
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

1

An SPL Framework based Rapid Development of UAVs

using FeatureIDE: A Case Study

Md. Mottahir Alam

 PhD Scholar
Department of Electronics &
Communication Engineering,

Singhania University,
Rajasthan, India

Asif Irshad Khan
Dept. of Computer Science,
King AbdulAziz University,

Jeddah, Saudi Arabia

Anoop Kumar Sharma
Dept. of Computer Science,

Singhania University
Rajasthan, India

ABSTRACT
Software product line engineering(SPLE), through the

modeling of commonality and variability in a product family,

offers a systematic solution to build a group of similar

products at reduced development complexity and time to

market due to their synergy and common goals.

SPL models are often used to develop adaptive and

configurable software systems such as a family of product

lines. SPLE is usually implemented using different models.

Implementing SPLE is very challenging. Different models are

used to implement SPLE. Feature models are very prevalent

nowadays because it helps to emulate the broad-view of

product management, product design, and architecture and

product configuration. This paper takes the case study of

developing a family of UAV system using Improved Software

Product Line (ISPL) via feature modeling. It shows how SPLs

can be perceived as feature diagrams using feature modeling

tool FeatureIDE to facilitate the development of product line

family.

General Terms
Software Product Line Engineering

Keywords
Software Product lines, SPL, feature modeling, UAV family,

case study.

1. INTRODUCTION
SOFTWARE Product Line (SPL) is a well-known technique

being used in industry since 90's to better the quality and

reduce development time and costs of software products [1].

It is a well-planned, and decisive reuse of core software assets

to produce a set of closely related software products that

satisfy a particular market demand[2].

A family of products is usually characterized in terms of

features, where each feature signifies an addition in the

functionality of the product. These features are evolved from a

reference architecture (RA) or generic architecture comprising

a common set of assets that can be reused in different

products of the product family [3].

In an SPL, a product is comprised of multiple components

chosen from existing component libraries. These components

communicate and collaborate through a common platform to

achieve definite functionalities. Software companies use

technologies and practices from different areas so as to

increase the efficiency and quality of the set of built software

products, also called as Software Product Line [4]. SPLs can

be considered as software models by employing the idea of

feature modeling engaging multiple software methodologies.

Software Product Lines (SPLs)
Due to cost and time pressures, it is not practical for software

firms to build a new product afresh against every new market

demands. Therefore, there is a growing trend in the software

industry to develop a set of similar but distinct software

products instead of just a single product using the concept of

software reuse.

Software Product Line Engineering (SPLE) extends a solution

to these industry challenges. SPLE is based on the idea of

explicit representation of common and variable features

among the product variants. Feature Models [5] [6] are often

employed for this which models family of a product line.

SPLE also involves the designing and control of a variable

product line architecture and its constituent software

components. In SPLE, common aspects of the product line are

also called as core assets which comprise shared components,

framework, tools, processes, documentation, test cases, etc.

So, SPL, in essence, is a family/set of products outlined to

take benefit of their common features and anticipated

variability to enhance quality, delivery time and cut in cost.

SPLE supports in designing, creating, delivering, maintaining

and evolving a family of product line throughout the product

development lifecycle. This paper is organized as follows:

Section 2 deals with Software Product Lines (SPLs). Section

3 describes the Feature Model. Section 4 explains feature-

based modeling tool FeatureIDE . Section 5 Feature Modeling

using ISPL. Section 6 describes the case study of unmanned

ariel vehicle (UAV). Lastly, section VII presents the

conclusions.

2. FEATURE MODEL
Feature modeling is a process of using features to identify

commonality and variability in a group of similar products in

a particular domain and then combining them to build a

feature model. It was introduced by Kang et al. in 1990 [6]. It

is used to control the variability in SPL approach, offering a

hierarchical notation of the product features.

Feature models have two components. Its first element is the

feature diagram that is a graphical or visual representation of a

feature model combining features in a tree-like structure in the

form of some relationships. The second part is additional

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

2

constraints termed as cross-tree constraints as they do not

depend on the tree-structure of the feature diagram. Cross-tree

constraints represent any other relations existing among

features. However, the semantics of feature models are fix

and precise. This allows mapping of feature models to

different logical representations.

A feature model is primarily used as an input to produce

various assets like requirement specifications, design

documents, and architecture outline.

A feature can be defined as a property or attribute of a

software system. It acts as the first-order entity [7] throughout

the software lifecycle, and across the problem space and

solution space, it can be understood simultaneously by

domain experts, users, and developers.

A feature model exemplifies all the potential member

products of an SPL concerning features and the relationships

among them. In a feature model, features are essential and

distinguishing system requirements or components for an SPL

[]. Features do not exist in separation, but there exist different

relationships among them. Various kinds of associations

between any parent feature and its child features can be

summarized as:

I. Mandatory: It means that the child feature is

compulsory.

II. Optional: It implies that the child feature is

discretionary.

III. OR: It indicates that at least one among the sub-

features necessarily be chosen.

IV. Alternative (XOR): It implies that only one from the

sub-features is to be selected.

Besides, the parent-child relationships among features, cross-

tree constraints are supported, like:

 A requires B – If a feature A is picked for a

particular product, then the feature B must be

chosen.

 A excludes B – Features A and feature B cannot

exist simultaneously in the same product.

Various tools supporting feature modeling exists which

address a wide variety of different concerns.

These tools have their own feature modeling notations and

constraint languages in order to analyze the common and

variable features to form the basis of product line family. The

different language constructs required in any feature modeling

tool are as follows:

1. Mandatory Features realize commonalities that are

sure to be incorporated in a configuration if their

parent feature is chosen.

2. Optional Features express variabilities that may or

may not be selected in a configuration.

3. Feature Cardinality specifies a minimum and

maximum number for how often a feature may be

selected. It can be regarded as an option to the

specific variation type for mandatory features and

optional features. Sometimes, it is also used to

represent multiple instances of the same feature as

cloned features by enabling maximum cardinalities

greater than 1.

4. Attributes are marked variables of features that filter

configuration choices so that, other than selection of

features, precise values for attributes may be taken.

We can define a specific type to the attributes,

which outlines permissible values. Types of

attributes can be classified into discrete (finite or

infinite) and continuous domains.

5. Feature Versions include variability in time in

feature models [8][9]. It may be used to maintain

two versions per feature representing the state of the

feature model‘s structure and its associated

implementation. However, it does not allow using

them as configurable units. It can also be used to

support specification of multiple feature versions

with interdependencies to represent feature versions

as a configurable unit.

6. Layers of feature models provide a separation of

concerns for different sources of variability. It is

also used as layers for capability, operation settings,

domain technologies, and implementation

techniques[6]. It improves the reuse of feature

models as well as assists scalability.

7. External Features allow referencing of features that

are defined in other feature models [10]. For

instance, it can be employed in combination with

layers of feature models when referencing features

of different feature models [11].

8. Binding Times select at which time a feature should

have to be configured. Standard binding times are at

compile time or run time [12]. Sometimes, attributes

in the features can also be used to specify the

binding time [13]. Researchers also tagged a label

on the connector linking features to mark the

binding time.

9. Resource Mapping enables linking of different

resources with the features in a feature model [14].

It also presents a mapping of features for

illustrations, displaying only particular parts of a

feature model to collaborators of the feature model.

Furthermore, it outlines preferences for the

configuration and specific hardware to the features.

10. Alternative-Groups select only one of the contained

features, which makes them mutually exclusive.

11. Or-Groups permit selection of at least one of the

contained features.

12. Group Cardinality stipulates the minimum and a

maximum number of selectable features in any

group. Hence, it may be regarded as an alternative

to the specific variation type of groups as

alternative-groups and or-groups [15]. Unlike the

alternative-groups and or-groups, group cardinality

supports additional restrictions on selections in a

group.

13. Multiple Groups express the possibility that a

feature can have more than one child group, such as

a feature having two alternative-groups. Numerous

notations do not distinctly reveal whether they

support multiple groups or not. Czarnecki and

Eisenecker [17] appear to be the first who explicitly

support multiple groups. There are various tools

available which support feature modeling such as

FeatureIDE, S. P. L. O. T. (Software Product Line

Online Tools), Pure::Variants, Feature Model Plug-

in, PULSE-BEAT, FeatureMapper, MetaEdit+,

FaMa Tool suite, BeTTy Framework, and

FAMILIAR.

The modeling methods mentioned above are all to extract the

names of features and build their relationship, the features

obtained from extraction are not the smallest unit in concept,

which only show the problems to be solved, i.e. these feature

modeling methods only extract the extension of products, not

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

3

clearly explain how to solve problems, and fail to understand

the variability and relationships between features in depth. So

the ultimate feature models are at relatively higher level of

abstraction, the relationship between features are more

semantically vague [1].

Fig 1: Feature Diagram Example

Fig 2: Feature model of drone system.

3. FEATUREIDE: A TOOL FOR

FEATURE-BASED SPL DEVELOPMENT
The heading of a section should be in Times New FeatureIDE

is an Eclipse-based IDE which supports the feature-based

development of software systems. It was first introduced in

FODA (Feature-Oriented Domain Analysis) method to extract

and interpret commonalities and variability of software

systems in a particular domain [6].

It supports all phases of feature-based development of SPLs,

namely, domain analysis, requirements analysis, product-line

design and architecting, product line implementation, product

line testing, delivery, maintenance, and evolution.

Feature models define features in a domain—and their

relationships. Feature models are generally used to gather the

information and data from domain experts concerning

customer requirements, system potentials, system efficiency,

and configurations [16]. The term Feature is used to express

the understanding of the general capabilities of systems by

end users, managers, and developers.

Features can be classified as [7] [17] [18]:

i) problem space features: They are commonly used

to express systems‘ specifications established

during domain analysis and requirements

engineering;

ii) solution space features: They refer to the detailed

realization of systems developed during domain

engineering, usually by establishing mappings of

the features to code,

iii) configuration space features: They are used to

facilitate the extraction of distinct products by

managing variability.

This tool is under continuous evolution that adds to new

features in it. Feature IDE provides a means to assist feature-

based development through following:

 A Feature Model Editor, which is both graphical and

text-based.

 Constraint Editor.

 Configuration Editor for adding and editing of

features.

 Provide source code abstraction for SPL.

 Support for refactoring, generalizations, etc.

 Statistics display of FeatureIDE project.

 Provide outline view of feature model.

 Supports Collaboration Diagram for Feature

Diagram.

4. OVERVIEW OF THE IMPROVED

SPL FRAMEWORK
A security enabled framework for software product line

development is proposed with a high abstract level of

software product line (SPL) architecture as shown in Fig5.

The model is a mix of aspect-oriented and the feature-oriented

approach. The aspect-oriented approach addresses

crosscutting concerns and functional behaviors of SPL while

the feature-oriented approach is used to capture variability and

commonality of product lines. The detailed explanation of the

proposed model is as follows:

The model has two high-level processes: domain engineering

and application engineering. The main aim of domain

engineering is to identify and develop reusable artifacts for

reuse later in the application engineering phase. Application

engineering targets building of software products using the

identified reusable artifacts.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

4

Fig 3: Shows a high abstract level of Software Product Line (SPL) Architecture

4.1 Domain Engineering Phase
Domain Engineering requires common and variable

requirements of the product line family as inputs and

generates reusable core assets such as components,

framework, a library, tools or a platform, etc.

The core activities of the domain engineering phase are

described as follows [19]:

 Business Feasibility Study

 Product Line Scoping

 Product Line Requirement Analysis

 Security Policy and Security Modeling

 Product line design and architecting

 Product line Implementation

 Product line Testing

4.2 Application Engineering Phase
Application engineering deals with requirements

specifications of individual products of the software product

line family are considered, and a customer-specific product is

developed by using the generic architecture and reusing the

core assets from domain engineering as much as possible.

Fig 4. Architecture diagram of the UAVs system.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

5

Following are the major activities carried out to create tailored

products during application engineering:

 Application Requirement

 Application Design and Architecting

 Application Implementation

 Application Testing

 Delivery, Evolution, and Maintenance

For a detailed description, refer to [16].

5. CASE STUDY
Unmanned Aerial Vehicle (UAV) or drone is an aircraft that

fly without pilot on-board. They are also called "flying robot"

or ―eyes in the sky.‖ It is remotely managed through software-

controlled flight programs in its embedded systems operating

in coordination with aboard GPS and various sensors. Apart

from its uses in the military like in intelligence gathering[20],

anti-aircraft target, and weapons platforms[21-24], UAVs are

also finding large-scale applications in agriculture, traffic

monitoring, rescue mission[25], real estate evaluations,

weather monitoring[26-28], surveying, business drone-based

photography and videography, wildlife monitoring, and

conservation, and even delivery services.

While techniques and capabilities may vary, all UAVs posses

these common features:

i) They are energized by rechargeable batteries.

ii) They are managed either autonomously or with a

remote.

iii) They have 4-8 rotors.

iv) They employ GPS to track location.

v) They are based on a fail-safe mechanism like return-

to-home technology.

vi) They contain a camera with both videos as well as

still image capabilities.

Fig 5: Feature-diagram example of a UAV system

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

6

While designing a family of UAVs under the SPLD approach,

although the core architecture for UAV product line remains

almost the same, key features are such as propeller selection,

motor variety, airfoil selection, wing-size, and span of tilting

wing segment are systematically selected depending on the

probable application of specific UAVs.

Fig 6. UAV Outline View

In this case study, FeatureIDE is employed to simulate and

create UAV feature models. A typical feature diagram for the

UAV product line is represented in Fig. 5. The FeatureIDE

tool provides support for defining mandatory features,

optional features, and constraints of the UAV product line.

These features are displayed in a Feature model diagram of

the product line as shown in Fig 5. As we know, the nodes in

Fig 5 represents features while edges represent dependency

among the features.

The constraints are also a part of feature model diagram. In

the feature-oriented programming based on the feature

modeling, each feature is implemented as an independent

feature model. The UAV product line uses a total of 38

features such as motor-configuration, sensor, connectivity,

battery, software-support, media, etc. as shown in Fig 11. Out

of 38, there are 37 concrete features, 1 abstract feature, 29

primitive feature, 9 compound features, and 5 constraints.

The outline as in Fig. 6 provides the overall outline of the

UAV product line feature model, summarizing the mandatory

features, optional features, and the product line constraints

where the solid circles show the mandatory features, hollow

circles displays the optional features, and another symbol

represents the or-relations among the features.

Fig 7: Collaboration Diagram for the UAV system

The root of this feature diagram is "UAV" which represents a

UAV product. It has six mandatory children with Motor

configuration, Sensor, Connectivity, Battery, Software

Support, and Battery. It also has one optional child as Other

Features. The feature diagram is equivalent to following

conjunction:

root(UAV)

∧ mandatory(UAV, Motor configuration)

∧ mandatory(UAV, Sensor)

∧ mandatory(UAV, Connectivity)

∧ mandatory(UAV, Battery)

∧ mandatory(UAV, Software Support)

∧ mandatory(UAV, Media)

∧ optional(UAV, Other Features)

∧ alternative(Motor Configuration,{Tricopter,Quadcopter,

Hexacopter, Y6, X8})

∧ alternative(Sensor,{Accelerometer, GPS, Barometer,

Magnetometer})

∧ alternative(Connectivity,{Wireless, GPS)

∧ alternative(Battery,{NiCd, Ni-MH, LiPo})

∧ alternative(Software Support,{takeoff, land, arm, disarm,

checkbatterystatus,getPosition,flylocation,send

Pictures,emergencyLanding})

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

7

∧ alternative(Media,{Camera, Onscreen})

∧ or(Other Features,{Wireless Telemetry Kit, Optical Sensor,

Battery Monitor})

∧ alternative(Camera,{Digital, Analog})

∧ (···)

Fig 8: show collaboration map for the UAV system.

The Collaboration Diagram displays the feature model for

UAV in terms of the main classes being involved and the

features they represent. Additionally, it also describes the

other classes which define the main classes.

5.1 Modeling Variability with Feature

Models
In a FeatureIDE, the feature model of the UAV product line is

stored in the UAVmodel.xml file of UAV project. The feature

model editor for the UAV project as shown in Fig. 5 has three

tabs which allow the product-line developers to the edit

feature model. The FeatureIDE editor supports:

i) editing of feature diagrams for the UAV product line.

ii) managing the order of features to ensure correct product

generation of UAV product line.

iii) direct editing of the textual representation in the

UAVmodel.xml file.

Hence, with the editor, the development team can add,

remove, and even change features and their dependencies. It is

also possible to add cross-tree constraints to the feature

model. Even an arbitrary propositional formula can be defined

in the editor with the set of existing features. FeatureIDE

offers an additional dialog that ensures the syntactical

correctness of described cross-tree constraints. The dialog can

be opened using the context menu or a double-click on an

existing cross-tree constraint. Using the Constraint Dialog, the

developer immediately gets feedback about the correctness of

the constraint to prevent the creation of incorrect constraints.

Fig 9: Configuring features for the UAV system for

specific features combinations

5.2 Implementation of Software Variability

A FeatureIDE project like UAV project comprises of two

source folders: the ―src‖ folder for generated source files and

the ―features‖ folder for implemented artifacts. Thus, the

editable implementation artifacts of the UAV product line are

located in the ―features― folder. In contrast, the ―src― folder is

only the output folder for the generator and the content

changes by each product generation (i.e., build process).

Therefore, it is not intended to manually change the files of

―src‖ folder. Nevertheless, the ―src‖ folder can be helpful if

program failures occur and more details are needed to find the

error.

 The folder consists of a set of subfolders that represents the

feature modules of the UAV project. Each subfolder

represents a unique concrete feature of the UAV feature

model as described in the UAVmodel.xml. For instance, the

UAV project as can be seen in Fig. 3.4 consists of 37 concrete

features that are represented as subfolders in the source folder

features. Further, each of the feature modules contains

implementation artifacts, and Java files, which we can be

edited to change the behavior of products of the UAV product

line.

It is to be noted that the implementation of a product line and

the respective implementation procedure differs according to

the used programming language (e.g., Java, C++) and

generation mechanism (e.g., preprocessors).

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

8

Fig 10: Configuring features for the UAV system for

specific features combinations

5.3 Creating Configurations:
Before running a specific product of the UAV product line,

we need to select all features that are to be included in a given

product. FeatureIDE provides configuration files for this

purpose where the specific selections are stored. As described

above, all existing configurations of a project are stored in the

directory ―config,‖ and the active configuration (i.e., the

product that is used for the build process) is displayed as

green. Typically only the active configuration is built

automatically on each change. As a developer, we can use

FeatureIDE‘s Configuration Editor to have a look at the

selected features of a *.config file and to change the selection.

Therefore, the FeatureIDE‘s Configuration Editor comprises

of a configuration page, an advanced configuration page, and

a source tab for the textual representation of the file. The

Source tab textually presents all selected features, whereas the

Configuration and Advanced Configuration tabs support the

configuration process and ensure that the selection does not

lead to invalid configurations.

Fig 11 . FeatureIDE for UAV product line

5.4 Product Generation and Execution:
Once the feature modeling, feature implementation, and

product selection for the UAV product line is done, we can

start to build and run a specific UAV product. FeatureIDE has

in it all well-known procedures that Eclipse provides for a

project build and launch. Thus, like Eclipse, FeatureIDE

offers multiple ways to create a Run Configuration for

projects.

Fig 12. Configuration file for UAV system

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

9

Depending on the programming language, the submenu varies

slightly. The FeatureIDE UAV project is based on a Java

project, and so, the submenu allows us to create and launch a

Run Configuration for Java. After that, we can reuse the

created Run Configuration to relaunch the UAV project‘s

configuration. Sometimes the created Run Configuration

cannot launch the project successfully due to false settings,

such as possible start parameters. In this case, we have to set

up the created Run Configuration. So, the developer can use

the menu entry Run Configurations. Using this menu entry,

we can open the default dialog for Eclipse configurations that

allow us to edit or create all kinds of configuration settings.

Depending on the type of the Run Configuration, we can

define all needed start information, such as the starting class

or start parameters.

6. CONCLUSION
This research work proposed an SPL based feature model for

an unmanned aerial vehicle (UAV). FeatureIDE, which is an

Eclipse-based feature modeling tool, is used to represent a

family of products for UAV system. The paper emphasized in

details various aspects of UAV product line.

The feature model successfully generated various aspects of

UAV product line such as feature diagram, collaboration

diagram view, its configuration, Feature IDE Statistics, etc to

facilitate the development of product line family. It was

observed that distinct sets of UAV could be outlined

depending on the various mandatory, optional and exclusive

features selected for the UAV product line.

It was concluded that the FeatureIDE tool successfully

supported all the phases of feature-oriented product line

development of UAV product line which was mandatory for

this case study. Further, FeatureIDE tool endorses both

domain engineering and application engineering by assisting

in implementing variability in product lines, providing support

to configure products, and finally, assisting in generation and

execution of products for a product line.

7. REFERENCES
[1] Khan, A.I., Alam, M.M. and Al Jedaibi, W., Variability

Management in Software Development using

FeatureIDE: A Case Study, International Journal of

Scientific & Engineering Research, Volume 6, Issue 1,

January-2015, ISSN 2229-5518

[2] J. Bosch, Design and Use of Software Architectures:

Adopting and Evolving a Product Line Approach,

Addison-Wesley, 2000

[3] M. Steger et al., ‗Introducing PLA RK Bosch Gasoline

of System: Experiences and Practices‘ in: Proc. of the

Software Product Line Conf. 2004, S. 34-50

[4] Alam, M.M, Khan, A.I, Zafar, A., ―A Comprehensive

Study of Software Product Line Frameworks‖,

International Journal of Computer Applications (0975 –

8887) Volume 151 – No.3, October 2016.

[5] K. Czarnecki, U.W. Eisenecker, Generative

Programming:Methods, Tools, and Applications,

Addison-Wesley, 2000

[6] K. Kang, et al., Feature Oriented Domain Analysis

(FODA) Feasibility Study, Technical report CMU/SEI-

90-TR-021, Software Engineering Institute, Carnegie

Mellon University, 1990

[7] Lettner, D., Eder, K., Grünbacher, P. and Prähofer, H.,

2015, September. Feature modeling of two large-scale

industrial software systems: Experiences and lessons

learned. In Model Driven Engineering Languages and

Systems (MODELS), 2015 ACM/IEEE 18th International

Conference on (pp. 386-395). IEEE.

[8] [SSA14a] Seidl, Christoph; Schaefer, Ina; Aßmann,

Uwe: Capturing Variability in Space and Time with

Hyper Feature Models. In: Proceedings of the 8th

International Workshop on Variability Modelling of

Software-intensive Systems (VaMoS). VaMoS‘14, 2014.

[9] [ME08] Mitschke, R.; Eichberg, M.: Supporting the

Evolution of Software Product Lines. In: ECMDA

Traceability Workshop. ECMA-TW, 2008.

[10] van Gurp, J.; Bosch, J.; Svahnberg, M.: On the Notion of

Variability in Software Product Lines. In: Proceedings of

the Conference on Software Architecture. 2001.

[11] Bak, Kacper; Czarnecki, Krzysztof; Wasowski, Andrzej:

Feature and Meta-models in Clafer: Mixed, Specialized,

and Coupled. In: Proceedings of the Third International

Conference on Software Language Engineering. SLE‘10,

Springer-Verlag, Berlin, Heidelberg, pp. 102–122, 2011.

[12] Griss, M. L.; Favaro, J.; Alessandro, M. d‘: Integrating

Feature Modeling with the RSEB. In: Proceedings of the

5th International Conference on Software Reuse. ICSR

‘98, IEEE Computer Society, Washington, DC, USA,

1998.

[13] van Gurp, J.; Bosch, J.; Svahnberg, M.: On the Notion of

Variability in Software Product Lines. In: Proceedings of

the Conference on Software Architecture. 2001.

[14] Schroeter, Julia; Lochau, Malte; Winkelmann, Tim:

Multi-Perspectives on Feature Models. In: Model Driven

Engineering Languages and Systems. Springer Berlin

Heidelberg, 2012.

[15] Riebisch, M.; Bollert, K.; Streitferdt, D.; Philippo ¨ w, I.:

Extending Feature Diagrams with UML Multiplicities.

In: 6th World Conference on Integrated Design &

Process Technology (IDPT2002). June 2002.

[16] Alam, M.M, Khan, A.I, Zafar, A. Md. Mottahir Alam,

Asif Irshad Khan, and Aasim Zafar. A Secure

Framework for Software Product Line

Development. International Journal of Computer

Applications 159(4):33-40, February 2017.

[17] Czarnecki, K., Eisenecker, U.W.: Generative

Programming: Methods, Tools, and Applications.

Addison-Wesley, Boston (2000)

[18] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.:

FORM: a feature-oriented reuse method with domain-

specific reference architectures. Ann. Softw. Eng. 5,

143–168 (1998)

[19] Alam, M.M., Khan, A.I. and Zafar, A., An Empirical

Study of the Improved SPLD Framework using Expert

Opinion Technique., (IJEACS) International Journal of

Engineering and Applied Computer Science, Volume:

02, Issue: 03, March 2017 ISBN: 978-0-9957075-4-2

[20] Lazarus, S., Shanmugavel, M., Tsourdos, A., Zbikowski,

R., and White, B. A., ―Airborne mapping of complex

obstacles using 2D splinegon,‖ American Control

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=V-Q2G4QAAAAJ&citation_for_view=V-Q2G4QAAAAJ:UeHWp8X0CEIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=V-Q2G4QAAAAJ&citation_for_view=V-Q2G4QAAAAJ:UeHWp8X0CEIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=V-Q2G4QAAAAJ&citation_for_view=V-Q2G4QAAAAJ:UeHWp8X0CEIC

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

10

Conference, Seattle, WA, June 11-13 2008, pp. 1238–

1243.

[21] Klesh, A., Girard, A., and Kabamba, P. T., ―Path

planning for cooperative time-optimal information

collection,‖ American Control Conference, Seattle, WA,

June 11-13 2008, pp. 1991–1996.

[22] Lechevin, N., Rabbath, C. A., Shanmugavel, M., and

amd Brian A. White, A. T., ―An integrated decision,

control and fault detection scheme for cooperating

unmanned aerial vehicle formations,‖ American Control

Conference, Seattle, WA, June 11-13 2008, pp. 1997–

2002.

[23] Karaman, S. and Frazzoli, E., ―Complex mission

optimization for multiple-UAVs using linear temporal

logic,‖ American Control Conference, Seattle, WA, June

11-13 2008, pp. 2003–2009.

[24] Serchele, R., Cataldo, L., Smith, B., and Ostis, F., ―Smart

wide area munitions for UAVs,‖ AUVSI North America

2006 , Orlando, FL, 2006.

[25] Pratt, K., Murphy, R., and Stover, S., ―Requirements for

semi-autonomous flight in miniature UAVs for structure

inspection,‖ AUVSI North America 2006, Orlando, FL,

2006.

[26] Davis, R. and Holmgren, P., ―Remote sensing and forest

monitoring in FRA2000 and beyond,‖ Forest resources

assessment working paper - 008, Forestry Department,

Food and Agriculture Organisation of the United

Nations, Rome, 1999.

[27] Tomppo, E., Czaplewski, R., and Makisara, K., ―The role

of remote sensing in global forest assessment,‖

Background paper for Kotka IV Expert Consultation,

Kotka, Finland, July 2002.

[28] Maslankik, J., ―Polar remote sensing using an unpiloted

aerial vehicle (UAV),‖ Seminar, ATOC7500, November

2002.

AUTHOR'S PROFILE
Mr. Md Mottahir Alam is a Ph.D. scholar in the Computer

Science & Engineering in Singhania University, India. He has

six years of experience as Software Engineer (quality) for

leading software multinationals, where he worked on projects

for companies like Pearson and Reader's Digest. He is ISTQB

Certified Software Tester. He has received his Bachelor's

degree in Electronics & Communication and Masters in

Nanotechnology from Jamia Millia Islamia University, New

Delhi, India. Mr. Alam research interest includes Software

Engineering esp. Software Product Line Engineering,

Software Reusability, Component-based and Agent-based

Software Engineering. He can be reached at

mohammad.mottahir@gmail.com.

Dr. Asif Irshad Khan is working as a faculty member in the

Department of Computer Science, FCIT, King Abdulaziz

University, Jeddah, Saudi Arabia. He has over fifteen years of

experience as a professional academician and researcher. Dr.

Khan received Ph.D. in Computer Science and Engineering

from India, and Master & Bachelor degrees in Computer

Science from the Aligarh Muslim University (A.M.U),

Aligarh, India.

He has published several research articles in leading journals

and conferences. He is a member of the editorial boards of

international journals, and his current research interest

includes Software Engineering with a focus on Component

Based and Software Product Line Engineering. He can be

reached at aikhan@kau.edu.sa.

Dr. Anoop Kumar Sharma is working as an assistant

Professor in the Computer Science Department, Singhania

University, Rajasthan. His current research interest includes e-

learning, mobile learning, virtual learning environments and

mobile ad hoc networks.

He has a number of research papers to his credits.

IJCATM : www.ijcaonline.org

