
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

33

Efficient API Migration across Environments

J. A. D. C. A. Jayakody
Department of Software

Engineering and Department of
Information System

Engineering
Faculty of Computing
Sri Lankan institute of

Information Technology,
Malabe, Sri Lanka

A. K. A. Perera
Department of Software

Engineering and Department of
Information System

Engineering
Faculty of Computing
Sri Lankan institute of

Information Technology,
Malabe, Sri Lanka

G. L. A. K. N. Perera
Department of Software

Engineering and Department of
Information System

Engineering
Faculty of Computing
Sri Lankan institute of

Information Technology,
Malabe, Sri Lanka

V. P. Wijayaweera

Department of Software Engineering and
Department of Information System Engineering

Faculty of Computing
Sri Lankan institute of Information Technology,

Malabe, Sri Lanka

M. A. M. Asbar Ali
Department of Software Engineering and

Department of Information System Engineering

Faculty of Computing

Sri Lankan institute of Information Technology,

Malabe, Sri Lanka

ABSTRACT

Development organization maintain separate environments for

development, quality assurance and production etc. These

environments execute independently and have their

deployments, and own methods of traffics controlling that are

handled locally. Under such a process Application

programming interface (API) artifacts allowed to be created

only at development environment, tested in QA (Quality

Assurance) environment and then would promote to the

production environment prior releasing to the market. When

moving API management products from one environment to

another, all the created APIs need to migrate across different

environments to test the exact functionality and behavior of

the application. Purpose of this implemented tool is to

minimize the effort and time in recreating APIs and facilitate

the accurate and efficient migration across different

environments without any major post migration changes and

additional effort. Most of the API managing products as well

as API publishers engaging with API imports and exports of

APIs will be the beneficiary parties of this product. Firm

analysis of the current migration techniques uses by trending

API Management products reveled major sieve point that

needed to be address.

Final tool will be an executable file which can be plug and

play via the command line interface. This tool can be used by

any REST (Representational state transfer) based API

managing applications without major configuration changes.

Other than import and export functionality, tool equipped with

built-in authentication mechanism to ensure the security of the

publisher proprietary of the APIs, API subscription and single

cluster deployment via minikube and Google cloud

Keywords
API migration, CLI tool, minikube, kubernetes

1. INTRODUCTION
Application Programming Interfaces(APIs) are essentials

commodity in most of all the software industries today.

Developers use API for a variety of purposes including

integrating third party functionalities in to websites or

applications, to share community data, to expose

functionalities to outside and to integrates maps with

applications etc. APIs are use in large scale in software

industry to deliver above mentioned tasks. API management

applications are the software that facilitate all the activities

related to APIs including API creating, publishing, monitoring

and life cycle management of the APIs. As a typical software

product before API managing application product is released

into the market, it traverses through different environments in

the organization such as Development (Dev), QA to verify the

product is ready to release. Particular set of APIs need to be

created in each of these environments to examine the expected

functionality uniquely across these environments. Hundreds

of API may need to create too check the behavior of the

application at high traffic conditions. Manual creation of

APIs lead in to several problems. Automated API migration

process will save the developer productive time, effort and

lead in to rapid faultless development.

Migration of API comprises of two key processors as

exporting and importing. Exporting refers to moving of APIs

from one environment to another environment. Export of

APIs involves in retrieving all the API resources including

API definitions, swagger definitions, thumbnails, Web

Services Description Language (WSDLs) and documentation

to transportable format. Importing refers to bringing APIs in-

to a new destination environment. Imported APIs need to be

create and published in the imported environment (see Figure

1).

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

34

Figure 1: Migration process of APIs across different

environments

The purpose of this project is to forward a CLI (Command

Line Interface) tool that will perform the API migration across

environments efficiently while addressing the issues and

inefficiencies.

This article is divided in to # sections. In section 2, discuss the

defects and drawbacks of the current existing API migration

mechanisms. Section 3 will discuss on the

2. BACKGROUND
In order to test the API manager product during each stage of

the pre-marketing process, consistent background

environments needed to be maintained. Therefore, developers

try to recreate these APIs in a new environment. When there‟s

no defined mechanism to export and import the APIs created

in the past environments, Developers have to set up and

publish these APIs in the new environment through a manual

procedure. Manual creation of APIs causes several identified

issues[1] which are described in brief below.

2.1 Unnecessary effort in recreating APIs
Creating an API with minimal features in single given

environment cost average of 2 minutes. A number of such

APIs are created in the process of developing some API

management products as WSO2 API manager, Apigee etc.

recreating these APIs in several other environments is a

wastage of developer productive time.

2.2 Extra time spends on recreating APIs
Time taken in manual API recreation will drag the test

schedules and thereby extend the final release days of the

product. Further, it is a waste of productive time that can be

used in any feature development tasks. As well as this is

critical considered to the product‟s time-to-market. Gradually

credibility of the product will reduce implicitly.

2.3 Loss of actual functionality and

features.
Even though the developers somehow manage to create the

APIs in the new environments, some of the functionalities and

the features need to be tested can be missed due to the lack of

knowledge about the functionalities exposed by the

application or due to human errors. In that case, developers

must recreate a similar API with missed functionalities to edit

the existing before proceeding.

2.4 Why Individual components should be

deployed separately?
Single API consists of many components as API definitions,

swagger definitions, API thumbnails, documentation, WSDL

and any migration policy sequences. In most of the migration

tools each of these components needed to be deployed

separately during the process of importing API to a new

environment. This has a considerable effect on the

performance of the migration process. In the process of bulk

import and export this manual work increase in multiple times

as per to a single API import and export. Ultimately, it is a

waste of productive developer effort and time.

2.5 Poor authentication mechanisms lead

to unauthorized access
Authentication mechanism of most of the tools does not have

a better built in mechanism for the authentication. In a

developing organization, the information should be in more

secured since the data should not be accessible by

unauthorized users. The authentication process of most of the

currently available tools relies on third party integrations and

simultaneously need to contact the third party each time an

authentication request occurs. It will lead to unauthorized

accesses.

2.6 Absence of the functionality of API

Subscription causes leak to the confidential

information
When invoking APIs to an application the invocation should

also authenticate to prevent unauthorized access and to avoid

leaking of the information unauthorized persons. Otherwise

the chance of accessing confidential information in the

application by intruders is high.

Taking above facts into account came up with a tooling

support for API managing applications which will be execute

via command line interface, having capability to migrate a

single or bundle of APIs across different environments within

the development organizations. The CLI tool will minimize

the effort and time in recreating APIs when product moves

between environments as Dev to QA or QA to production.

This can minimize the additional effort and time required in

regenerating the APIs in a different environment during

APIM(API Managing) product migration cycle. Final

software product will be an executable file that can be run via

the command line interface together with the arguments

including the details of the API/APIs need to export/export.

This tool is a generalized CLI tool, such that it can be used by

number of APIM products with lesser pre- deploy

configurations, that can be used in different API management

application by different vendors. Another main benefit of the

proposed tool is, the tool will be a platform independent tool

which can be used in different operating systems.

Implemented CLI tool will be run on any environment and

within any API Managing applications.

3. LITERATURE SURVEY
There are number of commercially available as well as open

source API Managing products available in the current

market. Although there are vast number of API managing

applications available in the market few out of them have

defined a partial or complete mechanism to migrate the APIs

across different organizational environments. Out of those

applications having API migration mechanism, only few

products use CLI (Command Line Interface) tools to fulfil the

above requirement. These API managing applications with

API migration functionality follows different methodologies

to export an API from one organizational environment to

another environment. Most of the RESTful APIM applications

use curl commands to retrieve API components including

thumbnails, API definitions, swagger definitions,

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

35

documentation and mediation policies etc. Some tools use

message formats as JSON(JavaScript Object Notation) and

XML (EXtensible Markup Language) to store the content of

API components. Table 1 below represent the API migration

methodologies followed by few such trending products in the

market.

Table 1. API migration mechanisms followed by different

API managing products

Apigee CLI tool built on NodeJs that leverages the

JSON request structure used by Apigee

Management APIs[2].

Mule Soft Create a properties file for each

environment.

Configure a property placeholder in your

application to look for the deployment

environment upon launch.

Configure an environment variable to

point to a specific environment during

application deployment [3][4].

WSO2 Provides RESTful (Representational state

transfer) API which can be used to

import/export registry resources and meta

information for a particular API. This can

be accessed by deploying the WSO2

import/export tool which is a WAR file

[5].

AWS

(Amazon

Web

Services)

AWS CLI built using python and used

SSL (Secure Sockets Layer) when

communicating with AWS services. For

each SSL connection, the AWS CLI will

verify SSL certificates. This option

overrides the default behavior of verifying

SSL certificates.

CA

Technologies
CLI tool built in java and built on top of

the existing REST-Management API

which uses JSON web tokens (JWT) in the

API gateway[6]

After in-depth analysis done by these different mechanisms of

API, migration revealed a diverse set of drawbacks that are

shown by the majority of the products commonly.

3.1 Drawbacks in current API migration

mechanisms.

3.1.1 A delegation of key security functions to

third parties.
Most of the current API migration tools rely on third party

service providing applications to quire the key security

functionalities. This is completely depending on the trust

relationship between third party application and the API

migration tool.

3.1.2 Individual components should be deployed

separately.
Typical API composed of different components as API

definition, swagger definitions, mediation policies,

thumbnails, documents etc. In most of all the existing tools,

these components need to be export or import as individual

extractions. This requires a considerable human involvement

and hence led to wastage of productive time and effort.

3.1.3 Limited developer portal functionality
Existing API migration tools confined to a set of identified

functionalities that are limited to single API import and

export. However, according to the conducted survey,

identified that these tools could be an uplift to an improved

version by expanding the functionality to perform bulk API

export and import.

3.1.4 Developer portals lack automation features.
Majority of the current API migration tools required for much

manual involvement. The user should execute every single

command to export an API and import it to a new

environment.

Considering issues exists in the current API migration

mechanisms, conducted an in depth literature survey on

following criteria.

3.2 OAuth 2.0 in Authentication
During the literature review found that this is the based

authentication technology use by most of the API managing

applications. One of the potential benefits of OAuth (Open

Authorization) 2.0 is the ability for users to share verifiable

assertions about themselves without having to release any

personally identifiable information.

As shown in the Table 2 most of the currently available tools

contain OAuth 2.0 endpoints. Therefore, the

introduced authentication mechanism in the proposed CLI

tool can be used for many APIM application by different

vendors. As a result, using a single authentication mechanism

leads to make the proposed CLI Tool a generalized tool which

can be used by different APIM applications.

Table 2. API managing applications support OAuth 2.0

APIM

vendor

Available

CLI Tool

Available

CLI Tool

for API

Migration

Available

OAuth 2.0

authentication

endpoint

WSO2 Yes Yes (Must

recreate)

Yes

Azure No No Yes

IBM Yes No Yes

3scale No No Yes

Apigee Yes Yes (Must

recreate)

Yes

3.3 API export functionality in current

tools
Since there is no any API export in API manager, does not

have a way to migrate the APIs to another environment.

Nowadays most of the popular companies such as Facebook,

amazon and twitter provides access to expose their APIs into

different sources.

In Facebook, there is an app event to export and download 24-

hour worth of app event data from the day before the query up

to 30 days old as compressed .gz file and compressed file can

be imported to the own system for further analysis [10]. Once

created and configured an API in amazon API gateway, allow

to export it to a swagger file. API Export API component in

the Amazon API Gateway Control Service take responsibility

for it [11].

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

36

However, currently available API managers including WSO2

API Manager does not provide developers to export the

created APIs to relevant source in a more efficient way. As a

result, the whole API need to create in another environment

again. Some of the API migration tools has such capability,

but they are depended on their API manager.

3.4 API import functionality in current

tools
API import is the major functionality expected from a tool

created for API migration. Typical API import consists of

several HTTP (Hyper Text Transfer Protocol) requests

targeted at endpoints that deal with the conversion and import

of the sent files. Often this HTTP request accepts json or xml

as payload. Most of the API managing applications only has

defined certain set of endpoints which can be invoked to

create an imported API file. The user can run the following

cURL commands with all the registry and database resources

exported from the source environment. Table 3 shows an

example cURL command issued by most of the migration tool

to import a given API to a new environment.

Table 3. Example of cURL command to import an API

Parameter Description

URI https://<host>:9443/api-import-export-

<product-version>-<tool-version>/import-

api

Query

parameters

preserveProvider=<true|false>

HTTP

method

POST

Example Imports the API with the original provider

preserved: curl -H "Authorization:Basic

YWRtaW46YWRtaW4=" -F

file=@"full/path/to/the/zip/file" -k -X

POST "https://<host>:9443/api-import-

export-<product-version>-<tool-

version>/import-api"

Imports the API with the provider set to the

current user: curl -H "Authorization:Basic

YWRtaW46YWRtaW4=" -F

file=@"full/path/to/the/zip/file" -k -X

POST "https://<host>:9443/api-import-

export-<product-version>-<tool-

version>/import-

api?preserveProvider=false"

3.5 Availability of API Subscription

functionality on currently available tools
API subscription also another main feature which can be

provided to secure the invocations of the APIs in the

environment. Before a consumer invokes an API, s/he should

subscribe the API to obtain the keys for the invocation of the

API. Therefore, the consumer should be able to subscribe an

API to an application and generate keys. After that process,

only s/he can use the API in the application. Most of the

currently available CLI tools do not support this functionality.

The few tools which have the subscription option contains

limited functionalities. Following table 1.2 shows API

vendors who have included CLI tool in their API management

applications with the built-on technology and the availability

of the API subscription functionality.

4. METHODOLOGY

4.1 Authentication mechanism
APIs are proprietary resources. Therefore, initially, CLI tool

should be able to validate the user before continuing with the

functionalities provided by the tool. The CLI tool equipped

with a built-in authentication mechanism is to ensure a strong

secure authentication process. Therefore, it has minimized the

dependencies with external third-party authentication

mechanisms. This will be achieved through basic

authentication mechanism. Basic auth used because it is the

simplest mechanism that can be used to enforce access

controls to web resources.

Furthermore, REST API calls should secure with

authentication headers. OAuth 2.0 will be used as

authorization protocol [12]. Since most of the available

APIM applications use OAuth 2.0 as the authentication

process, OAuth 2.0 tokens were used to generate the access

tokens. To generate access token the retrieved client ID and

the client secrete keys from the authentication endpoint after

validating the user are required. The tool will set one string

contains clientID and the client secret separated by a colon

(clientID:clientsecret). Then the tool will encode the string

into a Base64 string since it is required to send to OAuth 2.0

authentication endpoint to generate an access token.

Moreover, this access token from the OAuth 2.0 has a scope,

which delimits what the access token can do and what

resources it can be accessed [13][14]. Therefore, the relevant

OAuth scope also required sending into the OAuth 2.0

authentication endpoint. After sending the string into to the

endpoint, it will validate the string and if it is a valid one the

generated access token can be retrieved from the

authentication endpoint. This access token required for the

REST calls which are for the further functionalities in the CLI

Tool. Figure 2 shows the API invocations take place between

CLI tool and the endpoints to validate the logged in user.

Figure 2: Overview of the authentication mechanism

followed by the CLI tool

Encapsulated authentication operations are undertaken to

prevent any unnecessary external intruder actions. Figure 3

provides the detailed flow of the authentication mechanism

followed by the CLI tool. The user can log in to the tool using

a valid username and a password. This user credentials,

decide about the environments that the user can access. Valid

user name and a password then concatenated and encrypted

are sent to the basic token endpoint. The basic token endpoint

will issue a basic token with an expiration period. This basic

encrypted token can then be sent in to an OAuth 2.0 endpoint

which will return a valid OAuth 2.0 token. OAuth token is

used by the CLI tool to call the REST API endpoints to

retrieve the resource components of the APIs. These

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

37

components can then be bundled and sent to the next

environment.

Figure 3: Authentication mechanism followed in the

implemented the CLI tool

4.2 API export
API is a collection of related resources. These resources

include API definition, swagger definition, thumbnail,

documentation, WSDLs and mediation sequences. In API

export Component, need to retrieve all the artifacts related to

an API such as API definition, swagger definition,

documentation and then bundle them up to a transportable file

is referred to as API export. Figure 4 illustrates the process

followed by the CLI tool which performs the above

functionality.

Figure 4: Flow of API Export Functionality expose by the

CLI tool

At the initial, User can execute the tool with the credentials of

the API details. API details can either be the Universally

Unique Identifier (UUID) of the API or combination of API

name, version and the owner of the API. Once the request has

been sent, CLI tool search for the API in the API store. If it is

a valid API, the CLI tool will retrieve all the artifacts related

to the API separately, from the persistent data source and

write them in a folder component belonging to API includes

API definition,

Swagger definition, thumbnail images, mediation policies,

documentation and any WSDLs if available. Finally, the

created API will be compressed and converted into a

transportable file, which can be used in the API import

process at the receiving end.

Upon exporting an API, all these resources should move to

the new environment. These resources are residing inside data

sources and at times in registries. Upon export, these

components need to be retrieved from the original data source

and copied into the exporting folder. As described in section

3.1, these components can only be retrieved via REST API

invocations.

API calls to resource endpoints will return the requested

resources as attached to the response payload. This response

can be in different formats as binary, json or xml etc. Those

payloads are expected to convert into the required file formats

and written in to a new folder. After all the resource files been

written into the exporting folder, finalized folder will be

compressed in to archive format. Overview of the process of

resource retrieval is shown in Figure 5.

Figure 5: Overview of API export functionality followed in

the CLI tool

After the user sends the request all the information required

for the requested API will be retrieved through REST API

invocations from the data sources. After executing the

relevant command, it will generate a portable zip file which

includes all the entities bundled together and which can be

downloaded. In the .zip file the Meta information which

contains all the basic information required for an API to be

imported in another environment and the API swagger

definition,so documents which contains the summary of all

the documents available for the API, thumbnail image of the

API, WSDL file of the API and the sequences available for

the API will be available.

API export functionality retrieves the information required for

the requested API from the registry and databases and

generates a ZIP file, which the exporter can download. This

exported ZIP file has the following structure shown in figure

6.

Table 4 will explain the details of this entries in the archive

folder created at the end of API export.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

38

Table 4. Archive folder entries

Meta

Information

Swagger.json : contain the API swagger

definition

Api json: contain all the basic

information required for an API to be

imported to another environment.

Documents docs.json: contain the summary of all

the documents available for the API.

Add the uploaded files for API

documentation

Image Thumbnail image of the API

WSDL WSDL file of the API

Sequences The Sequences available for the API

Figure 6: File structure of the API archive created during

API export process

4.3 API import
API import is the process of recreating a set of APIs that were

in a different environment to a new environment. This

includes all the activities starting from receiving imported API

file to the new environment up to publishing the imported

APIs in the publisher portal of destinations environment.

None of the components should be dropped during the import

process. APIs in the new environment should be exact to the

original APIs in the previous development environment.

Figure 7 shows the flow chart of the API import functionality.

Figure 6: Flow of the activities related to API import

functionality

Figure 8 shows how the interior data flow and API

invocations take place upon API import. The flow of the

activities according to the order is as follows.

Figure 7: Workflow of the API import functionality

expose by the CLI tool

1. The user executes the tool with valid user

credentials. If valid shows set of the option through

which use can select the option to perform API

import.

2. User feeds the file path to the imported archive file.

3. The tool itself extract the content of the archive file

in to a local temporary folder.

4. The tool will retrieve those content including API

thumbnails, documentation, WSDLs, mediation

policies.

5. Then it invokes the REST API endpoints with these

components as the payload to save the API contents

into the persistent data storage of the new

environment

6. Data have been saved in to the database.

7. REST API invocations retrieve the data related to

each API from database

8. Create and publish the APIs in the publisher portal

of the new environment.

API import functionality triggers when the tool been executed

with the folder location to the imported compressed file.

Along the execution tool prompt user for username and

password to authenticate the user since only another API

publisher can create the API in a new environment. After

successful authentication, CLI tool extracted all the content in

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

39

the compressed folder and copied to a temporary local

location. After that CLI tool will invoke the token generation

endpoints to generate valid access tokens for the session.

REST APIs invoke with extracted content as payloads to

create the API/APIs in the new environments and to upload

the contents as thumbnails, WSDLs, mediation policies and

documentation. As a result, exported APIs will be published

in the API store of the imported environment.

4.4 API subscription
Subscription enables to generate access tokens and to be

authenticated to invoke the APIs. Therefore, the subscriber

should subscribe to the API, before invoking it to an

application since after subscribing to the API only, an access

token can be generated to invoke the API to provide a valid

authentication process. Therefore, in this functionality

proposed tool facilitate subscriber to add new subscription and

tool will provide the functionality to create a new application.

Moreover, sub functionalities related to API subscription will

also provide to the user by the CLI Tool. Figure 9 shows the

flow chart of the API subscription functionality.

Figure 8: Flow of activities followed in the API

subscription functionality

Figure 10 shows the basic mechanism of the generate access

token and add new API Subscription functionality. The

component mainly divided into three processes; authenticate

the user, generate an access token and subscribe an API.

To invoke an API into an application user has to subscribe the

API to the application. To proceed into API subscription

functionalities, an access token is required in subscribe scope.

After a valid user logged into the CLI Tool, a client ID and

client secrete can be retrieved by the basic authentication

endpoint. The string should be encoded into Base64 string

after preparing those two keys into a single string separated by

a colon. When user select the option as API subscription, the

encoded string will send to OAuth 2.0 authentication endpoint

with the scope of subscribe. If the client credentials are valid

it will generate an access token for subscription functionalities

in the scope of subscribing.

Figure 9: Overview of API subscription functionality

expose by the CLI tool

To subscribe an API first user has to provide the details of the

API (API name, version, and provider) then the tool will

arrange the API Identifier of the user selected API and send it

to an endpoint which has the details of the APIs. If the

selected API is a valid one, the tiers available for that API can

be retrieved from the endpoint. Then the Tool will display the

available tiers for the API.

The user must select a tier to continue. Then the tool will

show the existing applications for that user. CLI Tool will

provide the functionality of creating a new application as per

the user‟s requirement.

If the user required to create a new application, the CLI Tool

will facilitate that functionality as well. To create a new

application user only need to provide a name for the

application and to select a tier for the application. Then it will

be sent through REST calls with the generated access token

and will be created in the application. After selects an

application the API will be subscribed into the selected

application. The request is sent to the endpoint with the

relevant API details, with generated access token with

subscription scope. If the request successfully executes then

subscription has been done in the API store. After that only

user can invoke the API and use it in the application.

4.5 Deploying APIs through kubernetes
Kubernetes is an open source orchestration system which

provides for docker containers. There are some alternate

docker orchestroms such as Docker Sworm and Mesus.

Kubernetes, let to scheduled containers on a machine which

make their cluster. Main task of container scheduler is to

connect those containers on the appropriate host after starting

the first container.

It allows to run several containers on a machine, and those

machines make their cluster [15]. No matter whether they are

long running services like web applications. Kubernetes

services provide logical set of pods which can able to access

them and called this as micro service too [7]. Kubernetes will

manage the state of containers as follows,

1. Let to start the container on a selected node

(A node is a worker machine in Kubernetes whether

they are a virtual machine or physical machine

depending on the cluster. It is managed by the

master components and have services to run pods). ▪

Restart the container when gets killed

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

40

(These containers are prepared to die at any time

where can able to kill, stop and destroy them

quickly).

2. Let move containers from one node to another node.

4.5.1 Why Kubernetes to the CLI tool?
The purpose of Kubernetes is to make it easier to organize and

schedule your application across a fleet of machines. At a

high level, it is an operating system for your cluster. It allows

you to not worry about what specific machine in your

datacenter each application runs on. Additionally, it provides

generic primitives for health checking and replicating your

application across these machines, as well as services for

wiring your application into micro-services so that each layer

in your application is decoupled from other layers so that you

can scale/update/maintain them independently. While it is

possible to do many of these things in the application layer,

such solutions tend to be one-off and brittle, it is much better

to have separation of concerns, where an orchestration system

worries about how to run your application, and you worry

about the code that makes up your application.

4.6 Automation of migration with docker
Docker makes easier to deploy CLI tool in several isolated

environments. Always there may minor variation between

development environments unless having own repository

environment. By using docker, fulfil that gap by keeping

consistent environment because docker containers are

configured to keep dependencies internally. Then it is easier

to use same container and developer can ensure that they do

not need an identical production environment [16][17]. It

means, no any restricts to run on amazon E2 instance and

allow to use the same container in the virtual box too. This

will be more important to use the CLI tool in a different

environment by using the same container.

Docker VM includes docker container where able to share the

kernel and shared application libraries. It has layered file-

system to share the OS in docker VM and hosted OS.

Compared to VM, docker containers can be faster and fewer

resources need to a single platform provide the shared OS

[18]. Then After Add the docker file which has line between

five to thirty lines to the machine. It is a small file, but it is

responsible for building docker image in docker VM. Then

create the docker image using docker file to the project.

Docker file contains several commands and instructions

where execute in sequential order to build the docker image in

docker virtual machine [19].

Docker image contains all project codes and any installments

of the program regarding building the project such as Golang

and IntelliJ installations. This image is set on the top of the

machine and can able to create any number of docker

containers and scale up those containers as needed. Then push

the created docker image to docker hub, and it includes

whatever need to build the CLI tool. It is a cloud-based

registry service and link to code repositories. Once receive the

image to the hub, build, test and stores pushed images which

link to the docker cloud. Then it can be deployed in private

hosts where provides centralized resources for team

collaboration, Container image discovery and work flow

automation using development pipeline [20]. Docker hub

provide following features,

 Add the hub and docker image to own workflows

where GitHub or Bitbucket integration

 Provides to create work group to access the

repository which includes docker image

 Docker image will renew automatically after

making change the code of the CLI tool.

 Pull images from docker hub and manage, push to,

and pull to the own repository which is accessed by

us.

Now any other users can run the CLI tool without need any

installation of their computers. It means, no need to install

Golang or intellij idea and work it as a VM. The overall

architecture of docker where involve the project as shown in

Figure 11.

Figure 10: Basic flow of creating docker image.

When push and commit the project in to the docker hub time

to time, Jenkins grab the latest code as soon as possible. If any

build error occurred in the project, trigger immediately to the

Jenkins and reverse the commit before last without finding the

error in the code. Once the build is successful, the project is

tested on several tests such as integration test, unit test and the

performance test automatically and send back it as report. If

exceptions occurred while testing, can easily troubleshoot the

issue. However, this is the continuous integration involve with

the project.

To monitoring the basic services such as containers, nodes

and topology, need to install Cockpit to PC. It is a free open

source system monitory application and checks work

perfectly.

It can monitor the services using one of both web interface

and command line. However, it was expected to use the web

interface which provides more easy access and manage. If any

services error occurred, can find easily. Work flow of the

docker in CLI tool is shown in figure 3.15. Then after install

kubernetes and kubernetes API server which is managing

related distributed the docker containers.

Figure 11: CI/CD workflow of docker image creation

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

41

5. FINDINGS
The final product of this research project on implementing

„Efficient and Platform Independent CLI Tool for API

Migration is an executable jar file which can be executed via

the command line interface on top of any platform. This is a

single tool with multi-functionalities including,

5.1 Functionalities expose by the CLI tool.

5.1.1 Single/multiple API imports
Single or multiple imports of APIs can be performed via the

tool by just executing it with the path to the imported folder.

Either it is a single API or bulk set of APIs tool will extract all

the content in the imported folder and publish the

corresponding APIs in the publisher portal.

5.1.2 Single/ multiple API exports
Tool includes a single plug and play mechanism for export of

APIs. To export APIs, the tool can be run with API

information that needs to execute. Required API information

may include API name, version and author of the API. In

single API export API credentials can give as a simple CLI

command and perform bulk API export, credentials of the

required API set need to be given in a CSV (Comma-

Separated values) file.

5.1.3 API subscription
APIs are useless without any subscribers that access the

services exposed by the APIs. Subscribers subscribe to APIs

to utilize the services provided by the APIs in their

applications. Users can execute the tool with API identifiers

of the APIs need to subscribe and the application details to

subscribe to an API.

5.1.4 Single cluster deployment via minikube
To deploy on the minikube cluster. First, the user has to start

the cluster and connect to it through the proxy given by them

to access the cluster.

After that proceed with the given batch file with the related

docker image for the related API that needs to be tested and

make sure to replace the docker images in the given

deployment batch file. After this, the minikube will deploy the

given docker image and the endpoint will be available for

testing

5.1.5 Google cloud deployment
To deploy in gke (Google Container Engine) first specifically

identify the requirement. Moreover, create a cluster as per the

requirement in the testing phase used a basic cluster with 1

CPU and 3.75GB memory. After the creation connects to the

cluster through the proxy by using Google sdk cli and just run

the batch file given by us to deploy the API and return an

endpoint with a high scalability.

5.2 Key benefits of the application

5.2.1 Platform independency
The tool is built using java where the application can execute

on different platforms and users can get the experience of

using it in many OS without any difficulties.

5.2.2 Higher efficiency though optimal resource

utilization
Resources used in the tool is minimized. Therefore,

unnecessary waste of resources has been reduced and because

of that performance and efficiency of the tool is increased.

5.2.3 Enhance security functionalities along

migration
Providing built in authentication using basic auth and further

validate the user and API invocations using OAuth 2.0

authentication and API subscription functionality.

5.2.4 More automated features
Minimized the user‟s actions through the CLI tool by

avoiding the unnecessary steps and the tool will handle them.

5.2.5 Plug and play solution
Any of configurations will not be required to execute the tool.

The functionalities of the CLI Tool can be experienced by just

executing the jar file.

6. TESTING AND VALIDATION

6.1 Performance Test with GKE
Executed a performance test to validate the GKE WSO2 API

Manager deployment by configuring a backend REST service

http://jsonplaceholder.typicode.com/ with API-Manager and

executing a JMeter load test with different numbers of

concurrent users. Executed the same load test with the direct

backend service as well as with the con d API proxy in API-

Manager to compare the performance results.

Used a single node for the deployment, and The VM

specification for the node is N1-standard-1: Standard machine

type with one virtual CPU and 3.75 GB of memory.

The performance metrics which used to evaluate the system

are latency and throughput.

Latency: the time taken to handle a request

Throughput: the number of requests handled by the server for

a specific time interval (e.g.: per second). Following are the

test results.

Table 5 shows the test results gained from load test performed

with the direst backend services with a predefined number of

concurrent users.

Avg in the above table 5 stands for the average time taken to

response a request from the client side to the direct endpoint.

This is given in milliseconds.

Table 5. Test results from direct backend REST service

endpoint

U
se

rs

A
v
g
 (

m
s)

M
in

 (
m

s)

M
ax

 (
m

s)

 9
0

th
 P

er
ce

n
ti

le

 9

5
th

 P
er

ce
n
ti

le

9
9

th
 P

er
ce

n
ti

le

T
h
ro

u
g
h
p
u
t

100 297 85 5416 407 421 470
35.7

5259

300 677 107 1499 1020 1181 1352
86.1

0792

500 528 58 7248 1180 1360 1548
93.1

7927

1000 2180 292 9647 5009 5444 6261
99.51

190

2000 4496 58 18927 10684 11407 12701
98.3

7316

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

42

Table 6 gives the test results gained from the load test

performed on API-Manager REST service endpoint with the

same number of concurrent users used in the previous test.

Table 6. Test results from API-Manager REST service

endpoint

U
se

rs

A
v
g
 (

m
s)

M
in

 (
m

s)

M
ax

 (
m

s)

 9
0

th
 P

er
ce

n
ti

le

 9

5
th

 P
er

ce
n
ti

le

9
9

th
 P

er
ce

n
ti

le

T
h
ro

u
g
h
p
u
t

100 1352 1263 1967 1394 1409 1914
41.75

365

300 2322 1709 3653 3066 3280 3594
78.80

220

500 3522 2711 4807 4386 4646 4756
98.05

844

1000 8453 5933 10319 9604 9884 10133
93.69

436

2000 14320 0 19675 16781 17079 18839
97.73

737

In the above table, 6 Avg refers to the average time taken for a

request from the client side to the kubernetes deployed API

manager end point. This is also given in milliseconds.

Line chart in figure 13 indicates a comparison between the

throughputs obtained for the load tests on direct backend

REST service endpoint and API-Manager REST service

endpoint.

Figure 12: Comparison of the throughput from direct

backend REST service endpoint and API-Manager REST

service endpoint for the load test.

The line chart 14 below shows the comparison of average

time taken to address a client request by direct backend REST

service endpoint and kubernetes deployed API manager end

point.

Figure 13: Comparison between direct backend REST

service endpoint and API-Manager REST service

endpoint on average time is taken to respond to a client

request.

7. DISCUSSION AND COMPARISON.
Nowadays, APIs are important to a developing organization

since APIs will help to improve the efficiency, automation,

personalization aspects of services expose by the organization

[21][22][23][24][25]. When there‟s a requirement to move the

created APIs in one environment into another environment,

users must recreate those in the new environment manually.

Time, resources and cost are wastage is common because of

the redundant processes. There are only a few tools that

support for API migration and those tools still haven‟t address

drawbacks as;

 Individual components should be deployed

separately. Required to create the component one by

one and lot of redundant processes will be occurred.

Therefore, a lot of time, developer effort and

resources will be wasted.

 Limited developer portal functionalities will cause

to reduce the performance.

 An unnecessary amount of resources will be wasted,

and network traffic will be occurred because of the

wastage of bandwidth.

 No built-in support for strong authentication. Since

a lot of mechanisms relies on third party

authentication applications and it always requires to

connect with the 3rd party applications will help

intruders to access the private information easily.

 The lack of functionality. Ex. Most of the CLI tools

does not support API Subscription.

If anyone can address drawbacks, it can increase the accuracy

rate, performance and security of the migration process.

Proposed tool was primarily developed targeting above

mentioned problems and introduced new functionalities

targeting the fore coming marketing trends. Following are

such specific features expose by the CLI tool for API

migration [26].

0

20,000

40,000

60,000

80,000

100,000

120,000

100 300 500 1000 2000

Th
ro

u
gh

p
u

t

Number of concurrent users

Test Results

Direct backend REST service endpoint

API-Manager REST service endpoint

0

5000

10000

15000

20000

100 300 500 1000 2000

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

Number of concurrent users

Average time taken to

response to a client request

Direct backend REST service endpoint

API-Manager REST service endpoint

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

43

 A tool is a generic tool where many APIM

application by different vendors can be used for

their APIM applications.

 The tool can execute on different platforms such as

windows, Linux to achieve platform independency.

 Introduced a strong authentication mechanism using

Basic auth and OAuth 2.0 authentication

mechanisms to provide a better authentication

throughout the functionalities of the CLI Tool.

 The proposed tool contains new functionalities such

as API subscription which most of the CLI tools

does not contain.

 Moreover, reduced user‟s manual steps through the

tool by Enhancing automate feature and do not

require any additional configurations to use the tool.

As a result, a lot of time, resources, developer effort and cost

can be saved while having a better performance, accuracy rate

and an efficiency level by using this CLI tool.

Even though API migration tool is very easy to use for

everyone, complete documentation and guidelines on usage of

the system will be provided. It ensures the relevant users to

the access the accessibility tools of the operating system,

without affecting the API migration tool‟s functionality.

Furthermore, it includes instructions in simple languages with

screenshots and provides accessible support materials,

training and documentation.

7.1 System Performance
Creating an API with minimalistic features, without any

WSDLs, median policies, and documentation cost u

approximately 2minutes and 30 seconds in any typical API

managing product. If a user needs to create 20 of such APIs in

a new environment, it takes around 90 minutes to create the

whole set of APIs. API import is the process where users

rebuild the API using the received API resources in a new

environment. Performance, the API migration tool, is

commendable such that it can create whole set of this 20 APIs

within less than 1minute and 40 seconds.

Figure 5.1 below shows the time taken to create defined

number of APIs manually by a API managing application and

the time taken by the implemented CLI tool to create the

imported APIs in the new environment. It is observed that the

time taken by the implemented tool to create APIs fluctuate

around a fixed rate this is because the time taken to execute

the tool remains constant and the time difference cause due

the number of APIs been import is just few seconds.

Figure 14: Comparison between API managing

application and implemented CLI tool to create APIs in

the publisher portal.

Following calculations explain about the performance gain

can acquire through the implemented CLI tool.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑖𝑚𝑝𝑙𝑒 𝐴𝑃𝐼 = 150𝑠

𝐴𝑣𝑔. 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑐𝑟𝑒𝑎𝑡𝑒 20 𝑠𝑖𝑚𝑝𝑙𝑒 𝐴𝑃𝐼𝑠 = 150𝑠 × 20

 = 3000𝑠

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑡𝑜𝑜𝑙 𝑡𝑜 𝑐𝑟𝑒𝑎𝑡𝑒 20 𝐴𝑃𝐼𝑠 = 100𝑠

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑔𝑎𝑖𝑛 =
 3000𝑠 − 100𝑠

3000𝑠
 × 100%

 = 96.66%

8. CONCLUSION
API migration is becoming an essential functionality need

support by API managing products which will allow

developers to migrate the created APIs from one development

environment to another as well for the API publishers to

exchange their created APIs with other API publishers.

Current mechanisms provided by several API management

products have identified problems like delegation of key

security functionalities to third parties, individual components

need to be deployed separately, limited developer portal

functionalities, and limited automated features, which are not

addressed yet. Therefore, a requirement for a powerful,

platform independent and efficient tooling supporting for this

domain is still at a growing stage. In this research project,

presented a CLI tool which could overcome those identified

issues in current existing tools and can address the

performance issues currently undergoing. Main functionalities

expose out migration tool can be split in to four as API export,

API import, API subscription and application deployment.

To perform all these activities, the tool should be executed by

a valid user. Access to the tool is verified and validated by

two key security mechanisms. Basic level authentication is

done through the Basic Authentication technology, and REST

API invocations are secured by the access tokens generated

via OAuth 2.0.

2.15

15

25.05

38.15

50.4

1.18 1.24 1.29 1.32 1.34

0

10

20

30

40

50

60

1 5 10 15 20

Ti
m

e
Ta

ke
n

 in
m

in
u

te
s

Number of APIs

Average time taken to create

APIs

Manual API creation Importing APIs via the CLI tool

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

44

API export functionality allows the user to retrieve all the

components related to API/APIs as API definition, swagger

definition, thumbnails, mediation policies and bundle them up

to a single transportable archive file which can be transferred

to any environment. The user just has to execute the tool with

API identifiers or the required APIs.

Since the API import users has to trigger the CLI tool with the

local folder path to the imported archive file. Users do not

have to deploy each component separately. Once the tool is

triggered, it will extract all the content of the imported folder

to a temporary local folder. The tool then retrieves those

content to create and publish the imported APIs in the new

environment by invoking the available REST APIs.

None of the existing migration tools has introduced the

functionality to perform API subscription. API subscription

allows the user to create applications with required tier levels

and subscribe to any API identified by the API identification

via that application or any other applications available in the

API store. The entire process is handled via the CLI tool. This

makes developer portal functions fast and easy.

Using two virtual or physical machine on creating the

kubernetes cluster will help on maintain the traffic and update

the product with a zero downtime and efficient replica

allocation other than using a minikube cluster with a one

worker node.

All these functionalities collectively will address most of the

drawbacks that haven‟t been addressed in current API

migration tools. This tool will facilitate the developer effort

in developing API manager applications and enhance the

developer productivity by eliminating unnecessary time, and

effort wastage arise during API migration across different

environments.

9. FUTURE WORKS
The basic requirement of the project was to introduce a

tooling support for API managing applications to perform API

migration. To full fill, this requirement identified a set of

requirements include retrieving and packaging API

components to a transportable file type to export in to a new

environment. Extracting the components in the imported

compressed file and deploying imported APIs in a new

environment is another requirement. Surrounding those main

requirement sub requirements as authentication, and

deployment of APIs in minikube and Google cloud also were

included in the current version of the API migration tool.

All these steps involved in the API migration are based on the

RESR API invocations where bandwidth is critical in

handling bulk API import and bulk export. As future

development plan, it is noted to have any algorithm or

mechanism to reduce this bandwidth utilization or to divide

the bandwidth usage in to a time scaled slots enabling

asynchronous data flow between the back and forth.

Currently, tool accepts the API identifiers for bulk export of

APIs only via the CSV file at the location specified in the

config file. It is possible to broaden this functionality by

enabling the tool to accept inputs from various input sources

as json files, xml or even with another program code.

All the users are authorised and authenticated when accessing

the tool. Still, the exporting file is transported across

environment via third party applications as Gmail. At an

instance, this can create a security sieve for intruders to get

the access to API resources. As the future development plan,

planned to implement a secured channel between exporting

party and the importing party for secured API file

transportation.

The observed efficiency of the current tool is 96.66%, this can

be further increase if could find a mechanism to bundle up the

HTTP requests, responses pass between client and the server.

Anyone whose interest in continuing this research into the

higher level can pay attention to optimizing bandwidth

utilization, achieving language neutrality, enhancing the

security of transportation process and deployment of APIs in

Amazon web services.

10. REFERENCES
[1] Alexie Balaganski, “API Security Management”,

KuppingerCole Report No: 70958, LEADERSHIP

COMPASS pp 20-27, July 2015.

[2] G. P., "APIgee_environment_Migration tool," 07 2016.

[Online]. Available:

https://www.npmjs.com/package/APIgee_environment_

migrationtool. [Accessed 27 02 2017].

[3] MuleSoft.com, "Deploying to Multiple Environments,"

MuleSoft.com, [Online]. Available:

https://docs.mulesoft.com/mule-user-

guide/v/3.6/deploying-to-multipleenvironments.

[Accessed 27 02 2017].

[4] "Secret of great API," MuleSoft, [Online]. Available:

https://www.mulesoft.com/ty/wp/secrets-great-api.

[Accessed 24 03 2017].

[5] D. Stevenovic, "WSO2TORIAL: Migrating the APIs to a

Different Environment," WSO2, 11 09 2015. [Online].

Available: https://www.yenlo.com/blog/wso2torial-

migrating-theAPIs-to-a-different-environment.

[Accessed 28 02 2017].

[6] fliaa01, "CA API Gateway 8.3.00 released," CA, 17 03

2015. [Online]. Available:

https://communities.ca.com/thread/241725934.

[Accessed 15 03 2017].

[7] MuleSoft, "The Top Six Microservice Patterns,"

MuleSoft. [Online].

[8] D. Burg, "Using Google OAuth 2.0 authorization server

in Azure API Management," 2017, 25 07. [Online].

Available: https://support.3scale.net/docs/api-

authentication/oauth2. [Accessed 02 10 2017].

[9] Azure, "Code flow of the OAuth 2 specification," Azure,

21 09 2014. [Online]. Available:

https://dzimchuk.azureedge.net/blog-content/OAuth2-

Authorization-Code-Grantupdated2.png . [Accessed 18

03 2017].

[10] "Export API," Facebook, 2017. [Online]. Available:

https://developers.facebook.com/docs/analytics/export/.

[Accessed 06 06 2017].

[11] "Export an API from API Gateway," Amazon Web

Services, Inc., 2017. [Online]. Available:

http://docs.aws.amazon.com/apigateway/latest/developer

guide/api-gateway-export-api.html. [Accessed 08 06

2017].

[12] WSO2, "Building an Ecosystem for API Security,"

WSO2, [Online]. Available:

http://wso2.com/wso2_resources/wso2-whitepaper-

building-an-ecosystem-forapi-security.pdf/. [Accessed 17

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.6, December 2017

45

03 2017].

[13] AWS, "OAuth2 Role‟s to be identified," AWS, 2015.

[Online]. Available:

https://s3.amazonaws.com/dfcwiki/en/images/6/6f.

[Accessed 18 03 2017].

[14] WSO2, "Authorization code grant type with WSO2 API

manager," WSO2, [Online]. Available:

https://docs.wso2.com/download/attachments/29922435.

[Accessed 18 03 2017].

[15] Google, "Large-scale cluster management at Google,"

Google, [Online]. Available:

https://research.google.com/pubs/pub43438.html.

[Accessed 26 03 2017].

[16] T. Vase, "ADVANTAGES OF DOCKER," University of

Jyväskylä, 2015. [Online]. Available:

https://jyx.jyu.fi/dspace/bitstream/handle/123456789/480

29/URN%3ANBN%3Afi%3Ajyu-

201512093942.pdf?sequence=1. [Accessed 25 05 2017].

[17] N. D. Loof, "Docker Hub 2.0 Integration with the

CloudBees Jenkins Platform," 21 09 2015. [Online].

Available: https://dzone.com/articles/docker-hub-

20integration-with-the-cloudbees-jenki. [Accessed 17 04

2017].

[18] S. Sheshachala, "Docker vs VMs," 24 11 2014. [Online].

Available: ://devops.com/docker-vsvms. [Accessed 15 03

2017].

[19] M. Arul, "How to create Docker Images with a

Dockerfile," [Online]. Available:

https://www.howtoforge.com/tutorial/how-to-

createdocker-images-with-dockerfile/. [Accessed 17 03

2017].

[20] D. Doc, "Overview of Docker Hub," Docker, [Online].

Available: https://docs.docker.com/docker-hub/.

[Accessed 17 03 2017].

[21] A. B. Steve Danielson, "How to import the definition of

an API with operations in Azure API Management," 23

01 2017. [Online]. Available:

https://docs.microsoft.com/enus/azure/api-

management/api-management-howto-import-api.

[Accessed 11 04 2017].

[22] M. Rouse, "API economy (application programming

interface economy)," [Online]. Available:

http://searchmicroservices.techtarget.com/definition/API-

economyapplicationprogramming-interface-economy .

[Accessed 14 03 2017].

[23] M. S. Bala Iyer, "The Strategic Value of APIs," 07 01

2015. [Online]. Available: https://hbr.org/2015/01/the-

strategic-value-of-apis. [Accessed 17 03 2017].

[24] J. Musser, "Open APIs:State of the Market," 06 12 2010.

[Online]. Available: https://qconsf.com/sf2010/dl/qcon-

sanfran-

2008/slides_/JohnMusser_Web_As_Platform.pdf.

[Accessed 14 03 2017].

[25] G. C. D. Sisk, "API Economy," 2015. [Online].

Available:

https://www2.deloitte.com/content/dam/Deloitte/us/Docu

ments/financialservices/us-fsi-api-economy.pdf.

[Accessed 24 03 2017].

[26] A. Jayakody, A.K.A. Perera, G.L.A.K.N. Perera, V. P.

Wijayaweera and M.A.M. Asbar Ali, " Efficient and

Platform Independent CLI Tool for API Migration" in

24th Annual Technical Conference of IET Sri Lanka

Network, Colombo, IET, 2017, pp. 63-67.

IJCATM : www.ijcaonline.org

