is shared with

destination cloudlet using NFS and finally the destination is

ready for migration. Migration from source to destination

cloud takes place in iteration and hence if the VM is running a

resource intensive application, the total migration time will be

more, even though the downtime of system is negligible.

7. EXPERIMENTAL SETUP
Host System:

 RAM: 8GB

 Processor: Intel Core™ i5-6200U CPU, 2.30GHz

 OS: Ubuntu 16.04

 OS-Type: 64-Bit

 Disk: 1TB

Guest System (VM):

 RAM: 512/1024/2048 MB

 OS: Ubuntu 14.04

 OS-Type: 64-Bit

 CPUs: 4 to 8

 CAP Execution: 50% to 100%

 Disk: 8GB

VirtualBox Version: 5.1

Python Version: 2.7.2

8. EXPERIMENTAL ANALYSIS
Using the Viper REST API, we have tried Virtual Machine

Migration from one host to another. We have tested migration

keeping RAM, CPUs, Stress (Load) on CPU and Bandwidth

as variables, and calculated migration time and downtime for

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.52, June 2018

16

these scenarios. These graphs show relation between

migration time and downtime with RAM and CPU load.

To study and test VM migration with different CPU load

(high computation applications) stress-ng was used to stress

test the virtual machine, migrate it and check efficiency of the

process. The migration was tested for CPU usage of 25%,

50%, 75% and 100%.

By analysing these graphs, we have concluded some

important facts. The following are the various graphs

obtained:

8.1 Scenario 1
Downtime is measured by varying the RAM as well as the

stress on CPU.

Fig 6: Downtime keeping RAM and Stress Varying

8.2 Scenario 2
Migration time is measured by varying the RAM and CPU.

Fig 7: Migration Time keeping Ram and Stress Varying

Table 1. Experiment Results of Downtime Analysis

(seconds)

Stress/RAM (MBs) 25% 50% 75% 100%

512 0.0027 0.0192 0.208 0.108

1024 0.0192 0.121 0.209 0.083

2048 0.021 0.04 0.103 0.109

Table 2. Experiment Results of Migration Time Analysis

Stress/RAM (MBs) 25% 50% 75% 100%

512 19.17 31.65 31 19.17

1024 18.758 33.75 37.82 18.758

2048 19.596 38.58 35.99 19.596

Analysis from Scenario 1 and 2:

 As we increase the stress, the migration time

increases.

 When the stress is above a certain value and

migration is quick, some of the dirty pages are not

transferred properly, hence we get a high downtime.

 On the other hand, when the migration is slow,

VM’s dirty pages are transferred slowly but

efficiently, hence the downtime is less in this case.

8.3 Scenario 3
Downtime is measured keeping the bandwidth and Ram

constant.

Fig 8: Downtime keeping Bandwidth 70MBPS and RAM

512MB

8.4 Scenario 4
Migration Time is measured keeping the bandwidth and Ram

constant.

Fig 9: Migration Time keeping Bandwidth 70MBPS and

RAM 512MB

Analysis from Scenario 3 & 4:

 As we reduced the bandwidth, the process of

migration gets affected.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.52, June 2018

17

 The migration time increases, while it does not

affect the downtime much.

8.5 Scenario 5

Fig 10: Migration Time keeping Bandwidth 100MBPS,

RAM 2048MB, Stress 50% and Varying Number of CPUs

Analysis from Scenario 5:

More the CPUs assigned, faster the dirty pages will get

transferred, hence the migration decreases gradually when we

assign more CPUs to the VM.

9. CONCLUSION
We discussed the newly emerging paradigms cloudlets and

fog computing. The comparison between the cloud and

cloudlets gave some light to the development and use of

cloudlet to the full potential. Mobile devices and sensors do

not have much storage capacity, battery life, and processing

power. Using cloudlets would be extremely beneficial and

boost to mobile cloud computing and the Internet of Things

(IoT). The role of live virtual machine migration in Mobile

Edge Computing is very crucial. This concept is just an

extension of VM migration in Cloudlets.

The ability to more seamlessly integrate data center with

mobile devices considering network connectivity, storage, and

computational capability still remains an important challenge

in cloud computing. Due to Live Migration, as a user moves

across multiple locations, its session while using real-time

applications like streaming or gaming can be handed over to

multiple cloudlets, thereby maintaining a consistent session

for the user.

For these situations, we have developed an API that can

manage all the cloudlets, thereby providing uninterrupted use

of real-time applications to the user. This API is useful for

organizations that have their own cloudlets. The performance

of the proposed API for VirtualBox is studied and tested by

altering various parameters and each result is concluded.

10. FUTURE WORK

10.1 Multipath TCP
Sometimes, the VM has to migrate to a totally different

network. During this process, the IP address of VM changes.

This change causes the client device to re-establish TCP

connection with VM at the target site. Hence, there occurs a

delay in this process. To mitigate this delay, we propose to

adopt a mechanism called MultiPath TCP (MPTCP). It allows

us to communicate with several IP address/interfaces at a

time. Using this technique, the connection between the VM

and client will not break even if the IP address of VM

changes. Hence, our main future goal is to make Viper

support MPTCP. As the IP address of the VM changes, the

API should be notified and the corresponding configuration

should be made. There might be a need to change the structure

of current configuration as right now we are configuring a

server only for a single IP address. Moreover, the database

regarding neighbouring cloudlets data should be also

modified. We currently use IP address as the identifier, but

given that IP address will change, the identifier should be a

unique key.

10.2 Scalability
We have developed and tested this API at a rudimentary level

with 4-5 cloudlets. This API needs to be scaled to handle

around 100 cloudlets. Tasks like replication and backup also

should be given a good thought.

10.3 Security
There will be a lot of user and business data flowing via this

API. Hence, data protection should be ensured thoroughly.

One solution is that the data can be encrypted. But, when

working with real-time applications, encryption and

decryption can take considerable amount of time.

11. REFERENCES
[1] Gursharan Singh, Pooja Gupta, “A Review on Migration

Techniques and Challenges in Live Virtual Machine

Migration,” 5th International Conference on Reliability,

Infocom Technologies and Optimization (ICRITO)

September 7-9 2016.

[2] Fikirte Teka et al “Nearby live virtual machine migration

using cloudlets and multipath TCP,” Springer Journal of

Cloud Computing: Advances, Systems 2016.

[3] Anita Choudhary, Mahesh Chandra Govil et al, “A

critical survey of live virtual machine migration

techniques,” Springer Journal of Cloud Computing:

Advances, Systems and Applications 23rd June 2017.

[4] Senthil Nathan et al, “Towards a Comprehensive

Performance Model of Virtual Machine Live Migration,”

Proceedings of the Sixth ACM Symposium on Cloud

Computing Pages 288-301

[5] Mattias Forsman, Andreas Glad, Lars Lundberg, Dragos

Ilie, “Algorithms for Automated Live Migration of

Virtual Machines”, The Journal of Systems & Software

(2014)

[6] Gang Sun, Dan Liao, Vishal Anand, Dongcheng Zhao,

Hongfang Yu, “A new technique for efficient live

migration of multiple virtual machines”, Future

Generation Computer Systems (2015)

[7] Fei Zhang, Guangming Liu, Xiaoming Fu, “A Survey on

Virtual Machine Migration: Challenges, Techniques and

Open Issues”,IEEE Communications Surveys &

Tutorials (Volume: PP, Issue: 99)

[8] Latesh Kumar K. J., “Implementing Network File

System Protocol for Highly Available Clustered

Application on Network Attached Storage”, IEEE 5th

International Conference on Computational Intelligence

and Communication Networks (2013)

[9] Manikandan Selvaganesan, Mohamed Ashiq Liazudeen,

“An Insight about GlusterFS and its Enforcement

Techniques”, International Conference on Cloud

Computing Research and Innovations (2016)

[10] Ali Khajeh-Hosseini, David Greenwood, Ian

Sommerville, “Cloud Migration: A Case Study of

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.52, June 2018

18

Migrating and Enterprise IT System to IaaS”, IEEE 3rd

International Conference on Cloud Computing (2010)

[11] Raghavendra Achar, P. Santhithilagam, Nihal Soans, P.

V. Vikyath, Sathvik Rao, Vijeth A. M., “Load Balancing

in Cloud Based on Live Migration of Virtual Machines”,

Annual IEEE India Conference (2013)

[12] Xiang Sun, Nirwan Ansari, “EdgeIoT: Mobile Edge of

Computing for the Internet of Things”, IEEE

Communication Magazine (Volume: 54, Issue:12,

December 2016)

[13] Rabiatul Addawiyah Mat Razali, Ruhani Ab Rahman,

Norliza Zaini, Mustaffa Samad, “Virtual Machine

Migration Implementation in Load Balancing for Cloud

Computing”, IEEE 5th International Conference on

Intelligent and Advanced Systems (2014)

IJCATM : www.ijcaonline.org

